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Abstract. In this paper, we introduce the identifying path cover prob-
lem: an identifying path cover of a graph G is a set P of paths such that
each vertex belongs to a path of P , and for each pair u, v of vertices,
there is a path of P which includes exactly one of u, v. This problem is
related to a large variety of identification problems. We investigate the
identifying path cover problem in some families of graphs. In particular,
we derive the optimal size of an identifying path cover for paths, cycles,
hypercubes and topologically irreducible trees and give an upper bound
for all trees. We give lower and upper bounds on the minimum size of
an identifying path cover for general graphs, and discuss their tightness.
In particular, we show that any connected graph G has an identifying

path cover of size at most
�

2(|V (G)|−1)
3

�
. We also study the computa-

tional complexity of the associated optimization problem, in particular
we show that when the length of the paths is asked to be of a fixed value,
the problem is APX-complete.
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1 Introduction

This paper aims to study the new optimization problem of identifying the vertices
of a graph by means of paths, which we call the identifying path cover problem.
We first relate this problem to a large number of other problems and review a
part of the associated literature, before giving its definition.

� This research is supported by the ANR Project IDEA - Identifying coDes in Evolving
grAphs, ANR-08-EMER-007, 2009-2012.

S. Arumugam and B. Smyth (Eds.): IWOCA 2012, LNCS 7643, pp. 32–45, 2012.
c� Springer-Verlag Berlin Heidelberg 2012



Path Identification in Graphs 33

1.1 On Test Covers and the Identification Problem

Identification problems have been addressed many times in the last decades
under different denominations and in different contexts. We present two general
problems from the literature which have almost the same definition, and which
we herein call the minimum test cover problem and the minimum identification
problem. Instances of these problems are set systems, i.e. pairs consisting of a
set I of elements (“individuals”) and a set A of subsets of I (“attributes”).

Among these two problems, the minimum test cover problem, in short MIN-
TC, seems to have been studied first and is probably better known. Given a set
system of individuals and attributes, the MIN-TC problem asks for a minimum
subset C of A such that for each pair I, I � of I, there is an element C of C such
that exactly one of I, I � is covered by C, that is, belongs to C (we say that C
separates I from I �). The MIN-TC problem appears in a large number of papers
under different denominations (minimum test cover problem [8], minimum test
collection problem [13], minimum test set problem [18]). In fact, a well-celebrated
theorem of J. A. Bondy on induced subsets [3] can be seen as the first study of
this problem.

In this paper and as in a large portion of the literature dealing with special
cases of this kind of problems, we are interested in a slight modification of MIN-
TC, where not only each pair of individuals has to be separated, but also, each
individual has to be covered. We call this problem the minimum identification
problem, MIN-ID for short (note that it has been studied under the denomination
of discriminating code problem in [4], but we use our terminology in order to fit
to special cases described later). MIN-TC and MIN-ID are very close to each
other, since for any solution to one of them, there is a solution to the other one
whose size differs by at most 1: any solution to MIN-ID is also one for MIN-TC,
and, given a solution C to MIN-TC which is not a valid solution to MIN-ID, at
most one individual I may not be covered by C. It is then sufficient to add an
arbitrary attribute A covering I to C to get a valid solution to MIN-ID.

Both MIN-TC and MIN-ID can be seen as special cases of the well-known
minimum set cover problem [13,15], MIN-SC for short, where, given a base set
X and a set S of subsets of X , it is asked to find a minimum subset C of S
covering all elements of X [8]. MIN-TC and MIN-ID enjoy the same computa-
tional complexity. It is known that both problems are O(ln(|I|))-approximable
(where I denotes the set of individuals of the input) using a reduction to MIN-
SC [18]. On the other hand, both problems are not only NP-hard [4,13] but have
also been shown to be NP-hard to approximate within a factor of o(ln(|I|)) by
reduction from MIN-SC [2,8].

A natural restriction of MIN-ID is, given some integer k, the one where the
sets of A all have exactly k elements. We will call this problem MIN-ID-k.

1.2 Related Problems

In this paper, we study a special case of MIN-ID. Just as some particular cases of
MIN-SC arising from specific structures have gained a lot of interest (consider for
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example all variants of the minimum dominating set problem, or the minimum
vertex cover problem), it is of interest to investigate special cases of the MIN-ID
problem having a particular structure. In this line of research, many specific
cases arising from graph theory are of particular interest since graphs model
networks of all kinds and are found in real world applications. For example, in
the identifying code problem [9,12,16], one wants to identify each vertex v using
vertices at distance at most 1 from v. This problem can be seen as MIN-ID where
I = V (G) and A is the family of the balls around each vertex. This problem has
been generalized to digraphs [6,11], and to the case where also sets of at most �
vertices are to be separated and where vertices can identify at some prescribed
distance r ≥ 1 [12]. One may also ask to identify the edges of G using edges, i.e.
I = E(G) and A is the set of all edge-balls around each edge of G [10]. Rather
than considering full balls, also partial balls may be considered, as in the case
of watching systems [1], where I = V (G), and A is the family of all stars in G.
Finally, the case where I = V (G) and A is the set of all cycles in G has been
considered in [14,20].

1.3 The Identifying Path Cover Problem

In this paper, we study MIN-ID when I = V (G) and A is the set of all paths
of G. This problem was first mentioned in a discussion between the first author,
J. L. Sewell and P. J. Slater. We call it minimum identifying path cover problem,
MIN-IDPC for short and it studies the following notion:

Definition 1. Given a graph G, a set P of paths of G is an identifying path
cover if each vertex of G belongs to a path of P (it is covered) and if for each
pair u, v of vertices, there is a path of P which contains exactly one of u, v (u, v
are separated).

We point out that the covering condition is not implied by the separation condi-
tion, since even when all pairs are separated, one vertex of the graph may remain
uncovered. We denote by pID(G) the minimum number of paths required in any
identifying path cover of G. Then, MIN-IDPC is the problem, given a graph G,
of determining the value of pID(G). An example of an identifying path cover P
of the cube H3 is given in Fig. 1, where the four thick paths belong to P (the
full, the densely dotted, the loosely dotted and the dashed-dotted path). Note
that an identifying path cover of G always exists: consider the set of all 0-paths
of G, that is, P = V (G).

Given an integer k ≥ 1, we will also discuss the natural variant MIN-IDPC-k
of MIN-IDPC, where one wants to find a minimum identifying k-path cover of G,
that is, a set of paths of exactly k vertices forming an identifying path cover of G.
We denote by pID

k (G) the size of a minimum identifying k-path cover of G. Unlike
for the general MIN-IDPC problem, not all graphs admit an identifying k-path
cover. We call a graph admitting an identifying k-path cover, k-path identifiable.
This is the case if, first of all, each vertex of G lies on a k-path, and if for each pair
u, v of vertices, there is a k-path covering exactly one of u, v. For example, the
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Fig. 1. An (optimal) identifying path cover of the hypercube H3: p
ID(H3) = 4

path graphs Pk−1 and P2k−2 are not k-path identifiable. Observe that these two
conditions are also sufficient: if both are fulfilled, taking all k-paths of G gives a
valid identifying k-path cover of G. Being k-path identifiable is polynomial-time
checkable since there are at most

�
n
k

�
= O(nk) k-paths in G.

1.4 Applications

Problems MIN-TC and MIN-ID have a broad variety of applications, for example
in the diagnosis of faults or diseases, biological identification, pattern recogni-
tion [8,18]. When the instance of the problem arises from substructures of a
graph, the main applications are routing in networks [17] and the location of
threats in facilities or networks using sensors [16]: vertices are the “individuals”,
sensors are the “attributes”. Sensors may monitor closed neighbourhoods (iden-
tifying codes) or sub-neighbourhoods (watching systems). If sensors are capable
of monitoring the vertices lying on a path, we have the situation of an identifying
path cover. One can for example imagine sensors in the form of laser detectors,
or mobile detecting devices patrolling back and forth along their path.

1.5 Outline of the Paper

We start by giving some preliminary results in Section 2, in the form of bounds
from the literature valid for the general MIN-ID problem (which we apply to
MIN-IDPC) and some observations valid only for MIN-IDPC. We continue by
studying MIN-IDPC in some basic families of graphs in Sections 3 and 4: we give
exact values for parameter pID in paths, cycles, topologically irreducible trees,
and an upper bound for trees in general. We use the latter to provide the upper
bound pID(G) ≤

�
2n
3

�
for any connected graph. Finally, we show in Section 5

that MIN-IDPC-k is APX-complete for any k ≥ 3 by means of an L-reduction
from the minimum vertex cover problem. We conclude with some open questions
in Section 6.

2 Preliminary Observations

The following lower bound was observed in [16] in the context of identifying
codes but we refer to [4] for the general statement.

Theorem 2 ([4,16]). Let (I,A) be an instance of MIN-ID, and let C be a
solution to it. Then |C| ≥ log2(|I|+ 1).
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The following upper bound can be seen as a direct corollary of Bondy’s theo-
rem [3]. We refer to [4] for a formal proof in this context.

Theorem 3 ([3,4]). Let (I,A) be an instance of MIN-ID, and let C be an
inclusionwise minimal solution to it. Then |C| ≤ |I|.
Consider an instance of MIN-ID-k. Then, another lower bound holds. This bound
was (to our knowledge) first observed in the context of identifying codes in [16],
but the proof works in the more general context of MIN-ID-k.

Theorem 4 ([16]). Let k ≥ 1 and (I,A) be an instance of MIN-ID-k. Then

for any solution C, |C| ≥ 2|I|
k+1 .

Applying theorems 2, 3 and 4 to MIN-IDPC and MIN-IDPC-k, we get:

Theorem 5. Let G be a graph on n vertices and k ≥ 1 an integer. Then log2(n+
1) ≤ pID(G) ≤ n and max{log2(n+ 1), 2n

k+1} ≤ pID

k (G) ≤ n.

It is easily observed that in the complete graph Kn, since we have full freedom
to choose the paths in the identifying path cover, pID(Kn) = �log2(n+ 1)�. In
fact, much sparser graphs also fulfill this bound, such as the hypercubes: one
can easily come up with a solution with �log2(n+ 1)� paths. A similar problem
of identification using cycles is addressed in [14,20]; we refer to these papers
for the construction. Since removing an edge from a cycle yields a path, their
construction is also valid in our case:

Theorem 6 ([14,20]). Let Hd be the hypercube of dimension d with n = 2d

vertices. Then pID(Hd) = �log2(n+ 1)�.
One can easily see that the bound pID

k (G) ≥ 2n
k+1 is tight; given two integers

k ≥ 1 and p ≥ k, one can construct a graph G with pID

k (G) = p. To do so, one
has to take care that for each of the p paths of the solution, there is a vertex
that belongs only to this path. All other vertices must belong to distinct sets of
exactly two paths of the solution.

Since the set of paths of a graph G is a superset of the set of paths of a
subgraph H of G, if H is spanning the vertices of G, any identifying path cover
of H will also be one for G. We get the following proposition:

Proposition 7. Let G be a graph and H a spanning subgraph of G. Then
pID(G) ≤ pID(H).

The following proposition will be useful. The bound will be shown to be tight
for the star (see Thm. 12).

Proposition 8. If G is a graph having l vertices of degree 1, pID(G) ≥
�
2l
3

�
.

Proof. A vertex v of degree 1 can only be covered by a path P if v is an endpoint
of P , and two vertices of degree 1 cannot be covered only by the same path
(otherwise they are not separated from each other). If a degree 1 vertex is the
endpoint of k paths, then these k paths can cover at most k+1 degree 1 vertices.
Hence, the minimum is reached when k = 2 when two degree 1 vertices are
identified with three paths. ��
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3 Identifying Path Covers of Paths and Cycles

We first investigate identifying path covers in simple graphs such as paths and
cycles. The path and the cycle on n vertices are denoted Pn and Cn, respectively.
We start with a lower bounds for these graphs.

Proposition 9. Let G be a connected graph of maximum degree 2 having m
edges and l vertices of degree one. Then pID(G) ≥

�
m+l
2

�
.

Proof. Let u,v be two adjacent vertices of G. In any identifying path cover P of
G, there must be a path P that either ends in u and does not contain v, or ends
in v and does not contain u (let us say that P cuts the edge uv). Moreover, for
any vertex of degree 1, there is a path of P that ends in it. Since one single path
can at most cut or cover two edges/degree 1 vertices, the result follows. ��

Theorem 10. For any n ≥ 1, pID(Pn) =
�
n+1
2

�
.

Proof. The lower bound comes from Prop. 9. For the upper bound, let V (Pn) =
{v0, ..., vn−1} and P = {vi...vi+�n

2 � | i ∈ {0, ..., �n
2 � − 1}} be a set of �n

2 � paths.

If n is odd, P is an identifying path cover of cardinality �n
2 � = �n+1

2 �. If n is
even, P separates all pairs of vertices, and covers all vertices but vn−1. Hence,
P ∪ {v0, ..., vn−1} is an identifying path cover of cardinality �n+1

2 �. ��

Theorem 11. It holds that pID(C3) = 2, pID(C4) = 3 and for any n ≥ 5,
pID(Cn) =

�
n
2

�
.

Proof. For n �= 4, the lower bounds come from Prop. 9, and from Thm. 2 for
n = 4. We give constructions for the upper bounds. Let V (Cn) = {v0, ..., vn−1}.
One can check that {v0v1, v1v2} and {v0v1, v1v2, v2v3} are valid identifying path
covers of C3 and C4. For n ≥ 5, let P = {vivi+1vi+2 | i even, i < n − 1}. If n
is even, P is a identifying path cover of Cn of cardinality

�
n
2

�
. Otherwise, the

pairs v0, v1 and vn−2, vn−1 are covered but not separated. Then P ∪ {vn−1v0}
is an identifying path cover of Cn of cardinality

�
n
2

�
. ��

4 The Case of Trees with an Application to All Graphs

We start by giving the value of parameter pID for the star on n vertices, denoted
K1,n−1. The provided construction and bound will prove useful in what follows.

Theorem 12. It holds that pID(K1,n−1) =
�
2(n−1)

3

�
.

Proof. The lower bound follows from Prop. 8. Let v0, ..., vn−1 be the leaves of
K1,n−1 and c its central vertex. Let P be the set P = {vicvi+1 | i �= 2 mod 3}
of 2�n

3 � paths. If n = 0 mod 3, P is an identifying path cover of K1,n−1. If
n = 1 mod 3, P ∪ {cvn−1} is, and if n = 2 mod 3, P ∪ {cvn−2, cvn−1} is. ��

We call the procedure used in the proof of Thm. 12 ”covering three leaves with
two paths”. A tree is topologically irreducible if it has no vertex of degree 2.
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Theorem 13. Let T be a tree with l leaves. Then we have

(i) if T is topologically irreducible, then pID(T ) =
�
2l
3

�
,

(ii) if T has t vertices of degree two, then
�
2l
3

�
≤ pID(T ) ≤

�
2l
3

�
+
�
t
2

�
.

Proof. The lower bound in both cases follows from Prop. 8.
If T is topologically irreducible, we show how to construct an identifying path

cover which size is meeting the lower bound.
First, determine the center of T (that is, the set of vertices of minimum largest

distance to any other vertex of T ). By Jordan’s theorem, the center of a tree
consists of either a single vertex or a pair of adjacent vertices.

Starting from the center of T , decompose the vertex set of T into layers
labelled 0, . . . , h, where h is the radius of T (the minimum largest distance among
pairs of vertices of T ). The labels correspond to the distance to the center. For
� ∈ {0, . . . , h}, let T≤� be the sub-tree of T induced by layers 0, ..., �.

In the case when the center of T consists of a single vertex T≤1 is isomorphic
to a star, and in the case when the center consists of two adjacent vertices, it
is isomorphic to a tree with two adjacent vertices of degree at least 3, and all
other vertices of degree 1. In both cases, it is straightforward to find a solution
of size

�
2l
3

�
.

For i ∈ {2, . . . , h} we now describe how to extend the valid solution of T≤i−1

to the solution of T≤i. For any vertex v from layer i− 1, we choose an arbitrary
neighbour from layer i and extend the corresponding paths (by our construction
always exactly one or two paths are ending in a leaf) from the identifying path
cover to the neighbour. Now we have two vertices covered by exactly the same
set of paths, and still many uncovered vertices, all of them from layer i (at
least one more uncovered neighbour for any vertex from layer i − 1). Now we
contract all covered vertices into a single vertex, obtaining a star. Then we order
(arbitrarily) all other remaining vertices and do the procedure ”covering three
leaves with two paths”, as done in the case of the proof of Thm. 12. Doing this
we separate all uncovered vertices from layer i. We then expand the obtained
star together with the chosen paths into the original tree, where a path between
two leaves expands through the unique shortest path in T between these two
leaves. Doing this we also separate the two vertices, one from layer i − 1 and
the other from layer i, which were sharing the same paths. Vertices from layers
0, 1, . . . , i− 2 still remain separated and covered.

Doing this procedure until we reach layer h and tree T≤h = T , we obtain

at each layer i a solution of size
�
2(li−1)

3

�
for a tree T≤i, where li denotes the

number of vertices from layer i. At the end we obtain a solution of size
�
2l
3

�
for

T≤h = T . This concludes the proof of the first part of the theorem.
If T is arbitrary, we first contract all vertices of degree 2 to obtain the topo-

logically irreducible tree T � and find a solution for T � as described above. Then
we subdivide edges of T � to obtain tree T , keeping (expanding) the same identi-
fying path cover. Now, observe that we may get pairs of vertices which are not
separated from each other. Each such pair contains a vertex of degree 2. Using
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a similar procedure as in the proof of Thm. 10, we can use
�
t
2

�
additional paths

to get a solution reaching the upper bound from (ii). ��

By Prop. 7, we get an identifying path cover P of a connected graph G by
choosing a spanning tree T of G and constructing P using Thm. 13 on T . We
get the following improvement of Thm. 3 for the case of identifying path covers
of connected graphs. Note that by Thm. 12, this bound is tight for stars.

Theorem 14. For any connected graph G on n vertices, pID(G) ≤
�
2(n−1)

3

�
.

Unlike for many other variants of identification problems (such as identifying
codes, see [9]), Thm. 14 shows that one needs much less sensors than n in order
to identify connected graphs, which may prove useful in practice. We remark
that the similar upper bound 2n

3 holds for the size of a watching system (i.e. an
“identifying star cover”) in any connected graph on n vertices [1].

The bound of Thm. 14 can be refined in the following way. Let γC(G) denote
the connected domination number of a graph G (that is, the minimum size of
a dominating set of G inducing a connected subgraph) and let L(G) denote the
maximum number of leaves in a spanning tree of G. One can observe that for
a connected graph G on n vertices, we have n = γC(G) + L(G). Hence using
Prop. 7 and Thm. 13 we get the following upper bound.

Theorem 15. For any connected graph G on n vertices, it holds that pID(G) ≤�
2(n−γC(G))

3

�
+
�
γC(G)

2

�
.

5 On the Complexity of MIN-IDPC-k

In this section, we discuss the computational complexity of MIN-IDPC-k. It is
shown in [8] that MIN-IDPC-k is approximable within a factor of O(ln(k)) for
any k ≥ 1. In fact, when k = 1, we are allowed only paths of length 0 (that
is, vertices) and MIN-IDPC-1 is trivial: the only solution consists of the whole
set of vertices. When k = 2, we want to identify the vertices using paths of two
vertices, i.e. edges. This problem is equivalent to MIN-ID-2, where each attribute
is common to exactly two individuals. Indeed, an edge can precisely be seen as
such an attribute. This case has already been studied in [8], where a strong link
between MIN-ID-2 and the maximum P3-packing problem was established; the
authors give a 7

6 -approximation for MIN-ID-2 and show that it is APX-hard by
reduction from the maximum 3-dimensional matching problem.

We next prove that MIN-IDPC-k is APX-hard for all k ≥ 3, i.e. that there ex-
ists a constant c (depending on k) for which MIN-IDPC-k is not c-approximable.
We use the framework of L-reductions. We recall the definition of an L-reduction
between two optimization problems P and Q in Definition 16. It is known that
if such a reduction exists and P is APX-hard, then Q is APX-hard as well. For
more details, see [19]. Given an optimization problem P and a solution s to an
instance x of P , we denote by costP (x, s), the value of s, and by optP (x), the
value of an optimal solution to x.
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Definition 16. Let P and Q be two optimization problems. An L-reduction from
P to Q is a four-tuple (f, g,α,β) where f and g are polynomial time computable
functions and α,β are positive constants with the following properties:

1. Function f maps instances of P to instances of Q and for every instance x
of P, optQ(f(x)) ≤ α · optP (x).

2. For every instance x of P and every solution y of f(x), g maps the pair
(f(x), y) to a solution y� of x such that |optP (x) − costP (x, g(f(x), y

�))| ≤
β · |optQ(f(x))− costQ(f(x), y

�)|.

The problem minimum vertex cover in cubic graphs, MIN-VC-3 for short, given
a cubic graph, is to find a minimum set of vertices such that each edge is covered
by a vertex of the set. MIN-VC-3 is APX-hard [7].

Theorem 17. Let k ≥ 3. There is an L-reduction (with parameters α = 40k2−
116k + 47 and β = 1) from MIN-VC-3 to MIN-IDPC-k in graphs of maximum
degree 4. Hence MIN-IDPC-k is APX-complete, even in this class of graphs.

Before giving the proof of Thm. 17, we first provide two useful gadgets and
exhibit some of their properties. Given k ≥ 3, we call these gadgets k-gadget
of type A (see Fig. 3 for an example when k = 3 and Fig. 2 when k = 4) and
k-gadget of type B (see Fig. 4). Both gadgets include an attachment vertex which
will be identified with a vertex of the rest of the graph in our constructions. The
k-gadget of type A is the basis for the construction of the k-gadget of type B,
which includes k− 3 copies of the k-gadget of type A. The k-gadget of type B is
described in Fig. 4, but we define the k-gadget of type A more formally. Using
these two gadgets, we construct a vertex k-gadget and an edge k-gadget which
will be needed in the reduction (see Fig. 5). The idea of the k-gadget of type A
is to attach it at a vertex and make sure that this vertex can be easily covered
and identified by a locally optimal solution; the idea of the k-gadget of type B
is to force a path from outside the gadget to go through the attached vertex.

v33

v32

v31v30P3

v23

v22

v21v20P2

v13

v12

v11v10P1

v63

v62

v61 v60 P6

v53

v52

v51 v50 P5

v43

v42

v41 v40 P4

P1 P2 P3

P4 P5 P6

vA

Fig. 2. Construction of the 4-gadget of type A
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Fig. 3. The k-gadgets of type A
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Fig. 4. The k-gadget of type B and its representation

In order to construct the k-gadget of type A, we use a construction of an ex-
tremal graph for the lower bound 2n

k+1 ≤ pID

k (G) (Theorem 5). This construction
is detailed in Definition 18.

Definition 18. Let k ≥ 3 be an integer. If k = 3, the k-gadget of type A with
attachment vertex vA is the graph of Fig. 3. When k ≥ 4, the k-gadget of type A
is constructed as follows (see Fig. 2):

– Let P1, . . . , P2(k−1) be 2(k−1) vertex-disjoint paths, where for i ∈ {1, . . . , 2(k−
1)}, Pi = {vi0, . . . , vik−1}.

– Consider the complete bipartite graph B whose vertices are P1, . . . , P2(k−1).
It is (k − 1)-regular.

– Select a (k − 1)-edge-colouring of B with colours from {1, . . . , k − 1} (or
equivalently, find a partition of the edges of B into k− 1 perfect matchings).

– If k is even or c /∈ {�k
2�, �k

2 �}, for each edge {Pi, Pj} (assume i ≤ j) of B
coloured with colour c, identify vertices vic and vjc . If k is odd and c = �k/2�
(resp. c = �k/2�), identify vertices vi�k/2� and vj�k/2� (resp. v

i
�k/2� and vj�k/2�).

– We let the attachment vertex vA be vertex vik−1 for some arbitrary i ∈
{1, . . . , 2(k − 1)}.

We let xA = 2(k − 1). Note that when k ≥ 4, xA is the number of degree 1
vertices in a k-gadget of type A.

Let G be a cubic graph on n vertices and m = 3n
2 edges. We construct the graph

f(G) by replacing every vertex v by a copy of vertex gadget Gv and each edge
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Fig. 5. Reduction k-gadgets for vertices and edges

e by a copy of edge gadget Ge (see Fig. 5). Given a vertex v incident to edges
e1, e2, e3 in G, the vertices x1, x2, x3 of Gv are identified each with either one of
the vertices a1, a2 of Ge1 , Ge2 , Ge3 in f(G). It is easily noticed that since G is
cubic, f(G) has maximum degree 4.

The first main idea of the reduction is to simulate the covering of an edge e by
the separation of vertices b and c in Ge by a path going through b. The second
main idea is, given a vertex v, to encode the fact that v is part of a vertex cover
of G, by having path y1 . . . y3 inside the path cover of f(G) (which enables us
to “cover” the three edge-gadgets corresponding to the three edges incident to
v in G). The proof of the validity of the reduction uses the following Claims 19,
20 and 21 about the gadgets of type A and B.

Claim 19. Let A be k-gadget of type A (k ≥ 4). Then, for each pair v, v� of the
xA vertices of degree 1 in A, there is no path of length k − 1 between v and v�.
Moreover, vertex vA is at distance at least k − 1 of any degree 1-vertex in A.

Proof. If k is even, then A is bipartite with all degree 1 vertices in the same part.
Hence all paths between two degree 1 vertices have even length, but k−1 is odd.
If k is odd, by contradiction consider a path P between two degree 1 vertices
of A. If for any i, there is no vertex of the form vi�k/2� or vi�k/2� in P , then P
cannot be of length k − 1 because there is no such path of length more than
k− 3. Hence P contains some vertex vi�k/2� or vi�k/2�. But in either case, P must
have at least k + 1 vertices, a contradiction. The second part of the statement
follows immediately from the choice of vertex vA in the construction of A. ��

In what follows, we let G be a graph and P , an identifying path cover of G.

Claim 20. Let A be a k-gadget of type A (k ≥ 3) attached at vertex vA in G.
Then, there is a set of at least xA paths of P having an endpoint in A, and none
of these paths can reach a vertex outside of A. Moreover, there is a set of xA

paths in A which can be used to cover and identify all vertices of A.
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Proof. When k = 3, we note that we need at least three 3-paths in order to
cover the three degree 1 vertices of A. Doing so, we need an additional path to
separate either a1 from b1 or a2 from b2. Finally, the four paths a1 . . . d, a2 . . . d,
c . . . b1, b2 . . . vA fulfill the last part of the statement.

If k ≥ 4, the first part of the statement follows easily from Claim 19: no path
can be used to cover two degree 1 vertices in A, and no path starting outside of
A can cover a degree 1 vertex of A. Considering the xA paths of the construction
of A proves the second part of the statement. ��

Claim 21. Let B be a k-gadget of type B attached at some vertex v in G. Then,
at least xB = xA(k − 3) + 2 paths of P are entirely contained in B. Moreover,
if exactly xB paths of P are entirely contained in B, then there is an additional
path of P containing vertex v. Finally, there exists such a set of xB paths.

Proof. Following Claim 20, we need at least xA paths in each of the k− 3 copies
of the k-gadget of type A in B. In order to dominate vertices a and b, we need
two additional paths Pa and Pb starting in a and b, which completes the first
part of the claim. For the second part, by Claim 20, among these paths, only
paths of type Pa or Pb can contain vertex v. If Pa or Pb or both Pa, Pb dominate
v, then v is not separated from either a, b or u, proving the second part. Taking
the solution from Claim 20 for each copy of the k-gadget of type A together with
the paths a . . . v and b . . . v, we get the last part of the claim. ��

We are now ready to prove Thm. 17.

Proof (Proof of Thm. 17). We first prove that the first part of Def. 16 holds.
Let C∗ be a minimum vertex cover of G. We construct an identifying k-path
cover P of f(G) as follows. For each copy of a gadget of type A (resp. type B),
take the solution of size xA described in the proof of Claim 20 (resp. of size xB

of Claim 21) into P . Now, for each edge e of G, add an arbitrary path starting
in vertex c of Ge. For each vertex v of G, add three arbitrary paths starting in
vertices z1, z2 and z3, respectively. Let e1, e2, e3 be the three edges incident to
v in G, and b1, b2, b3, the three vertices labelled b in Ge1 , Ge2 , Ge3 . If v ∈ C∗,
add path y1 . . . y3 of Gv, as well as paths x2 . . . b1, x3 . . . b2 and x1 . . . b3 to P . If
v /∈ C∗, add paths x1 . . . y1, x2 . . . y2 and x3 . . . y3 to P .

The reader can check that P is an identifying k-path cover of f(G), and that:

|P| ≤ |C∗|+ (2(k − 2)xA + 1)m+ ((3(k − 2) + k − 3)xA + 3xB + 6)n (1)

Since G is cubic, each vertex of C∗ can cover at most three edges and we have
|C∗| ≥ m

3 and hence m ≤ 3|C∗| and n ≤ 2|C∗|. We get: pID

k (G) ≤ |P| ≤
(16 + (14k − 30)xA + 6xB)|C∗| and hence (1) of Def. 16 is fulfilled with α =
16 + (14k − 30)xA + 6xB ≤ 40k2 − 116k+ 47.

It remains to prove the second part of Def. 16. Let P be an identifying k-path
cover of f(G). We construct a vertex cover C using P . First of all, by Claim 20,
each gadget of type A contains at least xA paths of P , and by Claim 21, each
gadget of type B contains at least xB = xA(k− 3) + 2 paths of P . Moreover, in
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each vertex gadget, at least three paths belong to P in order to cover vertices
z1, z2, z3. However, using the structure of the vertex- and edge-gadgets together
with Claim 21, if there are exactly that many paths, in each vertex-gadget, we are
not able to separate vertices y1, y2, y3 from their respective neighbours, as well as
vertices x1, z1, x2, z2, and x3, z3 (similarly, vertices b and c in each edge-gadget).
Besides the paths of P that we already considered, in any vertex-gadget, at least
three paths are required in order to cover vertices x1, y1, x2, y2, x3, y3. If there
are exactly three, then they must be x1 . . . y1, x2 . . . y2, x3 . . . y3. We construct
C as follows: for each vertex v of G, if there are at least four such additional
paths in Gv, we add v to C. Set C is a vertex cover of G: indeed, when v ∈ C,
the paths in the copies of the gadgets of type A and B in Gv could be replaced
by the “standard” solution given in Claims 20 and 21. Moreover, the (at least)
four additional paths of P in Gv could be replaced by y1 . . . y3 and three paths
starting at x1, x2, x3 covering the three vertices labelled b in the three edge-
gadgets corresponding to the three edges incident to v in G. Hence these edges
would be covered. This procedure would give an easy constructable identifying
path cover P � with P � ≤ P , and since all vertices labelled b are covered by a
path of P �, C is a vertex cover of G. Furthermore, we have |C| ≤ |P| − (2(k −
2)xA +1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n. Applying the construction to
a minimum identifying k-path cover, we get |C∗| ≤ |C| ≤ pID

k (G) − (2(k −
2)xA + 1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n. Together with Equation (1),
this implies:

|C∗| = pID

k (G)− (2(k − 2)xA + 1)m− ((3(k − 2) + k − 3)xA + 3xB + 6)n (2)

From Equations (1) and (2), we get |C| − |C∗| ≤ |P| − pID

k (G), which implies
||C∗|− |C|| ≤ |pID

k (G) − |P||; hence (2) of Def. 16 is fulfilled with β = 1. ��

6 Conclusion and Open Problems

We conclude with some open problems. We gave a procedure to compute the
exact value of parameter pID for topologically irreducible trees, but only gave an
upper bound for general trees. It seems not easy to extend the algorithm to the
latter case, but it would be interesting to design an(other) algorithm to solve it.
Regarding MIN-IDPC-k, we mentioned that not all graphs admit an identifying
k-path cover. Identifiable graphs have been studied for some other identification
problems [5]; it would be interesting to do so in our context, i.e. studying k-path
identifiable graphs. Finally, we have settled the complexity of MIN-IDPC-k by
showing that it is APX-complete. However, the question of the complexity of
the general MIN-IDPC problem remains open.
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