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Résumé

Les codes identi�ants dans les graphes sont liés à la notion classique d'ensemble
dominant et à sa variante d'ensemble dominant-localisateur introduite dans [SR84].
Les codes identi�ants possèdent une propriété permettant l'identi�cation unique de
tous les sommets du graphe. La notion de code identi�ant a été introduite en 1998
dans [KCL98], et a été largement étudiée depuis dans les communautés de la théorie
des graphes et de la théorie des codes.
Ce mémoire est le fruit du travail e�ectué dans le cadre d'un stage de recherche
e�ectué au LaBRI au printemps 2009. Nous donnerons d'abord quelques dé�nitions
et les résultats connus les plus importants dans le domaine des codes identi�ants.
Puis, nous considérerons ce problème dans des classes de graphes particulières. No-
tamment, nous discuterons la relation entre le degré maximum d'un graphe et les
bornes inférieures et supérieures pour la cardinalité minimum d'un code identi�ant
de ce graphe.
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Chapitre 1

Introduction au mémoire

Dans ce chapitre, nous donnons un bref aperçu du domaine des codes identi�ants,
avant de résumer les résultats obtenus lors de ce stage. Les autres parties du mémoire
sont rédigées en anglais, car une partie du travail a été réalisée avec Adrian Kosowski,
avec qui nous avons utilisé l'anglais. De plus nous allons soumettre certains de ces
résultats à publication [FKKR09]. Il nous a donc semblé naturel d'utiliser cette
langue. Une introduction plus détaillée est donnée dans le chapitre 2, et les résultats
complets sont donnés dans les chapitres suivants.

1.1 Quelques dé�nitions et résultats existants

Nous commençons par donner quelques dé�nitions de base liées aux concepts de
domination et d'identi�cation dans les graphes. Pour une introduction à la théorie
des graphes, voir [Ber58]. Pour une introduction au domaine de la domination dans
les graphes, voir [HHS98]. Pour des travaux sur les codes identi�ants, consulter par
exemple [KCL98, Mon05a, Ska07, BCHL04, CHL07, BWLT06]. Un survol des résul-
tats de ce domaine est également donné dans [TXXH06]. Il existe de plus une biblio-
graphie en ligne régulièrement actualisée sur les ensemble dominants-localisateurs,
les codes identi�ants et d'autres types de codes [Lob09].

Nous considérons dans ce mémoire des graphes �nis non orientés, simples, connexes,
sauf mention contraire. Soit G = (V,E) un graphe, et v un sommet de G. Un chemin
de longueur k dans G entre deux sommets v0 et vk est une suite {v0, ..., vk} de k+ 1
sommets de G tels que pour tout i ∈ {0, ..., k − 1}, l'arête {vi, vi+1} ∈ E(G). La
distance entre deux sommets u et v dans G, notée d(u, v), est la longueur d'un plus
court chemin entre u et v. Le voisinage fermé de v, noté N [v], est l'ensemble des
sommets de G qui sont à distance inférieure ou égale à 1 de v. Le voisinage de
v, noté N(v), est l'ensemble des sommets qui sont à distance exactement 1 de v :
N(v) = N [v]\{v}. Le degré d'un sommet v de G, noté degG(v), est le nombre de
voisins de v dans G. Le degré minimum δ(G) et le degré maximum ∆(G) d'un graphe
G sont les valeurs minimum et maximum du degré d'un sommet de G.

Un sommet v ∈ V domine ou couvre un sommet u si u ∈ N [v]. Soit C,C ′ ⊆ V , on
dit que C domine ou couvre C ′ si tous les sommets de C ′ sont dominés par au moins
un sommet de C. Un ensemble C ⊆ V est un ensemble dominant ou code couvrant
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de G si C domine V .

Deux sommets u, v de V sont séparés par un sommet x ∈ V si x domine exactement
un seul des deux sommets u et v. Soit C,C ′ ⊆ V , on dit que C sépare C ′ si pour
tout paire {u, v} de sommets de C ′, u et v sont séparés par au moins un sommet de
C.

Un ensemble C ⊆ V est un ensemble dominant-localisateur ou code dominant-
localisateur de G si :
1) C est un ensemble dominant de G, et
2) C sépare V \C.
En d'autres termes, pour tout sommet v ∈ V , N [v] ∩ C 6= ∅, et pour tout paire
{u, v} de sommets de V \C, N [u] ∩ C 6= N [v] ∩ C.

Un ensemble C ⊆ V est un code identi�ant de G (parfois appelé ensemble dominant
di�érenciant de G, par exemple dans [GVGN+01] ou [Ska07]) si :
1) C est un ensemble dominant de G, et
2) C sépare V .
en d'autres termes, pour chaque sommet v ∈ V , N [v] ∩ C 6= ∅, et pour toute paire
{u, v} de sommets de V , N [u] ∩ C 6= N [v] ∩ C.

Pour un code identi�ant C de G, et pour un sommet v ∈ V , l'ensemble IC(v) =
N [v] ∩ C est appelé ensemble identi�ant de v. On peut donner une dé�nition al-
ternative d'un code identi�ant de la façon suivante. Soit un graphe G = (V,E), un
ensemble C ⊆ V est un code identi�ant de G si, pour tout sommet v ∈ V , IC(v) 6= ∅,
et si pour toute paire de sommets distincts u, v ∈ V , IC(u) 6= IC(v).

Les �gures 1.1, 1.2 et 1.3 donnent des exemples d'ensemble dominant, d'ensemble
dominant-localisateur, et de code identi�ant. Les sommets grisés appartiennent à
ces ensembles, et les ensembles identi�ant chaque sommet sont entre accolades. On
remarque que l'ensemble dominant n'est pas un ensemble dominant-localisateur, car
les sommets a et e ne sont pas séparés. De même, l'ensemble dominant-localisateur
n'est pas un code identi�ant, car les sommets c et f ne sont pas séparés.

a

b

c d

e f

Fig. 1.1 � Exemple d'ensemble dominant

Les codes identi�ants ont de nombreuses applications. Nous présentons brièvement
les plus importantes.
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a

b

c d

e f

{c}

{b} {b, c}

Fig. 1.2 � Exemple d'ensemble dominant-localisateur

a

b

c d

e f

{a, b}

{a, b, c}

{b, c, d} {c, d}

{b} {b, c}

Fig. 1.3 � Exemple de code identi�ant

Une première application pour la détection d'erreurs dans un système multiproces-
seurs est donnée dans [KCL98]. Considérons un réseau de processeurs modélisé par
un graphe non orienté. Certains processeurs sont capables de tester si un processeur
à distance au plus 1 est défectueux - ils font partie du code identi�ant. Si c'est le
cas, ils se mettent dans un état de détection d'erreur. Si certains de ces processeurs
sont dans cet état, il est possible d'identi�er exactement le processeur défectueux :
c'est celui dont l'ensemble identi�ant est égal à l'ensemble des processeurs en état
de détection d'erreur.

Une deuxième application est donnée dans [RUDP+03] et étend une application des
ensembles dominants-localisateurs donnée dans [CSS87, Sla87]. Considérons un bâ-
timent, modélisé par un graphe : les sommets représentent les pièces ou les zones
du bâtiment, et les arêtes représentent le voisinage de deux pièces. Un capteur ca-
pable de détecter un danger (par exemple un incendie) à sa proximité est placé dans
certaines pièces. Le but est de minimiser le nombre de capteurs nécessaires a�n de
localiser un danger éventuel. La localisation est e�ectuée en comparant les ensembles
identi�ants de chaque sommet à l'ensemble des capteurs ayant détecté le danger. Si
les capteurs ont trois états possibles : un danger dans la même pièce, un danger dans
une pièce voisine, pas de danger, alors un ensemble dominant-localisateur su�t. Si
les capteurs n'ont que deux états : un danger à proximité et pas de danger, alors les
capteurs doivent former un code identi�ant.

Alors que tout graphe admet un ensemble dominant ou dominant-localisateur (il
su�t de prendre l'ensemble des sommets du graphe), on peut aisément remarquer



8 1.1. Quelques dé�nitions et résultats existants

que tout graphe n'admet pas forcément de code identi�ant. En e�et, s'il existe deux
sommets u, v ∈ V tels que N [u] = N [v] (u et v sont appelés jumeaux), alors ils ne
peuvent pas être séparés. Les graphes admettant un code identi�ant sont appelés
graphes sans jumeaux. Leur structure est étudiée dans [CHHL07]. Pour un contre-
exemple, considérons le graphe complet à n sommets, noté Kn et constitué de n
sommets tous reliés les uns aux autres. Dans Kn, tous les sommets ont le même
voisinage fermé (tous les sommets) et sont donc des jumeaux : Kn n'admet pas de
code identi�ant.

Une question naturelle est, étant donné un graphe G, de déterminer les cardinalités
minimum γ(G), γL(G) etM1(G) d'un ensemble dominant, d'un ensemble dominant-
localisateur, et d'un code identi�ant de G, et de construire de tels ensembles. Remar-
quons que tout code identi�ant d'un graphe G est un ensemble dominant-localisateur
de G, et que tout ensemble dominant-localisateur de G est un ensemble dominant de
G. De cette relation d'inclusion entre ces trois types d'ensembles, découle l'inégalité
suivante : pour tout graphe G, γ(G) ≤ γL(G) ≤M1(G).

Malgré cette relation étroite entre les ensembles dominants, les ensembles dominant-
localisateurs et les codes identi�ants, la relation entre les cardinalités minimum de
ces types d'ensembles n'est pas simple. En particulier, il existe des graphes pour
lesquels ces cardinalités sont très di�érentes. Par exemple, dans l'étoile à n sommets
K1,n−1 constituée d'un sommet central relié à n−1 sommets, un ensemble dominant
de cardinalité minimum est constitué simplement du sommet central. Or, n − 1
sommets sont nécessaires pour obtenir un ensemble dominant-localisateur et un code
identi�ant (voir la �gure 1.4 - les sommets noirs sont dans le code). Par ailleurs,
dans le graphe complet Kn, la cardinalité optimale d'un ensemble dominant est
de nouveau 1, alors que tout ensemble dominant-localisateur a au moins n − 1
sommets, et qu'il n'y existe aucun code identi�ant (voir la �gure 1.5 - les sommets
noirs sont dans le code). Ainsi, il n'est pas possible en général d'obtenir aisément un
code identi�ant à partir d'un ensemble dominant, ou même à partir d'un ensemble
dominant-localisateur. Cela rend nécessaire l'étude distincte de ces trois problèmes.

(a) (b)

Fig. 1.4 � Exemples d'ensemble dominant (a) et d'ensemble dominant-localisateur
(b) optimaux dans l'étoile K1,5

Etant donné un grapheG, il n'est pas facile de déterminer un code identi�ant de taille
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(a) (b)

Fig. 1.5 � Exemples d'ensemble dominant (a) et d'ensemble dominant-localisateur
(b) optimaux dans le graphe complet K6

minimum dans G : le problème de décision consistant, étant donné G et un entier k,
à déterminer siM1(G) ≤ k, est NP -complet [CHLZ01, CHL03]. De plus, le problème
d'optimisation consistant, étant donné un graphe G, à déterminer M1(G), est log-
APX-complet [BWLT06, Suo07, GKM08], c'est-à-dire qu'il existe un algorithme
en temps polynomial permettant d'approximer M1(G) à un facteur logarithmique
près, mais qu'aucun algorithme ne peut faire mieux, sauf si P = NP . Notamment,
il n'existe pas d'algorithme d'approximation à facteur constant pour ce problème
dans le cas général, et donc le problème n'est pas dans la classe APX. Pour plus de
détails sur ces questions, voir la section 2.8.

Une borne inférieure générale pour la cardinalité d'un code identi�ant de tout graphe
sans jumeaux à n sommets est dlog2(n + 1)e [KCL98]. De plus, les graphes qui
atteignent cette borne ont été caractérisés dans [Mon05b]. Si G est sans jumeaux,
alors M1(G) ≤ n− 1. Cette borne supérieure est serrée, et elle est atteinte par une
in�nité de graphes [CHL07, GM07]. Toutefois, l'ensemble de ces graphes n'est pas
encore caractérisé. De plus, toutes les valeurs entre les bornes inférieure et supérieure
sont atteintes pour certains graphes [CHL05]. Les questions structurelles concernant
les codes identi�ants sont abordées avec plus de détails dans la section 2.7.

Le problème de trouver un code identi�ant optimal a été étudié dans certaines classes
de graphes. Ainsi, les chemins on été étudiés dans [BCHL04] et les cycles dans
[BCHL04, GMS06, TXXH06]. Les arbres ont été étudiés dans [KCL98, CGH+06,
BCHL05, BCM+07]. La grille carrée in�nie ainsi que d'autres types de grilles in�nies
(grilles hexagonale, triangulaire...) ont été étudiées dans [KCL98, Mon05a, CHLZ01],
ainsi que l'hypercube [KCL98]. Certains des résultats concernant ces classes de
graphes sont résumés dans la section 2.6.
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1.2 Résumé des résultats obtenus

Faisons maintenant un bref résumé du travail réalisé et des résultats obtenus pendant
ce stage.

Nous avons commencé par donner une preuve alternative, plus combinatoire, de la
borne inférieure déjà donnée dans [KCL98] pour la cardinalité d'un code identi�ant
dans un graphe de degré maximum ∆ :

Théorème 1 ([KCL98] voir Theorem 3.1, section 3.1)
Soit G = (V,E) un graphe non orienté connexe de n sommets et de degré maximum

∆. Alors, M1(G) ≥ 2n

∆ + 2
.

Nous avons de plus donné une méthode permettant de construire tous les graphes
atteignant cette borne, ceci revenant à caractériser cet ensemble de graphes (voir la
section 3.2).

Puis, a�n de nous familiariser avec les codes identi�ants, nous avons commencé par
les étudier dans certaines classes de graphes, à savoir le graphe butter�y de dimension
m (noté BFm), et le graphe cube-connected cycles de dimension m (noté CCCm).
Ce sont des graphes proches de l'hypercube et qui ont des applications en calcul
parallèle (pour une dé�nition, consulter le chapitre 4).

Ces graphes étant respectivement 3 et 4-réguliers, les minorants suivants découlent
directement du Théorème 1 :

Proposition 2 (voir Propositions 4.1 et 4.3, sections 4.1 et 4.2)
Soit m ∈ N.
• M1(CCCm) ≥ 2n

5
• M1(BFm) ≥ n

3

Dans le cas du graphe cube-connected cycles, nous avons exhibé un code assez simple

ayant une cardinalité de
n

2
:

Théorème 3 (voir Theorem 4.2, section 4.1)
Soit m ≥ 4 et CCCm le graphe cube-connected cycles de dimension m.

Alors M1(CCCm) ≤ m · 2m−1 =
n

2
.

Nous avons mis en évidence des codes de plus faible cardinalité dans le cube-
connected cycles de dimensions 4 et 5, sans parvenir toutefois à les généraliser à
toutes les dimensions. Nous nous sommes ensuite intéressés au graphe butter�y,
pour lequel nous avons exhibé un code identi�ant de cardinalité proche du minorant
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de la Proposition 2 :

Théorème 4 (voir Theorem 4.4, section 4.2)
Soit m ≥ 4 et BFm le graphe butter�y de dimension m.

Alors M1(BFm) ≤

⌈
3m

4

⌉
· 2m−1 ' 3n

8
.

Nous avons ensuite étudié la borne supérieure pour un code identi�ant dans un
graphe de degré maximum ∆.

La borne supérieure générale pour la cardinalité minimum d'un code identi�ant dans
un graphe à n sommets, est n − 1. De plus, il existe une in�nité de graphes attei-
gnant cette borne [CHL07, GM07] (pour plus de détails, consulter la section 2.7).
Cependant, tous ces graphes ont un degré maximum élevé (n−2 or n−1). Le degré
maximum semble donc être en relation étroite avec la cardinalité minimum d'un
code identi�ant. Ceci nous a amené à supposer que tout graphe de degré maximum

∆ a un code identi�ant de cardinalité au plus n − n

f(∆)
, où f est un polynôme

fonction de ∆. De plus, nous ne connaissons pas de graphe pour lequel la cardinalité

minimum d'un code identi�ant est plus grande que n − n

∆
, ce qui nous a amené à

conjecturer que f(∆) = ∆ :

Conjecture 5 (voir Conjecture 5.1, section 5)
Soit G = (V,E) un graphe connexe, sans jumeaux, de degré maximum ∆ et à n
sommets. Alors il existe un code identi�ant C de G tel que

|C| ≤
⌈
n − n

∆

⌉
.

Nous n'avons pas réussi à prouver (ou réfuter) cette conjecture, cependant nous
avons pu nous en approcher avec les résultats qui suivent. La proposition suivante
montre que la valeur de la borne conjecturée ne peut pas être moins grande que celle
que nous donnons :

Proposition 6 (voir Proposition 5.2, section 5)
Pour toute valeur de ∆ ≥ 3, il existe des valeurs de n arbitrairement élevées, telles
qu'il existe un graphe ∆-régulier à n sommets n'admettant pas de code identi�ant de

plus faible cardinalité que n − n

∆
.

Cette proposition est fondée sur la construction d'une famille de graphes (constitués
de cliques interconnectées), décrite plus précisément dans le chapitre 5, n'ayant pas

de code identi�ant de cardinalité plus faible que n − n

∆
.

Nous avons pu donner le majorant suivant :
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Théorème 7 (voir Theorem 5.3, section 5.1.1)
Soit G = (V,E) un graphe connexe, sans jumeaux, de degré maximum ∆ (∆ ≥ 3) à
n sommets. Alors il existe un code identi�ant C de G tel que

|C| ≤ n − n

Θ(∆4)
.

L'idée est de construire un ensemble 4-indépendant S de G(dans lequel deux som-
mets sont à distance au moins 5), et de choisir le complémentaire de S comme code
identi�ant après avoir e�ectué des changements mineurs dans S. Ce résultat peut
être amélioré dans le cas des graphes réguliers :

Théorème 8 (voir Theorem 5.6, section 5.1.2)
Soit G = (V,E) un graphe connexe, sans jumeaux, ∆-régulier (∆ ≥ 3) à n sommets.

Alors il existe un code identi�ant C de G tel que |C| ≤ n − n− 1

∆2
.

Nous nous sommes ensuite restreints aux graphes sans triangles, pour lesquels nous
avons pu obtenir de meilleurs majorants.

La classe de graphes ayant amené à la formulation de la Proposition 6 comportant
des triangles, nous avons cherché une famille de graphes sans triangles pour laquelle
la cardinalité minimum d'un code identi�ant soit la plus élevée possible. Pour le
graphe complet biparti K∆,∆, qui est sans triangles, cette valeur est la même que
dans la proposition 6, donnant la proposition suivante :

Proposition 9 (voir Proposition 5.9, section 5.2.1)
Pour toute valeur de ∆ ≥ 3, il existe un graphe sans triangles à n sommets et
de degré maximum ∆, n'ayant aucun code identi�ant de cardinalité plus faible que

n − n

∆
.

Cependant, pour une valeur de ∆ donnée, il n'existe qu'un seul tel graphe. Nous
avons cependant pu exhiber une famille de graphes pour laquelle, pour une valeur de
∆ donnée, il existe une in�nité de graphes, ayant un nombre de sommets arbitraire-
ment élevé, et qui n'admettent pas de code identi�ant de cardinalité plus faible que
la valeur donnée dans la proposition suivante. Il s'agit des arbres k-aires complets
de hauteur h, pour lesquels la cardinalité minimum d'un code identi�ant est connue
(voir la section 2.6), ce qui nous a permis de formuler la proposition suivante :

Proposition 10 (voir Proposition 5.7, section 5.2.1)
Pour toute valeur de ∆ ≥ 3, il existe des valeurs de n arbitrairement élevées, telles
qu'il existe un graphe sans triangles de degré maximum ∆ à n sommets n'admettant

pas de code identi�ant de plus faible cardinalité que n − n

∆− 1 + 1
∆

.

Ainsi, un majorant pour la cardinalité minimum d'un code identi�ant d'un graphe
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sans triangles ne peut être plus faible que la borne de la proposition précédente.
Nous avons obtenu le majorant suivant :

Théorème 11 (voir Theorem 5.10, section 5.2.1)
Soit G = (V,E) un graphe connexe, sans jumeaux et sans triangles, de degré maxi-
mum ∆ et à n sommets. Alors il existe un code identi�ant C de G tel que

|C| ≤ n − n

3∆ + 3
.

Le résultat précédent est prouvé en construisant un ensemble indépendant dans G,
ayant certaines propriétés. Il est ensuite modi�é de façon à ce que son complémen-
taire soit un code identi�ant valide ; nous avons pu borner la cardinalité de cet
ensemble.

Nous avons ensuite considéré les graphes sans triangles réguliers. Nous avons tout
d'abord construit une famille de graphes réguliers sans triangles nous permettant de
formuler la proposition suivante. Un graphe de cette famille est construit à partir
de plusieurs graphes bipartis complets K∆,∆ ayant chacun une arête en moins, et
connectés les uns aux autres.

Proposition 12 (voir Proposition 5.12, section 5.2.2)
Pour toute valeur de ∆ ≥ 3, il existe des valeurs de n arbitrairement élevées, telles
qu'il existe un graphe ∆-régulier sans triangles et à n sommets n'admettant pas de

code identi�ant de plus faible cardinalité que n − n
2∆
3

.

On peut modi�er la preuve du Théorème 5.10 en considérant les graphes réguliers
pour donner un meilleur majorant :

Théorème 13 (voir Theorem 5.13, section 5.2.2)
Soit G = (V,E) un graphe connexe, sans jumeaux et sans triangles, ∆-régulier et à

n sommets. Alors il existe un code identi�ant C de G tel que |C| ≤ n − n

2∆ + 2
.

Les graphes sans triangles sont les graphes de maille supérieure ou égale à 4. Dans
les graphes de maille au moins 5 et de degré minimum 2, nous avons pu donner le
majorant suivant :

Théorème 14 (voir Theorem 5.14, section 5.2.3)
Soit G un graphe sans jumeaux de degré minimum δ ≥ 2 à n sommets et de maille

g ≥ 5. Alors M1(G) ≤ 7n

8
+ 1 = n− n− 8

8
.

Ce dernier résultat est particulièrement intéressant. En e�et, dans les autres classes
de graphes, la borne supérieure de la cardinalité minimum d'un code identi�ant d'un
graphe G de cette classe dépend du degré maximum ∆. En e�et, même si nous ne
connaissons pas la borne supérieure mais seulement des majorants de M1(G), nous
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avons exhibé des familles de graphes n'ayant pas de code identi�ant de cardina-
lité plus faible qu'une valeur qui dépend de ∆. C'est vrai aussi pour la classe des
graphes de maille au moins 5 en général puisque l'arbre complet est dans ce cas (voir
Prop. 10). Par contre, ce n'est plus vrai dans les graphes de maille au moins 5 et
de degré minimum 2 : un tel graphe ayant n sommets possède nécessairement un

code identi�ant de cardinalité au plus
7n

8
+ 1 (Prop. 14). C'est un majorant plus

faible que ceux des classes de graphes considérées précédemment, et il est indépen-
dant de ∆. Ceci peut avoir des applications pratiques intéressantes : en e�et, si l'on
cherche par exemple une topologie de réseau qui soit adaptée aux codes identi�ants,
on pourra choisir une topologie modélisée par un graphe de maille au moins 5 et de
degré minimum 2.

Le tableau 1.1 résume les résultats obtenus pour chaque classe de graphe. Les entrées
sont sous la forme d'une paire 〈b1, b2〉 de fonctions de l'ordre n et du degré maximum
∆ d'un graphe, avec :

• b1(n,∆) est la valeur maximale connue pour la cardinalité minimum d'un code
identi�ant de graphes de la classe correspondante : pour tout ∆, il existe des
valeurs arbitrairement grandes de n pour lesquelles il existe un graphe de cette
classe à n sommets et de degré maximum ∆, n'admettant aucun code identi�ant
plus petit que b1(n,∆).
• b2(n,∆) est le majorant obtenu : pour tout graphe de la classe correspondante,
nous sommes capables de construire un code identi�ant de cardinalité au plus
b2(n,∆).

graphes arbitraires graphes ∆-réguliers

graphes

〈
n− n

∆
, n− n

Θ(∆4)

〉 〈
n− n

∆
, n− n− 1

∆2

〉
arbitraires

〈 Prop. 5.2, Thm. 5.3 〉 〈 Prop. 5.2, Thm. 5.6 〉

graphes

〈
n− n

∆− 1 + 1
∆

, n− n

3∆ + 3

〉 〈
n− n

2∆
3

, n− n

2∆ + 2

〉
sans triangle

〈 Prop. 5.7, Thm. 5.10 〉 〈 Prop. 5.12, Thm. 5.13 〉

graphes de maille

〈
n− n

∆− 1 + 1
∆

, n− n

3∆ + 3

〉 〈
2n

∆ + 2
, n− n− 8

8

〉
au moins 5

〈 Prop. 5.7, Thm. 5.10 〉 〈 Thm. 3.1, Cor. 5.15 〉

Tab. 1.1 � Résumé des majorants obtenus
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En�n, nous nous sommes aussi penchés sur le cas particulier des graphes cubiques
et subcubiques. Ces graphes sont d'un intérêt particulier, car très étudiés dans la
communauté de la théorie des graphes. Conformément à notre conjecture, nous ne
connaissons pas de graphes subcubiques pour lesquels un code identi�ant minimum

est plus grand que n− n

∆
=

2n

3
.

Les résultats précédents appliqués aux graphes subcubiques donnent les majorants
suivants :

Corollaire 15 (voir Corollary 5.16, section 5.2)
Soit G un graphe subcubique sans jumeaux à n sommets. Alors :

• M1(G) ≤ 101n

102
(Theorem 5.3).

• Si G est sans triangle, M1(G) ≤ 11n

12
(Theorem 5.10).

• Si G est cubique, M1(G) ≤ 8n

9
(Theorem 5.6).

• SI G est cubique et sans triangle, M1(G) ≤ 7n

8
(Theorem 5.13).

Nous avons pu améliorer ces résultats de la façon suivante, en considérant les graphes
subcubiques ayant certaines propriétés particulières :

Théorème 16 (voir Theorem 5.17, section 5.2)
Tout graphe Hamiltonien subcubique G à n sommets a un code identi�ant C tel que

|C| ≤
⌊

3n

4

⌋
.

En utilisant ce résultat et un lemme de [KMOO02], nous obtenons de plus le corol-
laire suivant :

Corollaire 17 (voir Corollary 5.19, section 5.2)
Tout graphe cubique 2-connexe G à n sommets a un code identi�ant C tel que |C| ≤
3n

4
.

Ainsi pour les graphes subcubiques ayant certaines propriétés nous avons pu donner
de meilleurs majorants que ceux obtenus dans le cas général.

En résumé, lors de ce stage nous avons abordé avec succès la question de la relation
entre le degré maximum d'un graphe et la cardinalité minimum d'un code identi�ant
de ce graphe. Nous avons étudié la borne inférieure de cette cardinalité et les graphes
l'atteignant. Nous avons aussi pu donner divers majorants de cette cardinalité pour
di�érentes classes de graphes. Ceci nous a permis d'avoir une meilleure compréhen-
sion des problématiques particulières liées aux codes identi�ants, et d'approfondir
nos connaissances dans cette thématique. Nous n'avons cependant pas pu montrer
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que les majorants obtenus étaient les bornes supérieures pour cette cardinalité dans
ces classes de graphes. Ainsi, ces questions peuvent être approfondies et il reste en-
core de nombreuses questions à résoudre, à commencer par l'obtention des bornes
supérieures et la caractérisation des graphes les atteignant.
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Chapter 2

Introduction to identifying codes

In this chapter, we give some de�nitions and summarize the most important known
results on the topic of identifying codes.

2.1 Graphs

We �rst recall some standard notions and de�nitions of graph theory which will be
used in this thesis. For a complete introduction to graph theory, see [Ber58].

An undirected graph G = (V,E) consists of a pair of sets. V (G) is called the vertex
set of G and E(G), the edge set of G, is a set of unordered pairs of vertices of V (G).
If u and v are two vertices of G, an edge between u and v is denoted by {u, v} or
uv.

A directed or oriented graph G = (V,A) consists of a vertex set V (G) and an arc
set A(G) of ordered pairs of vertices of G. If u and v are two vertices of G, an arc
between u and v is denoted as (u, v) or −→uv.

The cardinality of V (G) of a graph G, usually denoted by n, is called the order of
G. A graph G is simple if all edges of E(G) are distinct (G has no multiple edges),
and if no edge contains the same vertex twice (G has no loops). It is �nite if V (G)
and E(G) are both �nite. Otherwise, it is in�nite.

Typically, a graph is visualised as a set of points representing its vertices, which are
linked by lines representing the edges or the arcs. If the graph is directed, the lines
are in forms of arrows pointing from the �rst element towards the second element
of the corresponding arc. Graphs are useful for representing elements and their
connections. For example, social or physical networks are modelled with graphs. See
the �gures of this section for various examples of graphs (for example Figures 2.1,
2.6 or 2.8).

Two vertices u and v of a graph G are called neighbours if they are connected by
an edge in G. Let us denote by degG(v) (or deg(v) if there is no ambiguity) the
degree of v in G: the number of neighbours of v. The maximum degree of G, usually
denoted by ∆(G), is the maximum degree of a vertex of V . Similarly, the minimum
degree of G, usually denoted by δ(G), is the minimum degree of a vertex of V . A
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graph in which all vertices have the same degree k, is called k-regular . A graph
having maximum degree 3 is called subcubic, and a 3-regular graph is called cubic.

A path of length k in G between two vertices v0 and vk is a sequence {v0, ..., vk} of
k + 1 vertices of G such that for all i ∈ {0, ..., k − 1}, the edge {vi, vi+1} ∈ E(G).

The distance between two vertices u and v in a graph G, denoted as dG(u, v) (or
simply d(u, v) if there is no ambiguity), is the smallest length of a path between u
and v in G. If such a path does not exist, then the distance between u and v is not
de�ned.

Let v be a vertex of G. We denote by Br(v) the ball of radius r of v: all vertices of V
which are at distance less or equal than r of v. Let us also denote by N [v] = B1(v),
the closed neighbourhood of v, and by N(v) = N [v]\v, the neighbourhood of v.

G is said to be connected if for every pair of distinct vertices u and v, there exists a
path between u and v. If G is not connected, then it consists of the union of a �nite
number of connected graphs. Each of these graphs is called a connected component
of G. A graph G is called k-connected if the graph obtained after deletion of any
k − 1 vertices of V (G) (and the edges involving these vertices), is still connected.

A cycle of length k in a graph G is a sequence {v0, ..., vk−1} of k distinct vertices of
G such that for all i ∈ {0, ..., k − 1}, {vi, v(i+1) mod k} ∈ E(G). A connected graph
having no cycle is called a tree.

An Hamiltonian cycle of G is a cycle of length |V (G)| in G. A graph G is called
Hamiltonian if there exists an Hamiltonian cycle in G.

A graph H = (VH , EH) is a subgraph of G if VH ⊆ V and EH ⊆ E. A spanning
subgraph of G is a subgraph H of G such that V (H) = V (G). A spanning subgraph
of G is called a spanning tree of G if it is a tree.

Let k be an integer. A k-factor of a graph G is a k-regular subgraph of G. A 1-factor
(which is a set of independent edges) is called a matching of G. A matching M of
G is called perfect if every vertex of G is contained in an edge of M .

Let S ⊆ V be a subset of vertices of G. The subgraph of G induced by S, denoted
by G[S], is the graph G[S] = (S,ES), where ES is the set of edges of E having both
endpoints in S.

The complete graph of order n, denoted by Kn, is the graph in which all vertices are
connected to each other by an edge.

In a graph G = (V,E), an induced triangle or triangle is a set of three distinct
vertices u, v, w ∈ V such that uv, uw, vw ∈ E: the three vertices are connected to
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each other. In other words, the induced subgraph G[{u, v, w}] is the complete graph
K3. A graph is called triangle-free if it does not contain any triangle.

The girth of a graph G = (V,E), denoted by g(G), is the smallest cardinality of a
cycle in G, that is to say, the smallest sequence v0, ..., vg−1 of vertices of V such that
for all i ∈ {0, ..., g − 1}, viv(i+1) mod g ∈ E.

Let G = (V,E) be a graph and k ≥ 1. A set S ⊆ V is a k-independent set if for all
x, y ∈ S, d(x, y) ≥ k + 1. A 1-independent set is simply called an independent set .

A graph is said to be bipartite if there exists a partition of V (G) into two nonempty,
disjoint sets A and B, such that every edge of E(G) contains a vertex of A and a
vertex of B. In other words, A and B are two disjoint and nonempty independent
sets of G.

A graph G is called planar if it is possible to draw it on the Euclidian plane such
that no edges interesect each other. If G is drawn in such a way, a face of G is a
closed region of the plane delimited by a set of edges. A planar graph is outerplanar
if it can be drawn such that all vertices are on the same face.

All graphs considered from now on are simple, connected, undirected and �nite,
unless otherwise stated.

2.2 Identifying codes in graphs

We now give some more speci�c de�nitions of the �eld of domination and iden-
ti�cation in graphs. For a complete introduction to the topic of domination in
graphs, see [HHS98]. For more details on identifying codes, consult for example
[KCL98, Mon05a, Ska07, BCHL04, CHL07, BWLT06]. For a survey, see [TXXH06].
Note that an updated online bibliography on locating-dominating sets and identify-
ing codes can be found in [Lob09].

Let G = (V,E) be a graph. A vertex v ∈ V dominates or covers a vertex u if
u ∈ N [v] (u is at distance at most 1 of v).
Let C,C ′ ⊆ V be two sets, we say that C dominates, or covers C ′ if all vertices of
C ′ are dominated by a vertex of C.
A set C ⊆ V is a dominating set or covering code of G if C dominates V .

A pair {u, v} of vertices of V are separated by x ∈ V if x dominates exactly one of
the vertices u and v.
Let C,C ′ ⊆ V be to sets, we say that C separates C ′ if for every pair {u, v} of
vertices of C ′, u and v are separated by at least a vertex of C.
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A set C ⊆ V is a locating-dominating set or locating-dominating code of G if:
1) C is a dominating set of G, and
2) C separates V \C.
In other words, for every vertex v ∈ V , N [v] ∩ C 6= ∅, and for every pair {u, v} of
vertices of V \C, N [u] ∩ C 6= N [v] ∩ C.

A set C ⊆ V is an identifying code (sometimes refered to as a di�erentiating-
dominating set , as in [GVGN+01] or [Ska07]) of G if:
1) C is a dominating set of G, and
2) C separates V .
In other words, for every vertex v ∈ V , N [v] ∩ C 6= ∅, and for every pair {u, v} of
vertices of V , N [u] ∩ C 6= N [v] ∩ C.

In an identifying code C of G, for a vertex v ∈ V , the set IC(v) = N [v]∩C is called
the identifying set of v. One can give an alternative de�nition of an identifying code
in the following way. Let G = (V,E) be a graph; a set C ⊆ V is an identifying code
of G, if for every vertex v ∈ V , IC(v) 6= ∅, and if for every pair of distinct vertices
u, v ∈ V , IC(u) 6= IC(v).

Let us denote by ⊕, the symmetric di�erence between two sets: A⊕B = A\B∪B\A.
An alternative formulation of the separation condition (2) of the de�nition is the
following:
2') for every pair {u, v} of vertices of V , IC(u)⊕ IC(v) 6= ∅.

See Figures 2.1, 2.2 and 2.3 for examples of a dominating set, a locating-dominating
set, and an identifying code. Vertices of these sets are colored in gray, and the iden-
tifying sets are in braces. Note that the dominating set is not a locating-dominating
set since a and e are not separated. Similarly, the locating-dominating set is not an
identifying code since c and f are not separated.

a

b

c d

e f

Figure 2.1: Example of a dominating set
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a

b

c d

e f

{c}

{b} {b, c}

Figure 2.2: Example of a locating-dominating set

a

b

c d

e f

{a, b}

{a, b, c}

{b, c, d} {c, d}

{b} {b, c}

Figure 2.3: Example of an identifying code

2.3 Basic properties and remarks

Whereas all graphs admit a dominating set or a locating-dominating set (simply
take C = V ), not all graphs admit an identifying code. In particular, if there exist
two vertices u, v ∈ V such that N [u] = N [v] (u and v are called twins), then they
cannot be separated. Graphs which admit an identifying code are called twin-free or
identi�able. The structure of twin-free graphs has been studied in [CHHL07]. As an
easy counterexample, in the complete graphKn consisting of n vertices all connected
to each other, all vertices are twins, therefore Kn does not admit an identifying code.

A natural question is, given a graph G, to determine the minimum cardinality of
a dominating set, a locating-dominating set, or an identifying code of G, and to
construct such an optimal sets. Let us denote by γ(G), the minimum cardinality of
a dominating set of G, by γL(G), the minimum cardinality of a locating-dominating
set of G, and by M1(G), the minimum cardinality of an identifying code of G.
Note that any identifying code of G is also a locating-dominating set of G, and
any locating-dominating set of G is a dominating set of G. From this relation of
inclusion between these three types of sets, the following inequality follows : given
a twin-free graph G, γ(G) ≤ γL(G) ≤M1(G).

Despite the close relationship between dominating sets, locating-dominating sets and
identifying codes, it is in general not possible to obtain easily an identifying code
from a dominating set or even a locating-dominating set; this makes it necessary
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to study speci�cally those problems. There exist some graphs where the minimum
cardinalities of these sets are very di�erent. For example, in the star K1,n−1 on n
vertices consisting of a central vertex connected to n − 1 independent vertices, the
optimal size of a dominating set is 1 (simply take the central vertex), whereas n− 1
vertices are needed for both a locating-dominating set and an identifying code (see
Figure 2.4). In the complete graph Kn, the optimal size of a dominating set is again
1, whereas n−1 vertices are needed for a locating-dominating set, and as previously
mentioned, Kn does not admit an identifying code at all (see Figure 2.5).

(a) (b)

Figure 2.4: Examples of an optimal dominating set (a) and an optimal locating-
dominating set (b) in the star K1,5

(a) (b)

Figure 2.5: Examples of an optimal dominating set (a) and an optimal locating-
dominating set (b) in the complete graph K6

Note that if G is not connected, then a minimum identifying code is the union of
minimum identifying codes of all its connected components. Hence, it is su�cient
to study identifying codes in connected graphs.

Let us now introduce identifying codes from another point of vue. Let G be a
graph on n nodes with vertex set {v0, ..., vn−1}, and C an identifying code of G of
cardinality k. Consider a matrix M of n columns and k rows containing only zeros
and ones: M [i, j] = 1 if and only if vi ∈ IC(vj). Then C is an identifying code
if all columns of M are distinct and contain at least a 1. The problem of �nding
a minimum identifying code is equivalent to the one of �nding such a matrix of n
columns and a minimum number of rows and such that if vi and vj are not connected
in G, M [i, j] = 0.
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2.4 Generalizations and variants

There exist several generalizations of identifying codes. We now present the most
common ones.

Identifying codes can be generalized to in�nite graphs. Let G be an in�nite, simple,
twin-free graph. Then, instead of considering M1(G) (which has no sense in an
in�nite graph), one can consider the minimum density of an identifying code in
G. Let us denote the density of an identifying code C of G, as dC(G), and as
d∗(G), the minimum density of an identifying code of G. Intuitively, the density
is the ratio between the number of code vertices and the total number of vertices
within a local part of the graph. Let v be an arbitrary vertex of G. Formally,

dC(G) = lim sup
n→∞

|C ∩Bn(v)|
|Bn(v)|

[CHLZ01]. If G is �nite and has n vertices, the density

of an identifying code C of G is simply de�ned as dC(G) =
|C|
n

.

The most important generalization of identifying codes is a distance-r generalization,
similar to the classical distance-r generalization of dominating sets. LetG be a graph
and r ≥ 1. An r-dominating set or distance-r-dominating set (also called r-covering
code or covering code of radius r), is a subset C of V (G) such that for every vertex
v of G, Br(v) ∩ C 6= ∅.
An r-locating-dominating set is a subset C of V (G) such that C is an r-dominating
set and for every vertices u, v of V \C, the sets Br(u)∩C and Br(v)∩C are distinct.
An r-identifying code of G [KCL98] is a subset C of V (G) such that C is an r-
dominating set of G, and every pair of vertices is separated by C at distance r. In
other words:
1) for every vertex v ∈ V , Br(v) ∩ C 6= ∅, and
2) for every pair {u, v} of vertices of V , Br(u) ∩ C 6= Br(v) ∩ C.
Let us denote by Mr(G), the minimum cardinality of an r-identifying code of G.

Another generalization is the identi�cation of sets of vertices [KCL98]. If C and X
are two subsets of vertices of a graph G, the identifying set of X, denoted as IC(X),
is de�ned as the union of the identifying sets IC(x) of all the vertices x of X.
Let C,X, Y be three subsets of vertices of G. We say that C separates X and Y
if IC(X) 6= IC(Y ). An (≤ l)-identifying code is a subset C of vertices of G which
dominates V (G) and separates every two subsets of vertices having cardinality at
most l.

Note that the two previous generalizations can be combined to consider (r,≤ l)-
identifying codes .

A de�nition of identifying codes can be given for directed graphs. Let G = (V,A)
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be a directed graph. Then, simply replace in the de�nition, the ball of a vertex v,
B1(v), by its incoming ball B−1 (v) =

{
x ∈ V

∣∣ −→xv ∈ A}.
Additionally, a generalization of identifying codes with weights and costs on vertices
called d-identifying codes is given in [TXXH06]. A weighted and directed general-
ization called source identi�cation is given in [BWLT06].

However, in this thesis we will focus on the classical case where the graph is �nite,
undirected, r = 1 and l = 1.

2.5 Applications

Identifying codes have a wide range of applications; we brie�y present the most
important ones.

A �rst application for fault diagnosis in multiprocessor systems is given in [KCL98].
Consider a network of processors modelled as an undirected graph. Some of the
processors (which are part of the identifying code) are able to test wether a neigh-
bouring processor (or themselves) are faulty; if this is the case, they enter a special
state. If some of the testing processors have detected an error, it is possible to iden-
tify exactly the faulty processor: it is the one whose identifying set is equal to the
set of processors which have detected the error. In the case of networks of thousands
of processors, it is extremely useful to minimize the set of testing processors.

A second application is given in [RUDP+03] and extends an application of locating-
dominating sets given in [CSS87, Sla87]. Consider a facility or a building modelled
by a graph: vertices represent areas or rooms, and edges indicate connexions between
the areas. A sensor is placed in some rooms; the sensors are able to detect a danger
or a threat, for example a �re, within their closed neighbourhood. The goal is to
minimize the number of sensors needed in order to locate the position of an eventual
threat. If the sensors are three-state sensors able to distinguish between no danger, a
danger in a nearby room, and a danger in the same room, then a locating-dominating
set is enough to uniquely determine the position of a danger. If the sensors can only
distinguish between a danger in their closed neighbourhood, and no danger, then
an identifying code is needed in order to achieve location. The danger is located
by checking the set of sensors which are in alarm state; since this set is unique for
every vertex, the location of the danger is immediate.
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2.6 Identifying codes in speci�c graph classes

The problem of constructing a minimum identifying code has been studied in some
speci�c classes of graphs.

The path on n vertices, denoted by Pn, has {v0, ..., vn−1} as its vertex set and{
{vi, vi+1}, i ∈ {0, ..., n−2}

}
as its edge set. Note that P2 is the complete graph K2

and does therefore not admit any identifying code. The cardinality of a minimum
identifying code in paths is given in the following theorem:

Theorem 2.1 ([GVGN+01, BCHL04])

• Let n ≥ 1 be odd. ThenM1(Pn) =
n+ 1

2
and an optimal code is

{
vi | i is even

}
.

• Let n ≥ 4 be even. Then M1(Pn) =
n

2
+ 1 and an optimal code is{

vi | i is even
}
∪ {vn−3}.

Examples of optimal codes in P7 and P8 are given in Figure 2.6 (code vertices are
black).

(a) P7

(b) P8

Figure 2.6: Examples of optimal codes in the paths P7 and P8

The in�nite path P∞ is the in�nite graph of vertex set Z and edge set
{
{i, i+1}, i ∈

Z
}
. The following theorem holds:

Theorem 2.2 (BCHL04)

d∗(P∞) =
1

2
and an optimal identifying code of P∞ is {i ∈ Z | i is even}.

The cycle on n vertices, denoted by Cn, has {v0, ..., vn−1} as its vertex set and{
{vi, v(i+1) mod n}, i ∈ {0, ..., n − 1}

}
as its edge set. Note that C3 is the complete

graph K3 and does therefore not admit any identifying code. The cardinality of a
minimum identifying code in cycles is given in the following theorem:

Theorem 2.3 ([GVGN+01, BCHL04, GMS06])

• M1(C4) = 3 and an optimal code is {v0, v1, v2}
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• M1(C5) = 3 and an optimal code is {v0, v1, v2}

• Let n ≥ 6 be even. Then M1(Cn) =
n

2
and an optimal code is

{
vi | i is even

}
.

• Let n ≥ 7 be odd. Then M1(Cn) =
n+ 1

2
+ 1 and an optimal code is{

vi | i is even
}
∪ {vn−2}.

Examples of optimal codes in C8 and C9 are given in Figure 2.7 (the black vertices
are in the code).

(a) C8 (b) C9

Figure 2.7: Examples of optimal codes in the cycles C8 and C9

Mr(Cn) has been determined as well for some values of r and n. The case where n
is odd and 2r+ 5 ≤ n ≤ 3r+ 2, however, remains open. See [TXXH06] for a survey.

Identifying codes of trees have been studied in [KCL98, BCHL05, BCM+07, CGH+06,
GVGN+01]. In particular, a linear algorithm for constructing a minimum identify-
ing code of a directed tree is given in [CGH+06]. This algorithm is inspired from a
linear algorithm for constructing a minimum locating-dominating set of an abitrary
tree given in [Sla87]. A general lower bound for the minimum cardinality of an
identifying code in a tree is the following:

Theorem 2.4 ([BCHL05]) Let T be a tree on n vertices.

Then M1(T ) ≥ 3(n+ 1)

7
.

Let T h
k be the complete k-ary tree with h levels and n =

kh − 1

k − 1
vertices, in which

all internal vertices have k sons. Exact values of the minimum cardinality of an
identifying code in the complete tree are stated in the following theorem:

Theorem 2.5 ([BCHL05])

• M1(T h
2 ) =

⌈
20 · n

31

⌉



2.6. Identifying codes in speci�c graph classes 27

• Let k ≥ 3. M1(T h
k ) =

⌈
k2 · n

k2 + k + 1

⌉
Let us number the levels of T h

k from 1 to h, level 1 being the level of the root,
and level h being the level of the leaves. For k ≥ 3, a construction of an optimal
identifying code of T h

k is given in [BCHL05]:

• if h = 1 mod 3, the root is in the code.

• for all levels i > 1 such that i = h mod 3, each vertex on level i−1 has exactly
k − 1 of its k sons in the code.

• in all levels i such that i = h− 1 mod 3, each vertex is in the code.

• in all levels i such that i = h− 2 mod 3, no vertex is in the code.

An example of an optimal codes in the complete tree T 4
3 is given in Figure 2.8. Code

vertices are in black.

Figure 2.8: Example of an optimal code in the complete tree T 4
3

It is also shown in [KCL98] that there is no identifying code at distance r > 1 in
the complete tree.

The case of the binary hypercube Hm of dimension m is of particular interest in code
theory and has been studied in [KCL98]. Let us �rst de�ne the vertex and edge sets
of Hm:

V (Hm) = {0, 1}m

E(Hm) =
{{
α, α(i)

}∣∣∣i ∈ {0, ...,m− 1}, α ∈ {0, 1}m
}

where for α = α0α1...αm−1 ∈ {0, 1}m, i ∈ {0, ...,m− 1}, α(i) = α0α1...αi...αm−1

(the ith bit of α is switched).

For an example, the hypercube of dimension 3, H3, is represented in Figure 2.9.

The exact cardinality of M1(Hm) has not been determined yet, but the following
lower and upper bounds hold:
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000
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100

110010

111011

101

Figure 2.9: The hypercube H3

Theorem 2.6 ([KCL98]) Let m ≥ 3 and Hm be the hypercube of dimension m.

Then M1(Hm) ≥ m · 2m+1

m · (m+ 1) + 2
.

Theorem 2.7 ([KCL98]) Let m ≥ 3 and Hm be the hypercube of dimension m.
Let C∗ be an optimal covering code of radius 2 of Hm, of cardinality K(m, 2). Then
the code C = {u ∈ V (Hm) | ∃ v ∈ C∗, d(u, v) = 1} is a valid identifying code of Hm.
Therefore M1(Hm) ≤ m ·K(m, 2).

Note that known values of K(m, 2) for small m as well as bounds on K(m, 2) can
be found in [Lit09, CHLL97].

The monotonicity of the minimum cardinality of an identifying code in the hypercube
has been shown in [Mon06a]: for all m ≥ 2, M1(Hm) ≤M1(Hm+1).

The in�nite grid Gr∞,∞ is the in�nite graph of vertex set Z × Z and edge set{
{(i, j), (i′, j′)} | i, j, i′, j′ ∈ Z and |i − i′| + |j − j′| = 1

}
. The following theorem

holds:

Theorem 2.8 ([CGH+99, BHL05])

d∗(Gr∞,∞) =
7

20
.

However, the case of the �nite grid Grn,m remains open.

Some in�nite meshes like the hexagonal and the triangular mesh have also been
studied in [KCL98, Mon05a, CHLZ01].
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2.7 Structural results

There exists a general lower bound for the cardinality of an identifying code in a
twin-free graph of n vertices. Indeed, consider a graph having an identifying code
of size k. One can see the identifying sets of the vertices as binary words of size k.
The number of distinct, nonempty words which can be coded with k bits is exactly
2k − 1. This leads to the following bound:

Theorem 2.9 ([KCL98]) Let G be a twin-free graph on n vertices.
Then M1(G) ≥ dlog2(n+ 1)e.

The previous bound is tight and all graphs reaching it have been characterized in
[Mon05a, Mon05b, Mon06b]. Let n ≥ 1 be an integer and k = dlog2(n + 1)e. The
following construction given in [Mon06b] allows us to construct all graphs on n
vertices having an identifying code of cardinality k:

1. Let H be a twin-free graph on k vertices {c0, ..., ck−1}. Put all these vertices
into the code.

2. Consider all characteristic vectors of the identifying sets of the code vertices:
for a vertex ci, the vector w(ci) = (w0, ..., wk−1) where for all j ∈ {0, ..., k−1},
wj = 1 if and only if cj ∈ N [ci].

3. Take H and n − k other vertices. For each of these vertices, choose a dis-
tinct characteristic vector, and connect them to the code vertices using this
information

4. Eventually add edges between the non-code vertices (this has no in�uence on
the code).

An example for n = 7 having an optimal identifying code of cardinality dlog2(n +
1)e = 3) is given in Figure 2.10. Code vertices are in gray, and the characteristic
vectors are in brackets.

A lower bound for the minimum cardinality of a locating-dominating set of planar
and outerplanar graphs is given in the following theorem:

Theorem 2.10 ([SR84]) Let G be a graph on n vertices and L a locating-dominating
set of G of cardinality k. The following bounds are tight:

• If G is planar and k ≥ 4, n ≤ 7k − 10.

• If G is outerplanar, n ≤
⌊

7k − 3

2

⌋
.
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c0 c1 c2(1, 1, 0)

(1, 1, 1)

(0, 1, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 0, 1)

Figure 2.10: Example of an optimal graph

Since any identifying code is a locating-dominating set, the previous lower bounds
also hold for identifying codes; we reformulate the bounds as lower bounds for
M1(G):

Corollary 2.11 Let G be a twin-free graph on n vertices.

• If G is planar and M1(G) ≥ 4, M1(G) ≥ n+ 10

7
.

• If G is outerplanar, M1(G) ≥ 2n+ 3

7
.

There exists a general upper bound for the minimum cardinality of an identifying
code:

Theorem 2.12 ([CHL07, GM07]) Let G be a �nite, twin-free connected graph
on n vertices.
Then M1(G) ≤ n− 1.

This bound is tight, and there are in�nitely many graphs reaching it [CHL07, GM07].
However, the set of these graphs has not been characterized yet. For a given n, three
graphs reaching this upper bound are described in [CHL07]. The �rst one is the star
K1,n−1 consisting of a central vertex connected to n − 1 independent vertices. For
n > 3, it is easy to see that any set of n − 1 vertices of K1,n−1 can be taken as
a code. The second graph can be constructed for even n. Consider the complete
graph Kn, and remove a perfect matching (n

2
independent edges) from E(Kn). Let

us denote this graph by G2
n. Again, any set of n− 1 vertices is an identifying code

of G2
n. Finally, for n odd, consider the graph G2

n−1, plus an extra vertex v which is
connected to all other vertices. Let us denote this graph by G3

n. In G
3
n, all vertices

but v must be in the code; on the other hand, this is enough.

Examples of these graphs are presented in Figure 2.11 with minimum identifying
codes (in black).
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(a) The graph
K1,5

(b) The graph G2
6 (c) The graph G3

7

Figure 2.11: Examples of graphs having a minimum identifying code of cardinality
n− 1

It has also been shown that all possible values of M1(G) lying between the bounds
of Theorems 2.9 and 2.12 are reached for some graphs [CHL05].

2.8 Hardness results

We now present known hardness results for decision and optimizations problems
related to identifying codes.

A decision problem is de�ned by an input, or instance, and a question which can only
be answered by �yes� or �no�. The complexity class of decision problems which can be
solved by an algorithm in polynomial time regarding the size of the instance is called
P . Let A be a decision problem. A certi�cate C of A is a piece of information which
can be associated to every instance IA of A, such that the size of C is polynomial in
the size of IA, and it is possible to use C to check what is the answer to the question
of A applied to IA in polynomial time in the size of IA and C. The class of problems
having such a certi�cate is called NP . It is known that P ⊆ NP .

However, there exist a variety of problems of NP , called NP -complete problems,
which are hard to solve: for each of these problems, there exists no polynomial
time algorithm for solving it, unless P = NP . To prove that a problem A is NP -
complete, it is possible to give a polynomial-time procedure f , called polynomial
reduction, which transforms any instance IB of an NP -complete problem B into an
instance IA = f(IB) of A, such that the answer to the question of B applied to IB
is positive if and only if the answer to the question of A is positive when applied to
IA.

For further details on these questions, see [GJ79].

Let us state the following decision problems:
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DOMINATING SET
INSTANCE: A graph G and a positive integer k
QUESTION: Does G have a dominating set of cardinality ≤ k?

LOCATING-DOMINATING SET
INSTANCE: A graph G and a positive integer k
QUESTION: Does G have a locating-dominating set of cardinality ≤ k?

IDENTIFYING CODE
INSTANCE: A graph G and a positive integer k
QUESTION: Does G have an identifying code of cardinality ≤ k?

r-LOCATING-DOMINATING SET
INSTANCE: A graph G and a positive integer k
QUESTION: Does G have an r-locating-dominating set of cardinality ≤ k?

r-IDENTIFYING CODE
INSTANCE: A graph G and a positive integer k
QUESTION: Does G have an r-identifying code of cardinality ≤ k?

DIRECTED r-LOCATING-DOMINATING SET
INSTANCE: A directed graph G and a positive integer k
QUESTION: Does G have an r-locating-dominating set of cardinality ≤ k?

DIRECTED r-IDENTIFYING CODE
INSTANCE: A directed graph G and a positive integer k
QUESTION: Does G have an r-identifying code of cardinality ≤ k?

We summarize the known hardness results on these problems in the following theo-
rem:

Theorem 2.13

• ([GJ79, KKY80, Ber84]) DOMINATING SET is NP-complete [GJ79],
even when restricted to cubic planar graphs [KKY80] or bipartite graphs [Ber84].

• ([CSS87]) LOCATING-DOMINATING SET is NP-complete.

• ([CHLZ01, MS06]) IDENTIFYING CODE is NP-complete [CHLZ01], even
when restricted to planar bipartite unit disk graphs1 [MS06].

• ([CHL03]) r-LOCATING-DOMINATING SET and r-IDENTIFYING CODE
are NP-complete, even when restricted to bipartite graphs.

1A unit disk graph is a graph for which each vertex is associated to a point of the Euclidian
plane R2. There exists an edge between two vertices u and v if and only if the euclidian distance
between the points associated to u and v is at most 1.
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• ([CHL02]) DIRECTED r-LOCATING-DOMINATING SET and DIRECTED
r-IDENTIFYING CODE are NP-complete, even when restricted to strongly
connected, asymmetric, bipartite directed graphs or to asymmetric, bipartite
directed graphs without directed cycles.

An optimization problem is described by an input and an output which is optimum
with respect to some measure function m. The optimum can either be a mini-
mum (then the problem is a minimization problem) or a maximum (then it is a
maximization problem).

By analogy with the classes P and NP of decision problems, the classes PO and
NPO are de�ned for optimization problems. An optimization problem is in PO if
there exists an algorithm which gives an optimal solution to the problem in poly-
nomial time with respect to the size of the input. An optimization problem A is in
NPO if, given an instance IA of A and a potential solution S of A, it is possible
to decide in polynomial time with respect to IA and S, if S is a feasible (not nec-
essarily optimum) solution of A, and if the measure of the output is computable in
polynomial time.

Let r be a real number, A an optimization problem, IA an instance of A and mopt

the value of the measure of the optimum solution. An r-approximation of IA for A is
a solution for A with input IA which measure is at most r ·mopt for a minimization
problem, and at least mopt/r for a maximization problem. An algorithm which,
given any input IA of A, is able to compute an r-approximation of IA in polynomial
time with respect to |IA| is called a polynomial time r-approximation algorithm for
A.

The class sometimes refered to as log-APX is the set of optimization problems for
which there exists a function f(n) = O(ln(n)) and a polynomial time approximation
algorithm which computes an f(|I|)-approximation of I for the problem, where I is
the input. log-APX ⊆ NPO.

The class APX contains all optimization problems for which there exists a real
number α > 0 and a polynomial time approximation algorithm which computes an
α-approximation of I for the problem, where I is the input. APX ⊆ log-APX.

The class PTAS is the class of optimization problems for which there exists an
algorithm which, given an input I of the problem together with a rational value r >
1, computes an r-approximation of I for the problem in time polynomial in |I|. Such
an alogorithm is called a polynomial time approximation scheme. PTAS ⊆ APX.

A decision problem can always be associated to an optimization problem. An op-
timization problem is said to be NP -hard if the corresponding decision problem
is NP -complete. It is APX-hard if it is not in the class PTAS, and it is APX-
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complete if it is APX-hard and in APX. Similarly, it is log-APX-hard if it is not
in APX, and log-APX-complete if it is log-APX-hard and in log-APX.

For more details on hardness and approximation, consult [ACG+99] or [Hro02].

Let us state the following optimization problems:

MINIMUM DOMINATING SET
INPUT: A graph G
OUTPUT: The minimum cardinality of a dominating set of G

MINIMUM LOCATING-DOMINATING SET
INPUT: A graph G
OUTPUT: The minimum cardinality of a locating-dominating set of G

MINIMUM IDENTIFYING CODE
INPUT: A graph G
OUTPUT: The minimum cardinality of an identifying code of G

MINIMUM r-LOCATING-DOMINATING SET
INPUT: A graph G
OUTPUT: The minimum cardinality of an r-locating-dominating set of G

MINIMUM r-IDENTIFYING CODE
INPUT: A graph G
OUTPUT: The minimum cardinality of an r-identifying code of G

We summarize the known hardness results on these problems in the following theo-
rem:

Theorem 2.14

• ([Joh74, LY94])MINIMUM DOMINATING SET is log-APX-complete, even
when restricted to bipartite graphs

• ([PY91]) MINIMUM DOMINATING SET is APX-complete when restricted
to graphs having their degree bounded by a constant

• ([Bak94, HIMR+98]) MINIMUM DOMINATING SET is in PTAS when
restricted to planar graphs [Bak94] or unit disk graphs [HIMR+98]

• ([BWLT06, Suo07]) MINIMUM IDENTIFYING CODE and MINIMUM
LOCATING-DOMINATING SET are log-APX-complete

• ([Suo07, GKM08])MINIMUM IDENTIFYING CODE and MINIMUM LOCATING-
DOMINATING SET are APX-complete when restricted to graphs having their
degree bounded by a constant
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• ([Suo07])MINIMUM r-IDENTIFYING CODE and MINIMUM r-LOCATING-
DOMINATING SET are in PTAS when restricted to local graphs2

Note that in [RUDP+03], a greedy linear-time algorithm is provided to compute a
minimal identifying code (a minimal or irreducible identifying code C is a code such
that there exists no vertex c of C such that C\{c} is an identifying code, whereas a
minimum identifying code is an identifying code of minimum cardinality). However,
it has been shown in [Mon06b] that the gap between a minimal and a minimum
identifying code can be arbitrarily large. Therefore the mentioned algorithm does
not guarantee any approximation ratio.

2A (d,N)-local graph is a graph G for which each vertex is associated to a point in Rd so that
within any ball B of radius 1 in Rd, at most N vertices of G are associated to points inside of B.
Moreover, two vertices u and v of G can only be connected by an edge if the euclidian distance
between their correspondant points is at most 1.
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Chapter 3

A lower bound depending on the max-

imum degree

Natural questions regarding identifying codes are extremal problems: the determi-
nation of lower and upper bounds for M1(G), and the characterization of graphs
reaching these bounds.

Whereas most of these questions have already been solved in the general case (see
the previous section for details), almost no results have been published on the re-
lationship between this problem and the maximum degree of the graph. Though,
it is an interesting question since many common graphs have a bounded maximum
degree, for example grids, tori, cycles.

In this section, we �rst restate the known lower bound for an identifying codeM1(G)
in graphs of maximum degree ∆, before discussing the characterization of graphs
reaching this bound.

3.1 The lower bound

The following theorem has been stated in [KCL98] for ∆-regular graphs, but it is
also valid for graphs of maximum degree ∆. We restate the theorem in the case of
1-identifying codes and present an alternative, more combinatorial proof.

Theorem 3.1 ([KCL98]) Let G = (V,E) be an undirected, connected graph on n

vertices and maximum degree ∆. Then M1(G) ≥ 2n

∆ + 2
.

Proof Let C ⊆ V be an identifying code of G of cardinality k. We partition V into
the four following sets, as shown in Figure 3.1:

C1 =
{
x ∈ C

∣∣ |IC(x)| = 1
}
, C2 =

{
x ∈ C

∣∣ |IC(x)| ≥ 2
}

N1 =
{
v ∈ V \ C

∣∣ |IC(v)| = 1
}
, N2 =

{
v ∈ V \ C

∣∣ |IC(v)| ≥ 2
}

It is easy to see that the following (in)equalities hold:
|C1|+ |C2| = k (1)
|C1|+ |N1| ≤ k (2)
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N1

C1

N2

C2C

... ...

..
.

Figure 3.1: Partition of V

Let m be the number of edges between C and V \ C = N1 ∪ N2. Let us make the
following observations:

• Every vertex of C2 is linked to at least one other vertex of C2. Moreover, it is
not possible to have two vertices of C2 linked only to each other; indeed, this
would imply that they have the same identifying set and they would not be
separated. Thus, at least one of them must be linked to another vertex of C2,

and thus there are at least
2|C2|

3
edges within C2. So, m ≤ k ·∆− 2 · 2|C2|

3
=

k ·∆− 4|C2|
3

since the maximum degree of G is ∆.

• There are no edges from any vertex of C1 to another vertex of C.

• There are at least 2|N2| edges between C and N2 since every vertex of N2 has
at least two elements of C as its codeword, and there are exactly |N1| edges
between C and N1.
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Thus, we have m ≥ |N1|+ 2|N2|.

This gives us k ·∆− 4|C2|
3
≥ |N1|+ 2|N2|

k ·∆ ≥ 4|C2|
3

+ |N1|+ 2|N2|
Since by (1), |C2| = k − |C1|, we get

k ·∆ ≥ k − |C1|+ |N1|+ 2|N2|+
|C2|

3
By (2): − |C1| ≥ |N1| − k, thus:

k ·∆ ≥ 2 · (|N1|+ |N2|) +
|C2|

3

k ·∆ ≥ 2 · (n− k) +
|C2|

3

k · (∆ + 2) ≥ 2n+
|C2|

3
≥ 2n (∗)

k ≥ 2n

∆ + 2
�

3.2 Graphs reaching the lower bound

The lower bound of Theorem 3.1 is tight. Graphs which reach it can be easily

constructed: given any ∆ and any k, one can construct a graph of n = k · ∆ + 2

2
vertices having an identifying code of cardinality k.

To construct such a graph, take an independent set C of k vertices as the identifying

code, and k · ∆

2
other vertices. Then, connect the vertices of V \ C to those of C

such that no two vertices have the same neighbours in C, all vertices of C have less
than ∆ neighbours, and all vertices of V \ C have at least two neighbours in C.
Eventually, edges between non-code vertices can be added. An example of such a
graph is given for k = 4 and ∆ = 3 in Figure 3.2. Code vertices are black, and the
dashed edges are optional edges between non-code vertices.

Figure 3.2: A graph reaching the lower bound of Thm. 3.1

Note that the general lower bound of Theorem 2.9 on k (k ≥ dlog2(n+1)e [KCL98])
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still holds, so the following relationships must hold for these graphs:

k · ∆ + 2

2
≤ 2k − 1⇔ ∆ ≤ 2k+1 − 2

k
− 2 or ∆ ≤ 2n

dlog2(n+ 1)e
− 2.

Let us now consider the case of graphs strictly reaching the lower bound, meaning
that they admit an identifying code of cardinality exactly k = 2n

∆+2
(without ceil-

ing). We are able to characterize the structure of such graphs. Assume that G has
n vertices, maximum degree ∆ and an identifying code of cardinality k = 2n

∆+2
.

Consider the partition of V (G) illustrated in Figure 3.1, and let us recall line (∗)
from the previous proof of Theorem 3.1. We had:

2n+
|C2|

2
≤ k · (∆ + 2)

2n

∆ + 2
+

|C2|
2(∆ + 2)

≤ k =
2n

∆ + 2

So, if equality holds, clearly |C2| = 0. This implies that |C1| = k, and thus |N1| = 0
since |C1|+ |N1| = k. So a graph reaching the lower bound has an independent set
as its code, and every non-code vertex is connected to at least two code vertices.
Note that since k = 2n

∆+2
, k ·∆ = 2 · (n− k), all non-code vertices are connected to

exactly two code vertices, whereas all code vertices have ∆ neighbours.

Let ∆ be an integer. To construct a graph strictly reaching the lower bound, one
can use the following construction method:

1. take any simple, ∆-regular graph D on k vertices; these vertices will be the
code vertices.

2. place an additional vertex on each edge of D: so, the new vertices are all
connected to two di�erent vertices of the regular graph D.

3. arbitrary edges can be set between the non-code vertices; this has no in�uence
on the code.

It is clear that this construction gives a graph having exactly the properties described
in the previous discussion.

Note that if one wants the constructed graph to be ∆-regular, there must exist
a (∆ − 2)-regular graph H on n − k vertices, and the non-code vertices must be
embedded into H in the last step of the construction. This is not always possible:
for example, if the original graph D has an odd number ne of edges, H must have
ne vertices, which is impossible since there does not exist any regular graph having
an odd number of vertices. So in that case the constructed graph cannot be regular.
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For an example of a 4-regular optimal graph constructed using the graph D = K5

for the �rst step of the construction and the cycle H = C10 in the last step, see
Figure 3.3. An example of an optimal graph of maximum degree 3 which cannot
be made regular, constructed using the Petersen graph P10 having 10 vertices and
15 edges as the graph D, and no additional edges between non-code vertices, is given
in Figure 3.4.

Conversely, all graphs strictly reaching the lower bound can be constructed using
this method. Indeed, consider such a graph, G, and its optimal identifying code
C. Remove all edges between non-code vertices. Following the previous discussion
all non-code vertices are connected to exactly two code vertices and every code
vertex has ∆ neighbours. For every non-code vertex v, create an edge between its
two neighbours in C, and delete v; the obtained graph is a ∆-regular graph on k
vertices. Therefore the previous construction can be applied to obtain G. So, all
such graphs can be obtained using this construction.

Figure 3.3: Example of a 4-regular optimal graph

Figure 3.4: Example of an optimal graph of maximum degree 3
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Chapter 4

Identifying codes in some particular

graph families

We now investigate identifying codes of some speci�c graphs related to the binary
hypercube. Identifying codes in the hypercube of dimension m, Hm, have been
studied, but M1(Hm) is not known (see section 2.6). We study the problem in two
families of graphs related to the hypercube: the cube-connected cycles graph and the
butter�y graph.

4.1 Cube-Connected-Cycles graph

The cube-connected-cycles graph of dimension m, denoted as CCCm, is a variant
of the hypercube graph of dimension m. It has been introduced in 1981 for use in
parallel computing [PV81]. For more details, consult [dR94] or [HKP+05].

CCCm is the hypercube Hm in which all vertices are replaced by a cycle Cm:

V (CCCm) = {0, ...,m− 1} × {0, 1}m

E(CCCm) =
{{(

i, α
)
,
(
(i+ 1) mod m,α

)}∣∣∣i ∈ {0, ...,m− 1}, α ∈ {0, 1}m
}

∪
{{(

i, α
)
,
(
i, α(i)

)}∣∣∣i ∈ {0, ...,m− 1}, α ∈ {0, 1}m
}

where for α = α0α1...αm−1 ∈ {0, 1}m, i ∈ {0, ...,m− 1}, α(i) = α0α1...αi...αm−1

(the ith bit of α is switched).

For some examples, see Figure 4.1 for the Cube Connected Cycles of dimension 3,
and Figures 4.2 and 4.3 for the Cube Connected Cycles of dimension 4.

Since any CCCm-graph is cubic, following Theorem 3.1, we have the following propo-
sition:

Proposition 4.1 Let m ∈ N and C be an identifying code of CCCm.

Then |C| ≥ 2|V (CCCm)|
5

.

We approach this bound with the following result:
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Figure 4.1: Two representations of the graph CCC3

Theorem 4.2 Let m ≥ 4. Then M1(CCCm) ≤ m · 2m−1 =
|V (CCCm)|

2
.

Proof Let C =
{(
i, α
)
∈ V (CCCm)

∣∣∣i ∈ {0, ...,m − 1}, α ∈ {0, 1}m,
m−1∑
i=0

αi =

0 mod 2
}
.

We claim that C is an identifying code of CCCm. Indeed, C is such that half of the
cycles of CCCm are completely in C, and the cycles are at distance two from each
other. Thus, every vertex of a cycle of C is identi�ed by itself and its two neighbours
(since m ≥ 4 the cycles Cm are twin-free), whereas a vertex of the other cycles is
uniquely identi�ed by its neighbour on a cycle of C.
Thus both separation and domination are achieved and C is an identifying code of

size
|V (CCCm)|

2
. �

An example of a code constructed in the proof of Theorem 4.2 for the graph CCC4

is given in Figure 4.2. The code vertices are colored in gray, and arrows indicate
wrap-around edges.

The ratio between the upper bound given by the previous theorem and the lower

bound given by Proposition 4.1 is
5

4
. This upper bound is probably not tight;

indeed, for the graphs CCC4 and CCC5, we found identifying codes of smaller car-
dinality. A better identifying code for CCC4 is pictured in Figure 4.3 (the code
vertices are colored in gray, and arrows indicate wrap-around edges). Since CCC4

has n4 = 64 vertices, any identifying code of CCC4 has cardinality at least 26 ac-

cording to Proposition 4.1. The found identifying code has cardinality 28 =
7n4

16
. In
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Figure 4.2: An identifying code of the graph CCC4 containing half of its vertices

CCC5, which has n5 = 160 vertices, any identifying code has cardinality at least 64

according to Proposition 4.1. We found an identifying code of cardinality 72 =
9n5

20
.

However, we were not able to generalize these codes to cube-connected cycles of any
dimension.
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Figure 4.3: A better identifying code in CCC4

4.2 Butter�y graph

The butter�y graph of dimension m, denoted as BFm, is a variant of the hypercube
graph of dimension m. It has been introduced for use in parallel computing. For
more details, consult [dR94] or [HKP+05].

V (BFm) = {0, ...,m− 1} × {0, 1}m

E(BFm) =
{{(

i, α
)
,
(
(i+ 1) mod m,α

)}∣∣∣i ∈ {0, ...,m− 1}, α ∈ {0, 1}m
}

∪
{{(

i, α
)
,
(
(i+ 1) mod m,α(i)

)}∣∣∣i ∈ {0, ...,m− 1}, α ∈ {0, 1}m
}

where for α = α0α1...αm−1 ∈ {0, 1}m, i ∈ {0, ...,m− 1}, α(i) = α0α1...αi...αm−1

(the ith bit of α is switched).
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For some examples, see Figure 4.4 for the Butter�y graph of dimension 3, and
Figure 4.5 for the Butter�y graph of dimension 4 (cross edges between levels 0 and
3 are not represented).

000 001010 011100 101110 111

0

1

2

Figure 4.4: The graph BF3

Since any BFm-graph is 4−regular, following Theorem 3.1, we have the following
proposition:

Proposition 4.3 Let m ∈ N and C be an identifying code of BFm.

Then |C| ≥ |V (BFm)|
3

.

We approach this bound with the following result:

Theorem 4.4 Let m ≥ 4. Then M1(BFm) ≤
⌈

3m

4

⌉
· 2m−1 ' 3

8
· |V (BFm)|.

Proof Consider the functions f, g : {0, 1}m → {0, 1}, where

f(α) =
m−1∑
i=0

αi mod 2 and g(α) =
∑{

i | i=0 mod 4
}αi mod 2

Now, let us construct the code C as follows:
C =

{
(i, α) | f(α) = 0 and i 6= g(α) mod 4

}
In other words, only vertices of every second cycle are taken into C. On those cycles,
every fourth vertex is not in the code; in half of them, the vertices which are out are
those numbered 0 mod 4, in the others its those numbered 1 mod 4. An example
of that code on the graph CCC4 is shown in Figure 4.5. The cross edges between
levels 0 and 3 are omitted, and the code vertices are gray.

Clearly, we have

⌈
3m

4

⌉
vertices of every second cycle in C, so in total |C| =



48 4.2. Butter�y graph

0000 00100100 01101000 10101100 1110 0001 00110101 01111001 10111101 1111
0

1
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3

Figure 4.5: The graph BF4 with the code given in the proof of Thm. 4.4

⌈
3m

4

⌉
· 2m−1.

Let us show that C is an identifying code. We �rst check that it is a dominating
set. Let x = (i, α) ∈ V (BFm).

1. if f(α) = 0, then either x or its two neighbours on the same cycle are in C, so
it is dominated.

2. if f(α) = 1, x has two neighbours in other cycles: y = (i − 1, α(i − 1)) and
z = (i+ 1, α(i)). Note that f(α(i− 1)) = f(α(i)) = 0.

(a) if y ∈ C, x is dominated.

(b) if y /∈ C because g(α(i− 1)) = 0 and i = 0 mod 4, then i+ 1 = 2 mod 4
and thus z ∈ C, so x is dominated.

(c) if y /∈ C because g(α(i− 1)) = 1 and i = 1 mod 4, then i+ 1 = 3 mod 4
and thus z ∈ C, so x is dominated.

Let us now show that C is separating all vertices. Let x = (i, α), y = (i′, α′) ∈
V (BFm), and distinguish between the following cases:

1. f(α) = f(α′) = 0
No vertex of the cycle α can be connected to a vertex of the cycle α′. Thus,
the vertices whichdominate x and y on their respective cycles, also separate
them.

2. f(α) = f(α′) = 1
We know that both x and y have at least one of their two neighbours on
di�erent cycles which are in C. Let nx and ny be these two neighbours. If
nx and ny are distinct, x and y are separated by them. So, suppose nx = ny.
Without the loss of generality, suppose that nx = (i + 1, α(i)) and y = (i +
2, α(i)(i+ 1)). Then, the other neighbours of x and y on other cycles, are the
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following: n′x = (i− 1, α(i− 1)) and n′y = (i+ 3, α(i)(i+ 1)(i+ 2)).
Since nx = (i + 1, α(i)) ∈ C, we have either that g(α(i)) = 0 and i + 1 6=
0 mod 4, or g(α(i)) = 1 and i+ 1 6= 1 mod 4. If i+ 1 = 0 mod 4 or 1 mod 4,
then i− 1 = i+ 3 = 2 or 3 mod 4, and thus n′x, n

′
y ∈ C, and we're done.

Otherwise, i+ 3 = i− 1 = 0 or 1 mod 4. If n′x ∈ C, we're done.
So, suppose not. This means that i− 1 6= g(α(i− 1)) mod 4.
But then, by de�nition of g, if we switch four bits in a row in α(i − 1) to
obtain α(i − 1)(i − 1)(i)(i + 1)(i + 2) = α(i)(i + 1)(i + 2), we have i − 1 =
g(α(i)(i+ 1)(i+ 2)) mod 4. Since i− 1 = i+ 3, this means that n′y ∈ C, and
thus x and y are separated.

3. f(α) 6= f(α′)
Without the loss of generality, suppose f(α) = 0. By construction of C, x has
at least two neighbours in C. Since y can only be connected to one of them,
x and y are separated by the other one.

So, C is an identifying code of BFm. �

Note that the code constructed in the previous proof is minimal: no code vertex can
be put out of the code. However, there exists a gap between the lower bound and
the size of this code. For the graph BF4, the constructed code has 24 vertices, and
according to Proposition 4.3, any identifying code of BF4 has at least 22 vertices.
Moreover, we ran a computer program on the graph BF4 to check wether there exists
an identifying code of smaller cardinality in it. Since this graph has 64 vertices, it is
not possible to test the 264 possible subsets of vertices in a reasonable time. So, we
tested subsets containing only vertices of every second cycle, as the code constructed
above. The result of this test was negative, so either this is an optimal code, or one
has to construct a code containing vertices of more than half of the cycles of BF4.
It is likely that this remark also holds for butter�y graphs of higher dimensions. So,
we gave an upper bound forM1(BFm) which is quite close to the lower bound, since
for all m = 0 mod 4, the ratio between the cardinality of the constructed code and

the value of the lower bound is precisely equal to
9

8
; for other values of m, the ratio

is close. However, there still exists a gap which can be �lled either by proving a
higher lower bound, or by constructing a smaller identifying code of BFm.
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Chapter 5

Upper bounds depending on the max-

imum degree

In a graph on n vertices, the upper bound of an identifying code is known to be
n − 1. Moreover, it is tight and there exist an in�nity of graphs attaining this
bound (see Theorem 2.12 [CHL07, GM07]). However, all such graphs exhibited in
[CHL07, GM07] have a very high maximum degree (n − 2 or n − 1). This leaded
us to make the assumption that graphs of maximum degree ∆ have an identifying

code of cardinality at most n − n

f(∆)
, where f is a polynomial in ∆. Intuitively,

if we start in a graph G with C = V (G) as an identifying code of G, removing a
vertex v from C only a�ects the identi�cation of vertices which are not too distant
from v, allowing us to take out another vertex which is su�ciently distant from v.
In fact, there are no known graphs admitting a minimum identifying code bigger

than n− n

∆
, leading to the conjecture that f(∆) = ∆:

Conjecture 5.1 Let G = (V,E) be a connected, twin-free graph on n vertices,
with maximum degree ∆. Then there exists an identifying code C of G such that

|C| ≤
⌈
n − n

∆

⌉
.

We were not able to prove this conjecture. However, we show the existence of an

upper bound of the form n− n

∆
where f is a polynomial in ∆ in arbitrary graphs,

and quadratic in regular graphs. We then give a better upper bound for triangle-free
graphs where f is linear in ∆. We �nally show that in graphs of girth at least 5 and
minimum degree 2, the in�uence of the maximum degree of a graph G on the value
of M1(G) is weaker. Finally, we investigate the case of subcubic graphs.

The results of this section are summarized in Table 5.1. The entries for every class
of graphs are in form of a pair 〈b1, b2〉 of functions of n and ∆.

• b1(n,∆) denotes the highest known value for a minimum identifying code in
graphs of the correspondant class: for any ∆, there exist arbitrarily large values
of n, for which some graph of this class, having n vertices and maximum degree
∆, admits no identifying code smaller than b1(n,∆).

• b2(n,∆) denotes the new theoretical upper bound for this class: for any graph
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of this class having n veryices and maximum degree ∆, we are able to construct
an identifying code of cardinality at most b2(n,∆).

arbitrary graphs ∆-regular graphs

arbitrary

〈
n− n

∆
, n− n

Θ(∆4)

〉 〈
n− n

∆
, n− n− 1

∆2

〉
graphs

〈 Prop. 5.2, Thm. 5.3 〉 〈 Prop. 5.2, Thm. 5.6 〉

triangle-free

〈
n− n

∆− 1 + 1
∆

, n− n

3∆ + 3

〉 〈
n− n

2∆
3

, n− n

2∆ + 2

〉
graphs

〈 Prop. 5.7, Thm. 5.10 〉 〈 Prop. 5.12, Thm. 5.13 〉

graphs of girth

〈
n− n

∆− 1 + 1
∆

, n− n

3∆ + 3

〉 〈
2n

∆ + 2
, n− n− 8

8

〉
at least 5

〈 Prop. 5.7, Thm. 5.10 〉 〈 Thm. 3.1, Cor. 5.15 〉

Table 5.1: Summary of the new upper bounds for identifying codes in graphs of
maximum degree ∆ ≥ 3 and n vertices

5.1 Arbitrary graphs

We now discuss the upper bound of identifying codes in arbitrary graphs of maximum
degree ∆.

First, consider the example of the following graph, denoted as CKm(Gl,m), where
Gl,m is an m-regular graph of l vertices. CKm(Gl,m) consists of the graph Gl,m in
which every vertex is replaced by a clique of size m. So, CKm(Gl,m) consists of l
connected cliques of size m. It has l ·m vertices, and it is m-regular. See Figure 5.1
for an example with l = 4 and l = 3 where G4,3 is the complete graph K4.

Consider two vertices u, v of the same clique. In order to separate them, at least one
of their two respective neighbours in the other cliques must be in the code. Now,
repeat this argument for all pairs of vertices of the same clique: in order to separate
the m vertices of the clique, m − 1 vertices outside of it have to be in the code.
Since every vertex has a unique neighbour in another clique, in total at least m− 1
vertices per clique must be in the code.
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Figure 5.1: The graph CK3(K4)

So, an identifying code of CKGl,m,m has a size of at least

l(m− 1) = lm− lm

m
= n− n

m
.

This leads to the following proposition:

Proposition 5.2 For any value of ∆ ≥ 3, there exist arbitrarily large values of n,
such that there exists a ∆-regular graph on n vertices admitting no identifying code

of a smaller size than n − n

∆
.

Of course, the bound of this proposition also holds for graphs of maximum degree
∆ since a ∆-regular graph has maximum degree ∆. Note that it is the same bound
as the one of Conjecture 5.1; we don't know graphs of maximum degree ∆ having a
minimum identifying code of larger cardinality.

5.1.1 General case

Let us consider the case of arbitrary graphs. We prove the following result:

Theorem 5.3 Let G = (V,E) be a connected, twin-free graph with n vertices, and
maximum degree ∆. Then there exists an identifying code C of G such that

|C| ≤ n − n

∆(∆3 + ∆2 −∆ + 1)
= n − n

Θ(∆4)
.

Proof We �rst show the following lemma:

Lemma 5.4 Let G = (V,E) be a connected twin-free graph. Let a ∈ V be a vertex
of V . Then there exists a vertex b ∈ V , d(a, b) ≤ 2, such that V \{b} is an identifying
code, and:

• b = a, or
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• there exist two vertices u, v ∈ V such that N [u] = N [v] ∪ {a} and:

� N [a] ⊆ N [u] and b = u, or

� d(a, b) = 1 and B2(b) ⊆ B2(a), or

� d(a, b) = 2 and B1(b) ⊆ B2(a)

Proof of Lemma 5.4 Let a ∈ V . If there are no two vertices u, v ∈ V such that
N [u] = N [v] ∪ {a}, then clearly V \{a} is an identifying code.
So, suppose there are two vertices u, v ∈ V such that N [u] = N [v] ∪ {a} (See
Figure 5.2).

a u v

... N

Figure 5.2: A vertex a such that V \{a} is not an identifying code

Let us distinguish the following cases:

• N [a] ⊆ N [u]: a has no neighbours other than u or vertices of N
Then, take V \{u} as a code.
Let x, y ∈ V such that u ∈ N [x] ⊕ N [y]. Let us check that x and y are
separated. Without loss of gnerality, u ∈ N [x] and u /∈ N [y].

1. x = u or x = v
Then y is not connected to v (else xy ∈ E and u ∈ N [y]), so x and y are
separated by v.

2. x ∈ N
Then y /∈ N(else u ∈ N [y]), hence x and y are separated by v.

3. x = a
Then y = u. Since a is not connected to v, and all its neighbours are
connected to v, a and u are separated by v.

• a has at least one neighbour z other than u

� ∀m ∈ N,N [m]⊕N [a] 6= {v}
Then, take V \{v} as a code.
Let x, y ∈ V such that v ∈ N [x] ⊕ N [y]. Without loss of generality,
v ∈ N [x] and v /∈ N [y].
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1. x = v
Then xy /∈ E, otherwise v ∈ N [y]. If y not connected to u, x and y
are separated by u. Else, y = a; but since a is in the code, x and y
are separated by a.

2. x = u
If xy /∈ E, x and y are separated by x = u which is in the code.
Otherwise, y = a since v /∈ N [y]. Since a has a neighbour z which is
not in N , x and y are separated by z.

3. x ∈ N
If xy /∈ E, x and y are separated by x which is in the code. Otherwise,
if yu /∈ E, they are separated by u which is connected to x and is
in the code. If y is connected to u, y = a since v /∈ N [y]. Since by
hypothesis, N [x] ⊕ N [a] 6= {v}, x and y are separated by either a
neighbour of y = a, which is in the code, or a neighbour of x. Since
this neighbour is at distance 2 of a, it is in the code as well, except if
we did take it out with a similar move. This would mean that there
is a vertex a′ at distance 4 of a, and a similar con�guration where
the neighbour of x is some v′. But then u′ would be connected to x
and therefore a′ would be at distance 3 of a, which is not possible.

Notice that d(a, v) = 2. Since N [u] = N [v] ∪ {a}, all neighbours of
v are neighbours of u. Since u and a are connected, this means that
B1(v) ⊆ B2(a).

� ∃m ∈ N,N [m]⊕N [a] = {v}
Let us denote the common neighbourhood of a and m as Na.
If there are no vertices x, y ∈ V such that N [x] ⊕ N [y] = {m}, clearly
V \{m} is an identifying code. We have d(a,m) = 1. SinceN [m] = N [a]∪
{v}, B2(m) = B2(a) ∪B1(v). But B1(v) ⊆ B2(a), so B2(m) ⊆ B2(a).
Let x, y ∈ V such that {m} = N [x]⊕N [y]. So, xy ∈ E. Without loss of
generality, m ∈ N(x) and m /∈ N(y). Then:

∗ x /∈ Na: Since y is not connected to m, it is not connected to a. Thus
a ∈ N [x]⊕N [y].

∗ x 6= a since all the neighbours of a are connected to m.

∗ x 6= u: Since y is not connected to m, y ∈ N . Then, y is not
connected to a, otherwise it would be connected to m. So a ∈ N [x]⊕
N [y].

So x = v, y ∈ N , and y is connected to all vertices of N except m; it has
no other neighbours.
Now, let us partition N into N1, being the vertices of N having no neigh-
bours out of N ∪ {u, v} ∪ N [a], and N2 = N\N1. If a vertex of N1 can
be out of the code, we are done.
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Suppose not. Notice that y cannot be out of the code if and only if there
is a vertex p of N1 such that there exists a second vertex q ∈ N and
N [p] = N [q] ∪ {y} (let us call p a blocking vertex for y). Similarly, p
can also only be removed if there exist such vertices in N . Notice that
the blocking vertices can themselves only be blocked by a vertex in N1,
and two vertices can only be blocked by two distinct vertices. So, we can
de�ne an order on the vertices of N1 = {p0, ..., pl} where p0 = m, p1 = y
and pi+1 blocks pi. Notice that the last vertex pl can not be blocked;
thus, it can be removed from the code.
So there exists a vertex p ∈ N such that p can be out of the code,
and p has all its neighbours within N ∪ {u, v} ∪ N [a]: d(a, p) ≤ 2 and
B1(p) ⊆ B2(a).

(End of the proof of Lemma 5.4) �

Let us now construct a 4-independent set S of G of cardinality at least
n

B4

(where

B4 = ∆(∆3 + ∆2 −∆ + 1) is the maximal size of a ball of radius four in G), using
the greedy Algorithm 5.1.

Algorithm 5.1 Greedy construction of a 4-independent set S

Require: a connected graph G = (V,E)
1: X ← V
2: S ← ∅
3: while X 6= ∅ do
4: arbitrarily choose s ∈ X
5: S ← S ∪ {s}
6: X ← X\B4(s)
7: end while
8: return S

Then we take C = V \S, modify it slightly and show that it is an identifying code
of G.

We �rst check the separation condition. It has to be veri�ed that for every pair of
vertices u, v ∈ V , at least one vertex of N [u]⊕N [v] belongs to the code.

Let u, v ∈ V be two arbitrary vertices.
Since S is a 4-independent set (so two vertices of S are at least at distance 5 of each
other), it is clear that in all cases except con�gurations 5.9(h) and 5.10(b), u and v
are separated.
Now, suppose u and v are in one of these cases (see Figure 5.3) : u and v are
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connected and have the same set of neighbours N (possibly empty), except a which
is connected to u, and a ∈ S. v has no neighbours out of N .

a u v

...

Figure 5.3: Vertices u and v are not separated

Suppose a ∈ S : u and v are not separated. Using Lemma 5.4, we take a out from
S, and put another vertex b into S instead, thus not changing its cardinality.

However, b is at distance at most 2 from a, thus S might not be a 4-independent set
anymore, and there could be pairs of vertices now becoming unseparated. Let a′ be
another vertex originally placed in S. We know that d(a, a′) ≥ 5.
By Lemma 5.4, we know that B1(b) ⊆ B2(a). This implies that b is at least at
distance 4 from a′. (Indeed, suppose not: d(b, a′) ≤ 3. Consider a shortest path
b-x-y-a′ between b and a′. Since B1(b) ⊆ B2(a), d(a, x) ≤ 2 and thus d(a, a′) ≤ 4,
which is a contradiction.)
So, the only case where there could be two unseparated vertices is if both a and a′

had been replaced by vertices b, b′, with d(b, b′) = 3; so d(a, b) ≥ 1 and d(a′, b′) ≥ 1.
Let us distinguish the following cases:

• d(a, b) = 2 or d(a′, b′) = 2 (Figure 5.4)

a x′ x y a′

b b′

a x′ x y a′

b

b′

Figure 5.4: Unseparated vertices (the two variants of subcase 1)

Without loss of generality, d(a, b) = 2.
Suppose there exist two vertices x, y such that {b, b′} ⊆ N [x] ⊕ N [y]. Since
d(b, b′) = 3, none of x and y is connected to both b and b′. Since G is connected,
x and y are neighbours. Without loss of generality, x is a neighbour of b and
y is a neighbour of b′. Since by Lemma 5.4, we know that B1(b) ⊆ B2(a),
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x is connected to a vertex x′ at distance less than one from a so d(a, x) ≤
2. Similarly, d(a′, y) ≤ 2: if d(a′, b′) = 2, apply the same argument, and if
d(a′, b′) = 1 it is obvious.
Clearly, x′ is not in S, and y is not connected to it (else d(a, a′) = 4 which is
a contradiction). So x and y are well separated by x′.

• d(a, b) = 1 and d(a′, b′) = 1 (Figure 5.5)

a b x y b′ a′

Figure 5.5: Unseparated vertices (subcase 2)

Then, following Lemma 5.4, the following cases are possible:

� There exist two vertices u, v such that N [u] = N [v] ∪ {a} and b = u.
Suppose there exist two vertices x, y such that {b, b′} ⊆ N [x] ⊕ N [y].
Since d(b, b′) = 3, none of x and y is connected to both b and b′. Since G
is connected, x and y are neighbours. Without loss of generality, x is a
neighbour of b and y is a neighbour of b′.
If x = v, since N [u] = N [v] ∪ {a}, u is connected to x; a and a′ are at
distance 4 from each other, which is a contradiction.
So, x is another neighbour of u (obviously not a). But then, x is connected
to v since N [u] = N [v] ∪ {a}. And if y was connected to v, it would be
connected to u and then d(a, a′) = 4 which is a contradiction. Thus, y
is not connected to v, which is clearly not in S, and thus x and y are
separated by v.

� B2(b) ⊆ B2(a)
This case cannot happen. Otherwise, since d(a, a′) = 5 and B2(b) ⊆
B2(a), d(b, b′) ≥ 4 which is a contradiction.

Finally, it is clear that the set C = V \S is an independent set; thus, since G is
connected, every vertex has at most one vertex of its closed neighbourhood outside
of the code, and it is a dominating set.

So, C is an identifying code. �
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5.1.2 Regular graphs

Let us now study the particular case of regular graphs. We �rst make the following
observation:

Observation 5.5 Let G = (V,E) be a ∆−regular graph. Let u, v ∈ V . Then
|N [x]\N [y]| = |N [y]\N [x]| and |N [x]⊕N [y]| is even.

Proof Assume |N [x] ∩N [y]| = I. Since G is ∆−regular, |N [x]| = |N [y]| = ∆ + 1.
Thus |N [x]\N [y]| = |N [y]\N [x]| = ∆ + 1− I, and |N [x]⊕N [y]| = 2 · (∆ + 1− I).�

We are now able to show the following theorem:

Theorem 5.6 Let G = (V,E) be a ∆-regular (∆ ≥ 3), connected, twin-free graph
of n vertices. Then there exists an identifying code C of G such that

|C| ≤ n − n− 1

∆2
.

Proof We �rst construct a 2-independent set S of G, using the greedy Algo-
rithm 5.2.

Algorithm 5.2 Greedy construction of a 2-independent set S

Require: a connected graph G = (V,E)
1: X ← V
2: S ← ∅
3: while X 6= ∅ do
4: if S 6= ∅ then
5: choose s ∈ X such that ∃ x ∈ S, d(x, s) ≤ 2
6: else
7: arbitrarily choose s ∈ X
8: end if
9: S ← S ∪ {s}

10: X ← X\B2(s)
11: end while
12: return S

We observe that at the �rst step of the while loop, at most B2max vertices are
removed from X, where B2max = 1 + ∆ + ∆ · (∆ − 1) = ∆2 + 1 is the maximum
size of a ball of radius 2 in G.

In the other steps, since we choose s as a vertex which has at least one neighbour
which has already been removed from X, at most B2max − 1 = ∆2 are removed.

Thus, the set S returned by the algorithm has a size of at least
n− 1

∆2
.
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We now modify S in order to guarantee that V \S becomes an identifying code.

We �rst check the separation condition. It has to be veri�ed that for every pair of
vertices u, v ∈ V , at least one vertex of N [u]⊕N [v] belongs to the code.

Let u, v ∈ V .We now distinguish di�erent cases depending on the set N [u] ⊕ N [v].
These cases are illustrated in Figure 5.6.
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Figure 5.6: Con�gurations for symmetric di�erences between the closed neighbour-
hoods of two vertices u and v in regular graphs. The symmetric di�erences are
circled in red.

First notice that for all cases, since S is a 2-independent set, two elements of S are
at least at distance 3 from each other. Thus, in all cases listed in Figure 5.6 (except
con�guration 5.6(e)), at least one vertex of N [u] ⊕ N [v] belongs to the code V \S,
thus separating u from v.
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Now, suppose u and v are in the case 5.6(e): N [u]⊕N [v] = {a, b} and both a and
b ∈ S (Figure 5.7). Then u and v are not separated by V \S. Let us denote as N ,
the set of common neighbours of u and v.

a bu v

N...

Figure 5.7: Con�guration in which u and v are not separated

Then, let us put v into S and b out of S. Vertices u and v are now separated. Let
us show that if there exist x, y ∈ V such that v ∈ N [x]⊕N [y], then x and y will be
separated by another vertex of V than v, showing that v can be put into S safely.
(Note that the modi�ed set S may not be a 2-independent set anymore, but it is
still a 1-independent set.

So, let x, y ∈ V and v ∈ N [x]⊕N [y]. Without loss of generality, let us assume that
x ∈ N [v] and y /∈ N [v]. Let us distinguish the following cases:

1. x = v
We know that N [v] ∩ V \S = N ∪ {u, b}.
If y is not connected to all vertices of N ∪ {u, b}, x and y are thus separated
by those vertices, and we are done.

Now assume that y is connected to all these vertices. Since y is connected to u,
but not to v, y ∈ (N [u]⊕N [v])\{b} = {a}. So y = a, but since y is connected
to b, d(a, b) = 2 which is a contradiction since a and b are at distance 3 from
each other.

2. x = u
If xy = uy /∈ E, x and y are separated by y = u since u /∈ S and we are done.

So, assume xy ∈ E. Since y /∈ N [v], y = a. Since u is connected to all vertices
of N , which are all in V \S, if there exists one vertex n of N such that yn /∈ E,
n separates x from y and we are done.

Suppose y is connected to all vertices of N . There are exactly ∆− 2 vertices
in N , so there exists a vertex z ∈ V such that zy = za ∈ E, but zx = zu /∈ E.
Since d(z, a) = 1, z /∈ S and x and y are separated by z.

3. x ∈ N
Since y /∈ N [v], y /∈ N . If x and y are not connected, they are separated by x
since x ∈ N and all vertices of N are in V \S.
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So, assume xy ∈ E. If y is not connected to u, then x and y are separated by
u since u /∈ S.
Assume yu ∈ E ; then y = a. But then, since G is regular, there exists at
least one vertex z such that y is connected to z, but x is not. Since d(z, y) =
d(z, a) = 1, z /∈ S and therefore x and y are separated by z.

4. x = b
If xy /∈ E, since x = b /∈ S, x and y are separated by x and we are done.

So, suppose xy ∈ E. Since G is regular, x is connected to v but y is not,
following Observation 5.5, there exists at least one vertex z such that yz ∈ E
and xz /∈ E. Then, d(x, z) = 2 and thus z /∈ S: z separates x from y.

However, it is possible that after another con�ict such as this one concerning
another pair of vertices u′ and z = v′, the vertex z is put into S following our
transformation of S; then the previous argument is not valid anymore.

We show that if this occurs, in any case there is a vertex z′ separating y from
b. So, suppose there exist u′ and z = v′ ∈ V , such that a′ and b′ ∈ S and
N [u′]⊕N [v′] = {a′, b′}, leading to put z = v′ into S (Figure 5.8).

a bu v y

u′ z

a′ b′

x = b

z = v′N...

...

...

Figure 5.8: Modifying S in order to separate u and v

First, note that bu′ /∈ E: if yes, then bz = bv′ ∈ E, which is a contradiction
since we assumed that z is not connected to b.

Second, suppose u′ = y. Then a′ = b: otherwise, since by = bu′ ∈ E, we would
have bv′ = bz ∈ E which is a contradiction. But then, u′ and v′ are separated
by b, which is now out of S, and there is no need to put z = v′ into S, and we
are done.

Finally, suppose u′ 6= b. Then, since yv′ = yz ∈ E, we have yu′ ∈ E. With
our construction, we know that u′ is not in S; thus, y and b are not separated
by z, but by u′ and we are done.
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Note that in the cases 1, 2 and 3, the identifying vertex z is at distance 1 of a vertex
which stays in S. Since S, as observed before, even after modi�cation, is at least a
1-independent-set, these vertices are never put into S and the construction remains
stable, as opposed to case 4.

It has now to be checked that V \S is a dominating set for G. Since S is an inde-
pendent set, every vertex of V has at least one neighbour which is not in S and thus
it is dominated.

So C = V \S is an identifying code of G of size at most n− n− 1

∆2
. �

5.2 Triangle-free graphs

We now discuss the upper bound for the cardinality of an identifying code in triangle-
free graphs having a maximum degree of ∆. Some of the results of this section will
be submitted soon for publication [FKKR09].

5.2.1 General case

Note that in the complete k-ary tree (k ≥ 3) with h levels and n =
kh − 1

k − 1
vertices,

which is triangle-free and has a maximum degree of ∆ = k+1, the optimal identifying

code has a size of M =

⌈
k2n

k2 + k + 1

⌉
[BCHL05]. This gives us:

M =
⌈ k2n

k2 + k + 1

⌉
=
⌈ (∆− 1)2n

(∆− 1)2 + ∆

⌉
M =

⌈
n− ∆n

(∆− 1)2 + ∆

⌉
M =

⌈
n− n

∆− 1 + 1
∆

⌉
≥ n− n

∆− 1 + 1
∆

This leads to the following proposition:

Proposition 5.7 For any value of ∆ ≥ 3, there exist arbitrarily large values of n,
such that there exists a triangle-free graph on n vertices and maximum degree ∆

admitting no identifying code of a smaller size than n − n

∆− 1 + 1
∆

.

Note that this bound is actually weaker than the bound of Proposition 5.2 for
arbitrary graphs of maximum degree ∆. So, an upper bound for the size of an
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identifying code in triangle-free graphs depending on parameters n and ∆ cannot
be smaller than the bound of Proposition 5.7.

Moreover, in the complete bipartite graph Ka,b on a + b vertices (a ≥ 2, b ≥ 3)
(which has a maximum degree of max(a, b)), the smallest identifying code has a
size of n − 2. Indeed, for every pair of vertices of the same bipartition, since they
have the same neighbours, it is only possible for one of them to be out of the code.
So, only one vertex of each bipartition can be out of the code. In addition, since
n

∆
=

a+ b

max(a, b)
≤ 2 max(a, b)

max(a, b)
= 2, M1(Ka,b) ≤ n− 2 ≤ n− n

∆
. Let us hold that in

the following Observation:

Observation 5.8 Let a ≥ 2, b ≥ 3 and Ka,b be the complete bipartite graph with
bipartitions of sizes a and b and maximum degree ∆ = max(a, b). Then M1(Ka,b) ≤
n− n

∆
.

Notice that the inequality of the previous observation turns into an equality exactly
when a = b and Ka,b is the complete bipartite graph K∆,∆ on n = 2∆ vertices. This
bound is higher than the one of Proposition 5.7, but given a value of ∆, it is only
valid for one particular graph, namely the complete bipartite graph K∆,∆. It leads
to the following proposition:

Proposition 5.9 For any value of ∆ ≥ 3, there exists a triangle-free graph G on
n vertices having maximum degree ∆, which admits no identifying code with a size

smaller than n − n

∆
.

We now approach this bound with the following theorem:

Theorem 5.10 ([FKKR09]) Let G = (V,E) be a connected, twin-free graph of
maximum degree ∆ (∆ ≥ 3), having n vertices and no triangles. Then there exists

an identifying code C of G such that |C| ≤ n − n

3∆ + 3
.

Proof In this proof, we �rst construct an independent set S of G having the prop-
erty that two vertices of S do not share the same neighbourhood, using the greedy
Algorithm 5.3. S is the union of two sets S1 and S2, with the property that for
each vertex s of S1 having degree at least 2, there exists no other vertex t such that
N(s) = N(t). We then modify S so that the set V \S becomes a valid identifying
code of G. There are two cases to handle. The �rst case concerns vertices of degree
one: we locally modify the code without changing its cardinality. For the other case,
we construct a subgraph of G containing all vertices involved in that case. In this
subgraph, we provide three di�erent manners of constructing a set which, if added
to the code of the rest of the graph, give a valid identifying code of G. We are then
able to bound the cardinality of these sets.
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Algorithm 5.3 Greedy construction of an independent set S in which no vertices
share the same neighbourhood

Require: a connected graph G = (V,E)
1: X ← V
2: S1 ← ∅
3: S2 ← ∅
4: while there exists a vertex s ∈ X with degG(s) = 1 do
5: S1 ← S ∪ {s}
6: X ← X\B2(s)
7: end while
8: while X 6= ∅ do
9: arbitrarily choose s ∈ X

10: if there exists a vertex t having the same set of neighbours as s then
11: S2 ← S2 ∪ {s}
12: X ← X\

(
B1(s) ∪ {t ∈ V

∣∣ N(s) = N(t)}
)

13: else
14: S1 ← S1 ∪ {s}
15: X ← X\B1(s)
16: end if
17: end while
18: return S1 and S2

The constructed set S = S1 ∪ S2 is an independent set having the property that no
two elements of S have the same neighbourhood. Indeed, when a vertex is chosen
to be in S, all vertices having the same neighbourhood are removed from the set of
candidates (line 16 of the algorithm). Moreover, if a vertex of degree 1 is in S, then
all vertices at distance two or less are not.

Assume |S| = α · |S1|+ (1−α) · |S2| for some α ∈ [0, 1]. We now make the following
statements on the sizes of S1 and S2:

|S1| ≥
α · n

∆ + 1
and |S2| ≥

(1− α) · n
2∆− 1

.

Indeed, only vertices of degree l and vertices for which there is no other vertex
sharing the same set of neighbours are put into S1. Let s be a chosen vertex of
degree 1 and let s′ be its unique neighbour. When s is put into S1, all vertices of
B2(s) are removed from the set X. Since B2(s) = B1(s′), then at most B1 = ∆ + 1
vertices are removed from X when adding s to S, where B1 is the maximum size of
a ball of radius 1 in G (line 6 of the algorithm). Let s be a vertex of degree at least
2 chosen to be in S1. When s is put into S1, at most B1(s) vertices are put outside

of X. Thus, the set S2 has a size of at least
α · n

∆ + 1
.
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Now let s be a vertex being added to S2. When s is added to S2, at most B1 + N1

vertices are removed from X, where B1 = ∆ + 1 is the maximum size of a ball of
radius 1 in G, and N1 is the maximum number of vertices in V having the same set
of neighbours as s. We assume N1 ≤ ∆ − 2 since if there are ∆ − 1 such vertices,
since G is connected, the graph would consist only of those vertices, and G would
be the complete bipartite graph K∆,d where d ≤ ∆ is the number of neighbours of
s. In that case, we know that the graph admits an identifying code with a size of at

most n− n

∆
(Observation 5.8), so we would be done. Thus, the set S2 has a size of

at least
(1− α) · n

2∆− 1
.

We now modify S in order to guarantee that V \S becomes an identifying code.

We �rst check the separation condition. It has to be veri�ed that for every u, v ∈ V ,
at least one vertex of N [u]⊕N [v] belongs to the code.

Let u, v ∈ V be two arbitrary vertices. We now distinguish di�erent cases depending
on the set N [u]⊕N [v]. These cases are illustrated in Figure 5.9.

Note that since G has no triangles, the con�gurations listed in Figure 5.10 cannot
appear in G.

If u and v are in con�guration of Figure 5.9(a), by construction of S (removal of the
vertices having the same neighbours at line 16 of Algorithm 5.3), either u or v are
not in S and thus u and v are separated.

For the con�gurations of Figures 5.9(b), 5.9(c), 5.9(d), 5.9(e) and 5.9(f), since S is
an independent set, at least one vertex of N [u]⊕N [v] is not in S, separating u and
v.

Now, suppose u and v are in one of the con�gurations of Figures 5.9(h) or 5.9(k):
u and v are connected, and u is of degree 1. Suppose all neighbours of v other
than u belong to S (u and v are not separated). By construction of S, we know
that u /∈ S, else all neighbours of v would be in the code. For the same reason, no
other neighbour of v has degree 1. So both u and v are in the code and all other
neighbours of v have a degree greater than 2.
Let us locally modify S without changing its cardinality. Let m be a neighbour of
v which is in S. Remove m from S and put u into S instead: u will be identi�ed by
v; v by itself and m; and since S is an independent set, all other neighbours of m
are in the code and identify m, and we are done.

Now, suppose u and v are in one of the con�gurations of Figures 5.9(g), 5.9(i) or
5.9(j): u and v are connected, and both u and v have at least one other neighbour.
Suppose also that all the vertices of N [u]⊕N [v] are in S: u and v are not separated.
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Figure 5.9: Triangle-free con�gurations for symmetric di�erences between the closed
neighbourhoods of two vertices u and v. The symmetric di�erences are circled in
red.
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Figure 5.10: Con�gurations including triangles for symmetric di�erences between
the closed neighbourhoods of two vertices u and v. The symmetric di�erences are
circled in red.
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Consider the set R of all the vertices belonging to a pair {u, v} such that u and
v are in such a con�guration, and are not separated. Let us denote as L, the set

of all neighbours of elements of R which are not in R: L =

( ⋃
v∈R

N(v)

)
\R. Note

that by de�nition, L ⊆ S, so no two vertices of L are connected in G. In addition,
each vertex of R has exactly one neighbour in R, and at least one in L. Since G is
triangle-free, no two connected vertices of R share neighbours.

Note that L ⊆ S1. Indeed, suppose not. Then, there exists a vertex l ∈ L such
that l ∈ S2. Then there exists another vertex x such that N(l) = N(x). Let r be
a neighbour of l being in R. By construction of S1 and S2, x is in the code, and
since N(l) = N(x), r and x are connected. Therefore x is in R since we assumed
that vertices of R have one unique neighbour in the code, this neighbour being in R.
Then, by de�nition of R, x has a neighbour l′ in L, l′ and l being distinct (otherwise
r, x and l form a triangle). But since N(l) = N(x), l is connected to l′ which is a
contradiction since L is an independent set. So l ⊆ L.

We will now show three di�erent methods for replacing the set L in the induced
subgraph G[L ∪ R] by another set L′, not too small with respect to L, such that if
L′ is taken out of the code instead of L, all vertices are still separated in G. This
will allow us to take S ′ = (S\L) ∪ L′ out of the code, and V \S ′ as an identifying
code. We will then show that in every case, the maximum cardinality of (L∪R)\L′
is bounded with respect to |R|, which is the original set supposed to be in the code.

First, we divide the sets L and R into the following subsets. Let R1 ⊆ R be such
that r ∈ R1 if both r and its unique neighbour in R have only one neighbour each
in L. Let L1 ⊆ L be the set of all neighbours of vertices of R1. Let R2 = R\R1 and
L2 = L\L1. See Figure 5.11 for an illustration.

We now show the following Lemma:

Lemma 5.11

1. G[L1 ∪R1] admits an identifying code of size at most |L1|+
|R1|

2
.

2. G[L1 ∪ R1] admits an identifying code of size at most |L1| +
|R1|

2
+
|L1|

2
in

which the whole set L1 belongs to the code.

Proof of Lemma 5.11 We �rst construct a code C1 of G[L1 ∪ R1] by putting L1

into C1, and aritrarily picking exactly one vertex of each pair of connected vertices

of R1 into it: |C1| = |L1|+
|R1|

2
. It is clear that C1 is a dominating set for G[L1∪R1].
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L1

L2

R1

R2

Figure 5.11: Illustration of the sets L1, L2, R1, and R2

However, there might be some vertices which are not separated. (See Figure 5.12
for an example; code vertices are gray).

l1

l2

r1

r2

r3

r4

..
.

Figure 5.12: Vertices l1 and r1 are not separated

Let us construct the directed graph
−→
G1 = (L1, A1) where

A1 =
{−→
l1l2

∣∣ l1, l2 ∈ L1,∃r1, r2 ∈ R1, r1 /∈ C1, r2 ∈ C1, and l1r1r2l2 is a path in

G[L1 ∪R1]
}
. An illustration is given in Figure 5.13.

So, the situation without separation in G[L1 ∪ R1] is equivalent to having a vertex

in
−→
G1 with an in-degree of 1. We will now modify the orientation of

−→
G1 in order to

avoid this, using Algorithm 5.4. This algorithm constructs an arbitrary spanning

forest of
−→
G1. It goes over all vertices of each tree, level by level from the leaves up to
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l0

l1

l2

r2

r1

r3

r4 l0

l1

l2

Figure 5.13: Construction of the graph
−→
G1

the root. It modi�es the orientation of the arcs of the tree so that the in-degree of
all vertices (except eventually for the root) is even (and therefore di�erent from 1).
If the in-degree of a vertex v is odd, the arc pointing from v to its parent is reversed,
making the in-degree of v even, and adding 1 to the in-degree of the parent. Since
the algorithm considers the vertices level by level from the leaves up to the root, at
the end of the process only the root can have an odd in-degree.

Now, we apply the reverse tranformation from
−→
G1 to G[L1 ∪ R1] and construct the

code C2 of G[L1 ∪ R1] based on the orientations of the arcs of
−→
G1. Note that the

size of C2 is still the size of C1.
It remains to handle the case of the roots of the spanning trees, which might be in

the situation depicted in Figure 5.12 if their in-degree is equal to one in
−→
G1, after

the execution of the algorithm.
If we want the set L1 to be in the code, it is su�cient to add one extra vertex per
each such vertex into C2 (see Figure 5.14; code vertices are gray and vertex l1 is the
root of the spanning tree).

l1
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r4

..
.
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r3

r4

..
.

Figure 5.14: Local modi�cation of the code by adding one vertex

Since there is at most one such vertex per spanning tree and one spanning tree

per connected component, we get |C2| ≤ |L1| +
|R1|

2
+ cc(G[L1 ∪ R1]). Note that

cc(G[L1∪R1]) ≤ |L1|
2

since every connected component contains at least two vertices
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Algorithm 5.4 Modi�cation of the orientation of the arcs of
−→
G1

Require: the graph
−→
G1

1: for all connected components
−→
H1 of

−→
G1 do

2: construct a spanning tree
−→
T1 of

−→
H1 (for example using a classic linear greedy

algorithm, or Algorithm 5.5 used in section 5.2.3 to construct a DFS spanning
tree)

3: let r be the root of
−→
T1, and h its height

4: let
−→
H ′1 = (V (

−→
H1), A(

−→
H1)\A(

−→
T1)) be the graph

−→
H1 without the edges of the

spanning tree
−→
T1

5: for all verticess v of
−→
T1 do

6: label(v)← indeg−→
H′

1

(v)

7: end for
8: for all i from h to 1 do
9: for all vertices v of level i of

−→
T1 do

10: let −→e ∈ A(
−→
T1) be the edge between v and its parent vertex p

11: if label(v) is even then
12: orient e from v to p
13: label(p)← label(p) + 1
14: else
15: orient e from p to v
16: label(v)← label(v) + 1
17: end if
18: end for
19: end for
20: //at the end of the process, the indegree of each vertex is precisely equal to its

label
21: end for

of L1. Hence, we get |C2| ≤ |L1|+
|R1|

2
+
|L1|

2
.

If we do not need that L1 is in the code, we can just switch one vertex in every
connected component of G[L1 ∪ R1] as shown in Figure 5.15 (the gray vertices are
in the code, and vertex l1 is the root of the spanning tree), leading to a code of size

|C2| ≤ |L1|+
|R1|

2
.
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Figure 5.15: Local modi�cation of the code by switching two vertices

So, in any case we get a code in which all vertices are dominated (a vertex is either
dominated by itself or by its neighbour in R1).
Let us show that all vertices are separated as well.
Let u, v be two vertices of L1 ∪R1.

• if u, v ∈ L1, if one of them is in the code, they are separated by this vertex. If
not (due to a shifting like in Figure 5.15), they both have a neighbour in R1

which is in the code, and are thus separated by this neighbour.

• if u, v ∈ R1, for each of these two vertices, either itself or its neighbour in R
is in the code. If u and v are not connected, they are separated by these two
vertices. If they are connected, at least one of them has a neighbour in L1

which is in the code (at most one vertex of L1 is not in the code per connected
component) and they are separated by it since they do not share neighbours
(G is triangle-free).

• if u ∈ L1 and v ∈ R1, if v is not in the code, then its neighbour in R1 is, and
u and v are separated by it. If v is in the code, then either u has another
neighbour in R1 which is in the code due to the application of Algorithm 5.4,
or the neighbour of v is in the code due to the modi�cations done after the
application of the algorithm. Thus u and v are separated.

(End of the Proof of Lemma 5.11) �

We now provide three distinct ways of replacing the set R by another set, such that
all vertices in G[L∪R] are separated. Those sets will ful�ll the following properties:

Property (∗)

• for every pair of connected vertices of R, at least one is in the code.

• for every pair of connected vertices of R, at least one which is in the code has
at least one neighbour in L which is in the code as well.
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Note that these two properties are clearly ful�lled by the solutions for G[L1 ∪ R1]
obtained in the proof of Lemma 5.11.

Let us now describe the three codes:

1. Construct a code C by putting L2 into it, a code for G[L1 ∪ R1] having the
whole set L1 in it (computed using the proof of Lemma 5.11), and half of the
set R2 such that for every pair of connected vertices of R2, exactly one is in the
code, and it has at least two neighbours in L (such vertices exist by de�nition
of R2).
This set has a size less than

|L2|+
|R2|

2
+ |L1|+

|R1|
2

+
|L1|

2
= |L2|+

3|L1|
2

+
|R1|

2
+
|R2|

2
.

Let us show that this is an identifying code.
First, note that since the whole set L is in C, it is clearly a dominating set.
Let us now check it for separation: let u, v ∈ G[L ∪R].

• if both u and v ∈ L, they are separated by u and v since L is an inde-
pendent set and both are in the code.

• if u, v ∈ R and they are not connected, since every vertex of R is either
in the code or has its neighbour in the code, u and v are separated. Else,
they are separated by their respective neighbours in L, which they do not
share since G is triangle-free, and which are both in the code.

• if u ∈ L and v ∈ R, and they are not connected, they are separated by
u, which is in the code. Else, if v is not in the code, then its neighbour
in R is, and u and v are separated by it. Else, if v ∈ R2, then v has at
least another neighbour in L than u, and u and v are separated by it. If
v ∈ R1, then we already know that u and v are separated (Lemma 5.11).

2. Construct C as follows: take L2 and a solution for G[L1 ∪R1] provided by the
proof of Lemma 5.11 into C. Take also a subset of the set R2 of cardinality
|R2|

2
such that for every pair of connected vertices of R2, exactly one is in the

code, and it has at least two neighbours in L. Finally, if there exist some code
vertices of R2 such that less than two of their neighbours are in C (this can
happen if these neighbours are in L1), then put one of these neighbours into

C. Note that there can be at most
|R2|

2
such vertices.

So, the size of C is at most |L2|+2
|R2|

2
+ |L1|+

|R1|
2

= |L2|+ |R2|+ |L1|+
|R1|

2
.

Let us show that this is an identifying code.
Note that C is a dominating set: all vertices of L2 are dominated by themselves,
all vertices of R are dominated either by themselves or by their neighbour in
R, and all vertices of L1 are dominated according to Lemma 5.11.
Let us now check C for separation: let u, v ∈ G[L ∪R].
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• if u, v ∈ L1 ∪R1, they are separated according to Lemma 5.11.

• if u ∈ R1 and v ∈ R2, then u and v are not connected; thus they are
separated either by themselves or by their neighbours in R.

• if u ∈ L2 and v is not connected to u, then they are separated by u, which
is in the code. In particular, if v ∈ L1 ∪L2 ∪R1, they are separated since
they cannot be connected.

• if u ∈ L2 and v ∈ R2 and u and v are connected, if v /∈ C they are
separated by the neighbour of v in R, which must be in the code. If not,
then v has at least one other neighbour in L which is in the code (we
made this clear in the last step of the construction of C), so u and v are
separated by it.

• if u ∈ L1 and v ∈ R2, if v /∈ C, then its neighbour in R2 ∈ C, thus u and
v are separated by it. Else, we know that v has at least one neighbour
in L in the code. If there is one such neighbour other than u, then u
and v are separated by this neighbour. If u is the only one, this means
it has been put into the code in the last step of the construction of C.
Thus, it was not in the solution for G[L1∪R1], which means that it has a
neighbour in R1 in the code. So u and v are separated by this neighbour.

• if u, v ∈ R2 and are not connected, then they are separated by themselves
or their neighbours in R2. If they are connected, then the one which is in
the code has at least one neighbour in L in the code, so they are separated
by this neighbour.

3. Construct C as follows: take R2 and a solution for G[L1∪R1] provided by the
proof of Lemma 5.11 into C. Put as well into C, for every pair of connected
vertices of R2, one neighbour in L of either one of the vertices, into C.

So, the size of C is at most |R2|+
|R2|

2
+ |L1|+

|R1|
2

= 3
|R2|

2
+ |L1|+

|R1|
2

.

Let us show that C is an identifying code.
C is a dominating set: all vertices of L2 are dominated by their neighbours in
R2, all vertices of R are dominated either by themselves or by their neighbour
in R, and all vertices of L1 are dominated according to Lemma 5.11.
Let us now check C for separation: let u, v ∈ G[L ∪R].

• if u, v ∈ L1 ∪R1, they are separated according to Lemma 5.11.

• if u, v ∈ R2 then u and v are separated by the neighbour of one of them
which has been put into C in the last step of the construction.

• if u ∈ R2 and v /∈ R2, then u and v are separated by the neighbour of u
which is in R2.

• if u ∈ L1 and v ∈ L2, then according to the solution of Lemma 5.11,
either u or a neighbour of u in R1 is in C, so since L is an independent
set, u and v are separated.
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• if u ∈ L2 and v ∈ R1, then either v or its neighbour in R1 is in the code.
Since no vertex of L2 is connected to one of R1, u and v are separated.

• if u, v ∈ L2, and they have di�erent neighbours in R2, then they are
separated by them. Else, note that since by construction of S with Al-
gorithm 5.3, no vertices of S, and therefore of L, share the same neigh-
bourhood. So, at least one of u, v has a neighbour in V \(L ∪ R) which
is not connected to the other vertex. Since S is an independent set and
u, v ∈ L ⊆ S, this vertex is in the code. So u and v are separated by it.

Let us determine the maximum number of vertices which are taken out in any case
when choosing one of these three sets. The number of vertices which are not in the
code are the following (using the fact that |L1| ≤ |R1|):

• In construction 1:
|R1|

2
+
|R2|

2
− |L1|

2
≥ |R1|

2
+
|R2|

2
− |R1|

2
=
|R2|

2

• In construction 2:
|R1|

2
≥ |L1|

2

• In construction 3: |L2|+
|R1|

2
− |R2|

2
≥ |L2|+

|L1|
2
− |R2|

2

Let m be the maximum of these three expressions:

m =
1

2
·max

{
|R2|, |L1|, 2|L2|+ |L1| − |R2|

}
m =

|L|
2
·max

{ |R2|
|L|

,
|L1|
|L|

,
2|L2|+ |L1| − |R2|
|L1|+ |L2|

}
m ≥ |L|

2
·max

{max
{
|L1|, |R2|

}
|L|

,
2|L1|+ 2|L2| − |L1| − |R2|

|L1|+ |L2|

}
m ≥ |L|

2
·max

{max
{
|L1|, |R2|

}
|L|

, 2− 2 ·
max

{
|L1|, |R2|

}
|L|

}
Let b =

max
{
|L1|, |R2|

}
|L|

. Then:

m ≥ |L|
2
·max

{
b, 2− 2b

}
m ≥ |L|

2
·min

b≥0

{
max

{
b, 2− 2b

}}
≥ |L|

2
· 2

3
=
|L|
3

Notice that this bound is achieved in the case where |L1| = |R1| = |R2| and |L1| =
2|L2|.

Let us now perform a small modi�cation on the previously de�ned codes. Everytime
there is a vertex v of L which is in the code, for which all neighbours in R are not
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in the code, we take v out of the code and put one arbitrary neighbour r ∈ R of v
into the code.
Following Property (∗), v will still be separated from r by the neighbour r′ of r,
from r′ by one of the neighbours of r′ in L, and from all other vertices by r. All
neighbours of v are still dominated by their neighbours in R. Finally, v is not needed
for separation since all neighbours of v are separated from their own neighbours, who
are all in the code, by some vertex in L.
So, we get a code in which no vertex of L is in the code without having a neighbour
in R in the code as well. Note that this implies that every vertex v of L ∪R has at
least one vertex of R being in the code and belonging to N [v].

Now, it remains to check wether those solutions merged with the solution of
G[V \(L ∪R)] separate all pairs of vertices. Let u, v ∈ V .

• if u, v ∈ L ∪R, they are separated following the previous discussion.

• if u, v ∈ V \(L ∪R), they are separated following our �rst observations.

• suppose u ∈ L ∪ R and v ∈ V \(L ∪ R). Since we made it clear that u has a
vertex r of R being in the code and in N [u], since v is not connected to any
vertex of R, u and v are separated by r.

It remains to show that the chosen code is a dominating set for G.
Following the previous discussion, is clear that in G[L∪R], in any case, the obtained
set is a dominating set. In the rest of G, observe that since S has been constructed
as an independent set and G is connected, every vertex has a neighbour in the code;
thus, it is a dominating set.

So, we can replace the set L by a set L′ which size is at least a third of the size
of L. Let S ′ = (S\L) ∪ L′. By the preceding discussion, we have that V \S ′ is an
identifying code of G.

Note that S = S1∪S2, |S| = α · |S1|+ (1−α) · |S2| for some α ∈ [0, 1], |S1| ≥
α · n

∆ + 1

and |S2| ≥
(1− α) · n

2∆− 1
. Moreover, L ⊆ S1.

So, |S ′| ≥ |S2|+
|S1|
3
≥ (1− α) · n

2∆− 1
+

α · n
3∆ + 3

≥ n

3∆ + 3
.

Hence, C = V \S ′ is an identifying code of size at most n− n

3∆ + 3
. �
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5.2.2 Regular graphs

We now look at the particular case of regular graphs.

First, consider the example of the following graph, denoted as CCKk,l, which con-
sists of l cycle-connected almost-complete bipartite graphs of 2k vertices de�ned as
follows:
V (CCKk,l) = {0, ..., l − 1} × {0, 1} × {0, ..., k − 1}
E(CCKk,l) =

{
(x, 0, y), (x, 1, y′)

∣∣ x ∈ {0, ..., l − 1}, y, y′ ∈ {0, ..., k − 1}, {y, y′} 6=

{0, 0}
}
∪
{

(x, 0, 0), ((x+ 1) mod l, 1, 0)
∣∣ x ∈ {0, ..., l − 1}

}
Note that CCKk,l has 2 · k · l vertices and is k-regular. For an example, see Fig-
ure 5.16.

Figure 5.16: The graph CCK3,4

It is easy to see that the graph CCKk,l has no identifying code smaller than l(2k −

3) = 2kl − 3
2kl

2k
= n− 3

n

2k
.

Indeed, consider all the vertices (x, i, y) where x ∈ {0, ..., l − 1} and i ∈ {0, 1} are
�xed, and y ∈ {1, ..., k − 1}: this set of vertices is one bipartition of one of the
complete bipartite subgraphs of CCKk,l, minus the vertex which is connected to
the next bipartite subgraph. Then, given two vertices of this set, one can see that
they both have exactly the same set of neighbours. Thus, one can not remove two
such vertices, otherwise those two would not be separated. So, for every complete
bipartite subgraph of the graph (without considering the vertices which connect the
complete bipartite subgraphs to each other), one can only leave two vertices out of
the code.
Moreover, if we do remove two such vertices per bipartite subgraph, then at least
one vertex (x, i, 0) is needed per bipartite subgraph in order to separate it from all
other vertices (x, i, y), y 6= 0.
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This leads to the following proposition:

Proposition 5.12 For any value of ∆ ≥ 3, there exist arbitrarily large values of
n, such that there exists a triangle-free, ∆-regular graph on n vertices admitting no

identifying code of a smaller size than n − n
2∆
3

.

So, an upper bound for the size of an identifying code in a regular graph depending
on its maximum degree, cannot be smaller than the bound of Proposition 5.12. Note
that the bound of this proposition is weaker than the one of Proposition 5.7, but
that bound is not valid for regular graphs, since the complete tree is not regular.
The better bound of Proposition 5.9 still holds, since the complete bipartite graph
is regular; however, this proposition is weaker in the sense that there exists only one
such graph for a given value of ∆.

We will now try to approach this bound. Note that the result of Theorem 5.10 is
still valid in the case of ∆-regular graphs. However, it can be improved using the
same proof, together with a small remark.

Theorem 5.13 ([FKKR09]) Let G = (V,E) be a ∆-regular (∆ ≥ 3), connected,
twin-free graph on n vertices having no triangles. Then there exists an identifying

code C of G such that |C| ≤ n − n

2∆ + 2
.

Proof Consider the proof of Theorem 5.10, and proceed exactly the same way,
constructing a special independent set S = S1 ∪ S2. When constructing the sets R
and L, since G is ∆-regular with ∆ ≥ 3, it is easy to see that the sets R1 and L1 do
not exist, since all vertices of R1 have degree two.
So, as possible sets in G[L∪R] to be put into the identifying code, the solutions (1)

of size |L2|+
|R2|

2
= |L|+ |R|

2
and (3) of size

3|R2|
2

=
3|R|

2
can be used. (Solution

(2) does not make any sense since it has a size of |L2|+ |R2| = |L|+ |R|).

So, we can always take out at least max
{ |R|

2
, |L| − |R|

2

}
vertices from the code,

within G[L ∪ R]. This expression is at its minimum value when |L| = |R|; then it

has a value of
|L|
2
.

So we can take out at least
|L|
2

vertices instead of |L|.
The rest of the proof is exactly the same; in the worst case, we end with an identifying

code of cardinality at most n− 1

2
· n

∆ + 1
≤ n− n

2∆ + 2
. �
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5.2.3 Graphs of larger girth

It is possible to improve the previous results for a smaller class of graphs. The
previously considered triangle-free graphs are the graphs of girth at least 4; in this
section, we will consider graphs of girth at least 5.

Note that the bound of Proposition 5.7 is still valid for this class of graphs, since
trees contain no cycles, and in particular no cycles of length 4 or less.

Note that in graphs of girth at least 5, there do not exist two vertices u, v of V and
of degree strictly greater than 1, for which N(u) = N(v). Therefore, the proof of
Theorem 5.10 could be simpli�ed, since there would then be no need to compute
the set S2. However, this does not lead to an improved result.

Let us consider graphs of girth 5 and of minimum degree δ ≥ 2 (in particular,
trees are not in this class of graphs since all leaves of a tree have degree 1). Then,
we are able to show the following upper bound for the minimum cardinality of an
identifying code of such a graph. Note that, as opposed to all previous results, this
bound does not depend on the maximum degree of the graph.

Theorem 5.14 Let G = (V,E) be a connected, twin-free graph with minimum de-
gree δ ≥ 2 , having n vertices and girth g ≥ 5. Then there exists an identifying code

C of G such that |C| ≤ 7n

8
+ 1 = n− n− 8

8
.

Proof Let us �rst construct a Depth-First-Search tree (DFS-tree) T of G, for ex-
ample using the classic recursive Algorithm 5.5.

Algorithm 5.5 Recursive construction of a DFS-tree of a graph

Require: a connected graph G = (V,E), a vertex v of V and a tree T = (VT , ET ).
The algorithm is initially called with an empty tree and an arbitrary vertex.

1: add v to VT

2: for all neighbours w of v do
3: if w is not in VT then
4: add w to VT

5: add the edge vw to ET

6: recursively call the algorithm on G, w and T
7: end if
8: end for
9: return T

Let us de�ne the levels of T as integers such that the root of T is at level 0, and the
children of a vertex at level i are at level i + 1. Let us denote the level of a vertex
v by level(v).
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A DFS-tree T has the well-known property that for any edge uv of E(G), either uv
belongs to T , u is an ancestor of v in T , or v is an ancestor of u in T .

Moreover, since G has girth at least 5, the previous property directly implies that a
vertex v such that level(v) = i, is not connected to any vertices of levels i − 3, i −
2, i, i+ 2 or i+ 3. In addition, it is connected to exactly one vertex of level i− 1, its
parent (except for the root, which has no parent) and all vertices except leaves are
connected to exactly one vertex of level i+ 1. In particular, note that two leaves of
T cannot be connected since no leaf can be an ancestor of another leaf.

Also note that since G has girth at least 5 and minimum degree 2, the level of a leaf
v of T is at least 4: indeed, v has necessarily a neighbour other than its parent but
can only be connected to ancestors at levels at most level(v)− 4.

Let us now partition the vertices of G into four sets V0, V1, V2 and V3 de�ned as

follows: for i ∈ {0, 1, 2, 3}, Vi =
{
v ∈ V (G) | level(v) = i mod 4 in T

}
.

Consider one of these sets, Vm, m ∈ {0, 1, 2, 3}, such that |Vm| ≥
n

4
. Such a set

necessarily exists; otherwise there would be fewer than n vertices in G. Let us take

C = V \Vm as a code. Obviously, |C| ≤ 3n

4
. An illustration is given in Figure 5.17

with m = 1. Black vertices are in the code.

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Figure 5.17: Example of the constructed code in a spanning tree

It is easy to see that C is a dominating set. Indeed, every vertex v has a neighbour
w in an adjacent level. Since no two adjacents levels are both out of C, at least one
of the levels level(v) and level(w) is in C, and v is dominated.

However, there may remain some unseparated vertices. Let u and v be to such ver-
tices. Without loss of generality, suppose level(u) ≤ level(v) and let us distinguish
the following case:
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1. exactly one of u and v is in the code. Since u and v cannot share neighbours
(G has girth at least 5), all neighbours of u and v are not in the code. So one
of u and v must be the root, and the other one must be a child of the root
and a leaf at the same time (otherwise it would have children in the code).
But this is not possible since we observed previously that there are no leaves
at level 1 in T .

2. both u and v are not in the code. Then u and v are not connected. Indeed,
otherwise they would be separated by their neighbours in C since they would
not share any neighbour. Moreover, u and v cannot be dominated by two
distinct vertices cu and cv of C: if yes, since u and v are not separated, u
would be connected to cv and v to cu, and there would be a cycle of length 4
u − cu − v − cv − u in G. So, u and v are two leaves having the same parent
p. Since G has minimum degree 2, both u and v are connected to at least
one of their ancestors in T . But notice that they cannot be connected to the
same ancestor a; indeed, since u and v are at distance 2, G would contain the
cycle of length 4 u − p − v − a − u. Hence, all neighbours of u and v other
than p are distinct ancestors which are not in the code (otherwise u and v
would be separated by those ancestors). Let us just arbitrarily add one of
these ancestors to C, and thus u and v become separated. If there are Nl such
unseparated leaves sharing the same parant, Nl ≥ 2, we need to add Nl − 1
ancestors into the code. But since there are in total at least 2 ·Nl vertices out
of the code, in the worst case we just divide the number of non-code vertices
by two. See Figure 5.18 for an illustration.

u v

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4
u v

Figure 5.18: Two leaves u and v are unseparated by the code

3. both u and v are in C. Then u and v are connected (otherwise they would be
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separated by themselves); since G has girth at least 5, u and v do not share
any neighbours. So, all neighbours of u and v are not in C. This can only
happen in the follwing subcases:

• vertex u is the root of T ; v is its only child in T , and Vm = V2. Since this
situation only happens once, we simply add one extra vertex w to the
code, arbitrarily chosen from the neighbours of v. This does not a�ect
the separation of other vertices. See Figure 5.19 for an illustration.

u

v

level 0

level 1

level 2

level 3

u

v

Figure 5.19: The root u and its unique child v are unseparated by the code

• vertex u is the root of T ; all its children are not in C (therefore Vm = V1),
and v is a leaf such that level(v) = m+ 1 mod 4: its parent is out of the
code. This case can only happen once since the root must be involved, and
if the root is connected toanother such leaf, u and v would be separatedby
it. Let us put an arbitrary child w of the root into C to separate u and
v. This does not harm other vertices' separation or domination. See
Figure 5.20 for an illustration. Note that this case and the previous case
cannot happen at the same time, so at most one vertex will be added to
the code. Also note that these two cases must involve the root since two
leaves of T cannot be connected.

...

u

v

level 0

level 1

level 2

level i− 1 = 1 mod 4

level i = 2 mod 4

...

u

v

Figure 5.20: The root u and a leaf v are unseparated

• vertex v is a leaf of T , u is its parent and level(u) = m+1 mod 4. Vertex
u is not the root (otherwise, see the previous subcases). So, u has a
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parent w which is at level m and therefore not in C. Let us simply take
w into C, and take v out of C, without changing the cardinality of C.
Then u and v are separated, all other vertices as well, and domination is
maintained. See Figure 5.21 for an illustration.

u

v

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

level m+ 3 mod 4

level m mod 4

level m+ 1 mod 4

level m+ 2 mod 4

u

v

Figure 5.21: A leaf v and its parent u are not separated

So, because of case 2, we eventually end with a code of size at most
3n

4
+
n

8
=

7n

8
.

Because of case 3, we eventually need to add one extra vertex to C.

So the size of the constructed code is at most
7n

8
+ 1. �

Since any ∆-reguler graph has minimum degree ∆, the following corollary of Theo-
rem 5.14 follows immediately:

Corollary 5.15 Let G be a twin-free, ∆-regular graph (∆ ≥ 2) on n vertices. Then

M1(G) ≤ 7n

8
+ 1 = n− n− 8

8
.
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5.3 Subcubic and cubic graphs

We now discuss the question of an upper bound of identifying codes in subcubic
graphs.

First, notice that there is no known subcubic graph for which a minimum identifying

code has a size of more than n− n

∆
=

2n

3
.

For an example of such a graph, see Figure 5.1 in section 5.1.

Let us apply the results of Theorems 5.3, 5.6, 5.10 and 5.13 to subcubic graphs:

Corollary 5.16 Let G be a twin-free subcubic graph on n vertices. Then:

• M1(G) ≤ 101n

102
(Theorem 5.3).

• If G is triangle-free, M1(G) ≤ 11n

12
(Theorem 5.10).

• If G is cubic, M1(G) ≤ 8n

9
(Theorem 5.6).

• If G is cubic and triangle-free, M1(G) ≤ 7n

8
(Theorem 5.13).

However, we can improve these bounds in some subclasses of the class of subcubic
graphs.

Theorem 5.17 Let G be a Hamiltonian, twin-free, subcubic graph n vertices. G

admits an identifying code C such that |C| ≤
⌊

3n

4

⌋
.

Proof Let H =
{
v0, ..., vn−1

}
be an Hamiltonian cycle of G.

First, notice that there cannot be a vertex vi such that vi is connected to vi+2, and
vi−1 is connected to vi+1, since in this case, vi and vi+1 would be twins (Figure 5.22).

vi−1 vi vi+1 vi+2

Figure 5.22: Forbidden situation in G: vi and vi+1 are twins

Now, let us take as a code, the set C =
{
vi | i 6= 0 mod 4

}⋃
{vn−3, vn−2, vn−1}. We
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have |C| =
⌈

3n

4

⌉
.

Obviously, C is a dominating set, but there may be unseparated vertices. We will
modify C locally in order to achieve separation.
Let vi, vj (i < j) be two vertices of G and suppose that they are not separated:
N [vi]⊕N [vj] ⊆ V \C.

• vi and vj ∈ V \C. Then, since both of them have at least two neighbours in
C, so in the worst case they are separated by two of them.

• vi and vj ∈ C. Then vi and vj are connected (else they would be separated by
themselves).

� Suppose vj = vi+1. If vi and vj are of degree two, by construction of C at
least one of them has a neighbour in C which separates them. So, either
vi is connected to vj+1 or vj is connected to vi−1.

� Then, vj = vi+2 because if not, their respective two neigbours on the
Hamiltonian cycle would all not be in the code, which by construction of
C is not possible.

• vi ∈ C and vj /∈ C or vi /∈ C and vj ∈ C. Then they are connected (otherwie
they would be separated by vi), and there exist at least two code vertices which
dominate each of them. Since the con�guration of Figure 5.22 is forbidden,
they are separated by at least one code vertex.

So we see that there is one problematic situation which can appear several times in
the graph, where x, y, z are in C, a, b are not, xz ∈ E and (vi, vj) ∈

{
(x, y), (x, z), (y, z)

}
.

See Figure 5.23 for an illustration (code vertices are gray).

x y za b

Figure 5.23: Situtation in which C is not separating

We claim that in this case, it is always possible to modify locally the code to make
it identifying without changing its cardinality. Let us present those modi�cations.
First, notice that vertex y can always be put out of C safely.

1. suppose we deal with the con�guration of Figure 5.23.

(a) there is a connection between a and its left neighbour at distance two.
Then, we just put a and b into the code, and remove y and the left
neighbour of a from it (Figure 5.24).
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x y za b

x y za b

Figure 5.24: Local modi�cation of the code (Case 1a)

(b) otherwise, we put a and b into C but remove x and y from it (Figure 5.25).

x y za b

x y za b

Figure 5.25: Local modi�cation of the code (Case 1b)

2. suppose we are in the case where a = v0 and n = 4k + i for some k ≥ 2 and
i = 1, 2 or 3. Then we just put either b or a = v0 into the code, and put y out
of it (see Figure 5.26; in this example, n = 4k + 1 and vn−1 is connected to
vn−3s).

x y za b = v0

x y za b = v0

Figure 5.26: Local modi�cation of the code (Case 2)

Notice that these local modi�cations do not a�ect nearby possible modi�cations.
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One can see that the constructed code is a total dominating set, since all vertices
(even code vertices) have a neighbour in the code. Moreover, almost all vertices
have more than two code vertices in their closed neighbourhood. The only vertices
for which this is not the case are not in the code, and their neighbour which is not
in the code is connected to their other neighbour (construction of Figure 5.25).
So, if there is an edge between two vertices vi and vj, i > j + 2, vi and vj are
necessarily separated either by themselves or by one of their neighbours which is in
C. So, C is a valid identifying code.

We now claim that it is always possible to modify C so that its size is at most

⌊
3n

4

⌋
.

To do so, it is su�cient to remove one single vertex from C. Consider two vertices
vi, vj = vi+4 which had initially been taken out of C, and such that they are not
in the con�guration depicted in Figure 5.23: vi+1 is not connected to vj−1. If there
are no such vertices, by our modi�cations of the code notice that C has a size of at

most
2n

3
, and we are done.

Now, distinguish the following cases, by considering the edges e1 = {vi−1, vi+1} and
e2 = {vj−1, vj+1}.

1. If e1 ∈ E and e2 /∈ E, we can remove vj−1 safely from C.

2. Similarly, if e1 /∈ E and e2 ∈ E, we can remove vi+1 safely from C.

3. If either both or none of e1, e2 ∈ E, then vi+2 can be removed from C.

Note that the property that C is a total dominating set might not hold anymore if
both e1 and e2 are not in E, and we took out vertex vi+2 from C: then vi+1 and
vj−1 are only dominated by themselves. But since we assumed that they are not
connected to each other, this is not a problem.

So the constructed identifying code has a size of at most

⌊
3n

4

⌋
. �

Using the following Lemma of [KMOO02], the previous proof can be used to extend
this result to another class of subcubic graphs.

Lemma 5.18 ([KMOO02]) Every 2-connected cubic graph has a 2-factor in which
each component is a cycle of length at least four.

Corollary 5.19 Every 2-connected, twin-free cubic graph G on n vertices has an

identifying code C such that |C| ≤ 3n

4
.

Proof Following Lemma 5.18, G has a 2-factor in which each component is a cycle
of length at least four. In other words, each component of the 2-factor is an Hamil-
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tonian subcubic graph of at least 4 vertices.
Following Theorem 5.17, for every such component Ci, there is an identifying code

of cardinality at most

⌊
3|V (Ci)|

4

⌋
. Since a vertex of a component can only be

connected to one other vertex of another component, the union of the codes of all

components is an identifying code of G of size at most
3n

4
. �
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Chapter 6

Conclusion

As we saw in this thesis, there exists a strong relationship between the maximum
degree ∆(G) of a graph G and the minimum cardinality of an identifying code in
this graph, M1(G). After having studied the lower bound of M1(G) depending on
∆(G) and investigated the case of two particular graph families, we were able to
give a general upper bound of M1(G) depending on ∆(G). We could improve this
bound for di�erent subclasses of graphs such as triangle-free graphs, regular graphs
and cubic graphs. Moreover, we saw that for a particular subclass of graphs (graphs
of girth larger than 5 and minimum degree 2), the relationship between M1(G) and
∆(G) becomes less important. These results improve our knowledge on identifying
codes, which are studied by a growing scienti�c community, but for which many
problems remain open or unstudied. However, we were not able to prove or disprove
our conjecture on the value of a general tight upper bound for M1(G) depending
on the maximum degree. So, further work can be done in this direction, either by
determining a tight upper bound, by restricting the problem to other graph classes
such as planar graphs or bipartite graphs, or by using further graph parameters such
as the average degree. Some techniques like probabilistic analysis of this problem,
were not used in this thesis; it may be fruitful to use them in this context.
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