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1 Université Blaise Pascal, LIMOS - CNRS UMR 6158, Clermont-Ferrand, France
florent.foucaud@gmail.com

2 School of Engineering and Computing Sciences, Durham University, Durham, UK
george.mertzios@durham.ac.uk
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Abstract. We study the problems Locating-Dominating Set and
Metric Dimension, which consist of determining a minimum-size set
of vertices that distinguishes the vertices of a graph using either neigh-
bourhoods or distances. We consider these problems when restricted to
interval graphs and permutation graphs. We prove that both decision
problems are NP-complete, even for graphs that are at the same time
interval graphs and permutation graphs and have diameter 2. While
Locating-Dominating Set parameterized by solution size is trivially
fixed-parameter-tractable, it is known that Metric Dimension is W [2]-
hard. We show that for interval graphs, this parameterization of Metric
Dimension is fixed-parameter-tractable.

1 Introduction

Combinatorial identification problems have been widely studied in various con-
texts. The common characteristic of these problems is that we are given a combi-
natorial structure, and we wish to distinguish (i.e. uniquely identify) its elements
by the means of a small set of selected elements. In this paper, we study two
such identification problems where the instances are graphs. In the Locating-
Dominating Set problem, we ask for a dominating set S such that the vertices
outside of S are distinguished by their neighbourhood within S. In Metric
Dimension, we wish to select a set S of vertices of a graph G such that every
vertex of G is uniquely identified by its distances to the vertices of S.
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These problems have been extensively studied since their introduction in
the 1970s and 1980s. They have been applied to various areas such as network
verification [2], fault-detection in networks [36], graph isomorphism testing [1]
or the logical definability of graphs [26].

Important Concepts and Definitions. All considered graphs are connected,
finite and simple. We denote by N [v], the closed neighbourhood of vertex v, and
by N(v) its open neighbourhood, i.e. N [v]\{v}. A vertex is universal if it is adja-
cent to all the vertices of the graph. A set S of vertices of G is a dominating set
if for every vertex v, there is a vertex x in S ∩N [v]. In the context of dominating
sets we say that a vertex x separates two distinct vertices u, v if it dominates
exactly one of them. Set S separates the vertices of a set X if all pairs of X
are separated by a vertex of S. Given a partial set S, we say that two distinct
vertices u, v need to be separated if S does not separate them. If the set S is
clear from context, then we simply say x, y need to be separated. The distance
between two vertices u, v is denoted d(u, v). The following two definitions are
the main concepts studied in this paper.

• (Slater [33,34]) A set L of vertices of a graph G is a locating-dominating set
if it is a dominating set and it separates the vertices of V (G) \ L.

• (Harary and Melter [21], Slater [32]) A set R of vertices of a graph G is a
resolving set if for each pair u, v of distinct vertices, there is a vertex x of R
with d(x, u) �= d(x, v).

The smallest size of a locating-dominating set of G is the location-domination
number of G, denoted γLD(G). The smallest size of a resolving set of G is the
metric dimension of G, denoted dim(G). The inequality dim(G) ≤ γLD(G),
relating these notions, holds for every graph G. If G has diameter 2, the two
concepts are almost the same, as then, one can check that γLD(G) ≤ dim(G)+1
holds. We consider the two associated decision problems:

Locating-Dominating Set
Instance: A graph G, an integer k.
Question: Is it true that γLD(G) ≤ k?

Metric Dimension
Instance: A graph G, an integer k.
Question: Is it true that dim(G) ≤ k?

We will study these problems on interval graphs and permutation graphs,
which are classic graph classes that have many applications and are widely stud-
ied. They can be recognized efficiently, and many problems can be solved effi-
ciently for graphs in these classes (see e.g. the book by Golumbic [19]). Given a
set S of (geometric) objects, the intersection graph G of S is the graph whose
vertices are associated to the elements of S and where two vertices are adjacent
if and only if the corresponding elements of S intersect. Then, S is called an
intersection model of G. An interval graph is the intersection graph of a set of
(closed) intervals of the real line. Given two parallel lines B and T , a permutation
graph is the intersection graph of segments of the plane which have one endpoint
on B and the other endpoint on T .
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Previous Work. The complexity of distinguishing problems has been studied by
many authors. Locating-Dominating Set was first proved to be NP-complete
in [7], a result extended to bipartite graphs in [5]. This was improved to pla-
nar bipartite unit disk graphs [29] and to planar bipartite subcubic graphs [14].
Locating-Dominating Set is hard to approximate within any o(log n) factor
(n is the order of the graph), with no restriction on the input graph [35]. This
result was extended to bipartite graphs, split graphs and co-bipartite graphs [14].
On the positive side, Locating-Dominating Set is constant-factor approx-
imable for bounded degree graphs [20], line graphs [14,15], interval graphs [4]
and is linear-time solvable for graphs of bounded clique-width (using Courcelle’s
theorem [8]). Furthermore, an explicit linear-time algorithm solving Locating-
Dominating Set on trees is known [33].

Metric Dimension, which has a non-local and more intricate flavour, was
widely studied as well, and has (re)gained a lot of attention within the last few
years. It was shown NP-complete in [18, ProblemGT61]. This result has recently
been extended to bipartite graphs, co-bipartite graphs, split graphs and line
graphs of bipartite graphs [11], to a special subclass of unit disk graphs [24],
and to planar graphs [9]. Polynomial-time algorithms for the weighted version
of Metric Dimension for paths, cycles, trees, graphs of bounded cyclomatic
number, cographs and partial wheels were given in [11]. A polynomial-time algo-
rithm for outerplanar graphs was designed in [9] and one for chain graphs in [12].
It was shown in [2] that Metric Dimension is hard to approximate within any
o(log n) factor for graphs of order n. This is even true for bipartite subcubic
graphs, as shown in [22,23].

In light of these results, the complexity of Locating-Dominating Set and
Metric Dimension for interval and permutation graphs is a natural open ques-
tion (as posed in [11,28] for Metric Dimension on interval graphs), since these
classes are standard candidates for designing efficient algorithms.

Let us say a few words about the parameterized complexity of these problems.
For standard definitions and concepts in parameterized complexity, we refer to
the books [10,30]. It is known that for Locating-Dominating Set, any graph
of order n and solution size k satisfies n ≤ 2k+k−1 [34]. Therefore, when parame-
terized by k, Locating-Dominating Set is trivially fixed-parameter-tractable
(FPT): first check whether the above inequality holds (if not, return “no”), and
if yes, use a brute-force algorithm checking all possible subsets of vertices. This
is an FPT algorithm. However, Metric Dimension (again parameterized by
solution size k) is W[2]-hard even for bipartite subcubic graphs [22,23]. Remar-
quably, the bound n ≤ Dk + k holds [6] (where n is the graph’s order, D its
diameter, and k is the size of a resolving set). Hence, for graphs of diameter
bounded by a function of k, the same arguments as the previous ones yield an
FPT algorithm for Metric Dimension. This holds, for example, for the class
of (connected) split graphs, which have diameter at most 3. Besides this, as
remarked in [23], no standard class of graphs for which Metric Dimension is
FPT was previously known.
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Our Results. We settle the complexity of Locating-Dominating Set and
Metric Dimension on interval and permutation graphs, showing that the two
problems are NP-complete even for graphs that are at the same time interval
graphs and permutation graphs and have diameter 2 (Sect. 2). Then, we present
a dynamic programming algorithm (using path-decomposition) to solve Metric
Dimension in FPT time on interval graphs (Sect. 3). Up to our knowledge, this
is the first nontrivial FPT algorithm for this problem. Due to space constraints,
some proofs are deferred to the full version of the paper [16].

2 Hardness Results

We will now reduce 3-Dimensional Matching, which is a classic NP-complete
problem [25], to Locating-Dominating Set on interval graphs.

3-Dimensional Matching
Instance: Three disjoint sets A, B and C each of size n, and a set T of
m triples of A × B × C.
Question: Is there a perfect 3-dimensional matching M ⊆ T of the
hypergraph (A ∪ B ∪ C, T ), i.e. a set of disjoint triples of T such that
each element of A ∪ B ∪ C belongs to exactly one of the triples?

2.1 Preliminaries and Gadgets

We first define the following dominating gadget (a path on four vertices). The
idea is to ensure that specific vertices are dominated locally, and therefore sep-
arated from the rest of the graph. We will use it extensively. The reduction is
described as an interval graph, but we then show that it is also a permutation
graph. In all that follows, we always consider interval graphs with an interval
representation.

Definition 1 (Dominating gadget). A dominating gadget D is a subgraph of
an interval graph G inducing a path on four vertices, and such that each interval
of V (G) \ V (D) either contains all intervals of V (D) or does not intersect any.

In the following, a dominating gadget will be represented as in Fig. 1(a).

D

u

v

D(uv)

Fig. 1. Representations of dominating gadget and choice pair.
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The following claim is easy to observe.

Claim 2. If G is an interval graph containing a dominating gadget D and S is
a locating-dominating set of G, then |S ∩ V (D)| ≥ 2.

If x1, x2, x3, x4 denote the vertices of D, the set SD = {x1, x4} is called the
standard solution for D. It is a locating-dominating set of D and if S is an
optimal locating-dominating set of G, then replacing S ∩ V (D) by the standard
solution SD, one can obtain an optimal locating-dominating set S′.

Definition 3 (Choice pair). A pair {u, v} of intervals is called a choice pair if
u, v both contain the intervals of a common dominating gadget (denoted D(uv)),
and such that none of u, v contains the other.

See Fig. 1(b) for an illustration of a choice pair. Intuitively, a choice pair gives
us the choice of separating it from the left or from the right: since none of u, v is
included in the other, the intervals intersecting u but not v can only be located
at one side of u; the same holds for v. In our construction, we will make sure
that, except for the choice pairs, all pairs of intervals will be easily separated
using domination gadgets. Our aim will then be to separate the choice pairs. We
have the following claim that follows directly from Claim 2:

Claim 4. Let S be a locating-dominating set of an interval graph G and {u, v}
be a choice pair in G. If the solution S ∩ V (D(uv)) for the dominating gadget
D(uv) is the standard solution, both vertices u and v are dominated, separated
from all vertices in D(uv) and from all vertices not intersecting D(uv).

We now define the central gadget of the reduction, the transmitter gadget.
Roughly speaking, it allows to transmit information across an interval graph.

Definition 5 (Transmitter gadget). Let P be a set of two or three choice
pairs in an interval graph G. A transmitter gadget Tr(P ) is a subgraph of G
consisting of a path on seven vertices {u, uv1, uv2, v, vw1, vw2, w} and five dom-
inating gadgets D(u), D(uv), D(v), D(vw), D(w) such that the following prop-
erties are satisfied:

• u and w are the only vertices of Tr(P ) that separate the pairs of P .
• The intervals of the dominating gadget D(u) (resp. D(v), D(w)) are included

in interval u (resp. v, w) and no interval of Tr(P ) other than u (resp. v, w)
intersects D(u) (resp. D(v), D(w)).

• Pair {uv1, uv2} is a choice pair and no interval of Tr(P ) \ (D(uv1, uv2) ∪
{uv1, uv2}) intersects both intervals of the pair. The same holds for pair
{vw1, vw2}.

• The choice pairs {uv1, uv2} and {vw1, vw2} cannot be separated by intervals
of G other than u, v and w.
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Figure 2 illustrates a transmitter gadget and shows the succinct graphical
representation that we will use. As shown in the figure, we may use a “box” to
denote Tr(P ). This box does not include the choice pairs of P but indicates where
they are situated. Note that the middle pair {y1, y2} could also be separated
(from the left) by u instead of w, or it may not exist at all if P contains only
two pairs.

The following claim shows how transmitter gadgets will be used in the main
reduction.

Claim 6. Let G be an interval graph with a transmitter gadget Tr(P ) and
let S be a locating-dominating set of G. We have |S ∩ Tr(P )| ≥ 11 and if
|S ∩ Tr(P )| = 11, then no pair of P is separated by a vertex in S ∩ Tr(P ).
Moreover, there exist two sets of vertices of Tr(P ), S−

Tr(P ) and S+
Tr(P ) of size 11

and 12 respectively, such that the following holds:

• The set S−
Tr(P ) dominates all the vertices of Tr(P ) and separates all the pairs

of Tr(P ) but no pairs in P .
• The set S+

Tr(P ) dominates all the vertices of Tr(P ), separates all the pairs of
Tr(P ) and all the pairs in P .

Proof. By Claim 2, we must have |S∩Tr(P )| ≥ 10 with 10 vertices of S belonging
to the dominating gadgets. In order that uv1, uv2 are separated, at least one
vertex of {u, uv1, uv2, v} belongs to S (recall that by definition the intervals
not in Tr(P ) cannot separate the choice pairs in Tr(P )), and similarly, for the
choice pair {vw1, vw2}, at least one vertex of {v, vw1, vw2, w} belongs to S.
Hence |S ∩ Tr(P )| ≥ 11 and if |S ∩ Tr(P )| = 11, vertex v must be in S and
neither u nor w are in S. Therefore, no pair of P is separated by a vertex in
S ∩ Tr(P ).

We now prove the second part of the claim. Let Sdom be the union of the
five standard solutions SD of the dominating gadgets of Tr(P ). Let S−

Tr(P ) =
Sdom ∪ {v} and S+

Tr(P ) = Sdom ∪ {u,w}. The set Sdom has 10 vertices and so
S−
Tr(P ) and S+

Tr(P ) have respectively 11 and 12 vertices. Each interval of Tr(P )
either contains a dominating gadget or is part of a dominating gadget and is
therefore dominated by a vertex in Sdom. Hence, pairs of vertices that are not
intersecting the same dominating gadget are clearly separated. By Claim 2, no
vertex in a dominating gadget D is dominated by all vertices of SD, hence a
vertex adjacent to the whole of D is separated from all the vertices of D. Also,
by Claim 2, all pairs of vertices inside a dominating gadget are separated by
Sdom. Therefore, the only remaining pairs to consider are the choice pairs. Note
that they are separated both at the same time either by v or by {u,w}. Hence
the two sets S−

Tr(P ) and S+
Tr(P ) are both dominating and separating the vertices

of Tr(P ). Moreover, since S+
Tr(P ) contains u and w, it also separates the pairs

of P . �	
We will call the sets S−

Tr(P ) and S+
Tr(P ) the tight and non-tight standard

solutions of Tr(P ).
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x1

x2

u

uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

D(u)

D(uv)

D(v)

D(vw)

D(w)

Tr({x1, x2}, {y1, y2}, {z1, z2})

Fig. 2. Transmitter gadget Tr({x1, x2}, {y1, y2}, {z1, z2}) and its “box” representation.

2.2 The Main Reduction

We now describe the reduction. Each element x ∈ A ∪ B ∪ C is modelled by a
choice pair {fx, gx}. Each triple of T is modelled by a triple gadget:

Definition 7 (Triple gadget). Let T = {a, b, c} be a triple of T . The triple
gadget Gt(T ) is an interval graph consisting of four choice pairs p = {p1, p2},
q = {q1, q2}, r = {r1, r2}, s = {s1, s2} together with their associated dominating
gadgets D(p), D(q), D(r), D(s) and five transmitter gadgets Tr(p, q), Tr(r, s),
Tr(s, a), Tr(p, r, b) and Tr(q, r, c), where:

• a = {fa, ga}, b = {fb, gb} and c = {fc, gc};
• Except for the choice pairs, for each pair of intervals of Gt(T ), its two inter-

vals intersect different subsets of {D(p),D(q),D(r),D(s)};
• In each transmitter gadget Tr(P ) and for each choice pair π ∈ P , the intervals

of π intersect the same intervals except for the vertices u, v, w of Tr(P );
• The intervals of V (G)\V (Gt(T )) that are intersecting only a part of the gadget

intersect according to the transmitter gadget definition and do not separate
the choice pairs p, q, r and s.

An illustration of a triple gadget is given in Fig. 3. We remark that p, q, r
and s in Gt({a, b, c}), are all functions of {a, b, c} but to simplify the notations
we simply write p, q, r and s.

The proof of the following claim is similar to the proof of Claim 6.

Claim 8. Let G be a graph with a triple gadget Gt(T ) and S be a locating-
dominating set of G. We have |S ∩ Gt(T )| ≥ 65 and if |S ∩ Gt(T )| = 65, no
choice pair corresponding to a, b or c is separated by a vertex in S ∩ Gt(T ).
Moreover, there exist two sets of vertices of Gt(T ), S−

Gt(T ) and S+
Gt(T ) of size 65

and 66 respectively, such that the following holds.

• The set S−
Gt(T ) dominates all the vertices of Gt(T ) and separates all the pairs

of Gt(T ) but does not separate any choice pairs corresponding to {a, b, c}.
• The set S+

Gt(T ) dominates all the vertices of Gt(T ), separates all the pairs of
Gt(T ) and separates the choice pairs corresponding to {a, b, c}.
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p1
p2

q1
q2

r1
r2

s1
s2

fa
ga

fb
gb

fc
gc

D D D D D D D
Tr(p, q) Tr(r, s)

Tr(p, r, b)

Tr(q, r, c)

Tr(s, a)

Fig. 3. Triple gadget Gt(T ) with T = {a, b, c} together with the choice pairs of elements
a, b and c. We recall that these choice pairs and their dominating gadgets are not part
of Gt(T ).

Given an instance (A,B,C, T ) of 3-Dimensional Matching with |A| =
|B| = |C| = n and |T | = m, we construct the interval graph G = G(A,B,C, T )
as follows.

• As mentioned previously, to each element x of A ∪ B ∪ C, we assign a dis-
tinct choice pair {fx, gx} in G. The intervals of any two distinct choice pairs
{fx, gx}, {fy, gy} are disjoint and they are all in R

+.
• For each triple T = {a, b, c} of T we first associate an interval IT in R

− such
that for any two triples T1 and T2, IT1 and IT2 do not intersect1. Then inside
IT , we build the choice pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2}. Finally, using
the choice pairs already associated to elements a, b and c we complete this to
a triple gadget.

• When placing the remaining intervals of the triple gadgets, we must ensure
that triple gadgets do not “interfere”: for every dominating gadget D, no
interval in V (G)\V (D) must have an endpoint inside D. Similarly, the choice
pairs of each triple gadget or transmitter gadget must only be separated by
intervals among u, v and w of its corresponding private transmitter gadget.
For intervals of distinct triple gadgets, this is easily done by our placement of
the triple gadgets. To ensure that the intervals of transmitter gadgets of the
same triple gadget do not interfere, we proceed as follows. We place the whole
gadget Tr(p, q) inside interval u of Tr(p, r, b). Similarly, the whole Tr(r, s) is
placed inside interval v of Tr(p, r, b) and w of Tr(q, r, c). One has to be more
careful when placing the intervals of Tr(p, r, b) and Tr(q, r, c). In Tr(p, r, b),
we must have that interval u separates p from the right of p. We also place
u so that it separates r from the left of r. Intervals uv1, uv2 both start in r1,
so that u also separates uv1, uv2 without these intervals interfering with the
ones of r. Intervals uv1, uv2 continue until after pair s. In Tr(q, r, c), we place
u so that it separates q from the right, and we place w so that it separates
r from the right; intervals uv1, uv2, v lie strictly between q and r; intervals
vw1, vw2 intersect r1, r2 but stop before the end of r2 (so that w can separate
both pairs vw1, vw2 and r but without these pairs interfering). It is now easy
to place Tr(s, a) between s and a.

1 Note that the intervals IT are not part of the final construction.
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The graph G(A,B,C, T ) has 159m + 18n vertices and the interval represen-
tation described by our procedure can be obtained in polynomial time. We are
now ready to state the main result of this section.

Theorem 9. (A,B,C, T ) has a perfect 3-dimensional matching if and only if
G = G(A,B,C, T ) has a locating-dominating set with 65m + 7n vertices.

Theorem 9 shows that Locating-Dominating Set is NP-complete for
interval graphs. In fact, one can prove that the constructed graph G(A,B,C, T )
is also a permutation graph, see for example Fig. 4 for an illustration of the
transmitter gadget as a permutation diagram intersection model.

x1

x2 u

D(u)

uv1uv2

D(uv)

v

D(v)

vw2

vw1

D(uv)

w

D(w)

y2

y1 z1

z2

Fig. 4. Permutation diagram intersection model of a transmitter gadget.

Corollary 10. Locating-Dominating Set is NP-complete for graphs that
are both interval and permutation graphs.

2.3 Diameter 2 and Consequence for METRIC DIMENSION

We now describe a self-reduction for Locating-Dominating Set for graphs
with a universal vertex (hence, graphs of diameter 2), and a similar reduction
from Locating-Dominating Set to Metric Dimension.

Let G be a graph. Let f1(G) be the graph obtained from G by adding a
universal vertex u and a neighbour v of u of degree 1. Let f2(G) be the graph
obtained from G by adding two adjacent universal vertices u, u′ and two non-
adjacent vertices v and w that are only adjacent to u and u′. See Fig. 5 for an
illustration. One can show that γLD(f1(G)) = γLD(G) + 1, and dim(f2(G)) =
γLD(G) + 2.

G

u

v

f1(G)

G

u u

v w

f2(G)

Fig. 5. Two reductions for diameter 2.
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This implies the following two theorems.

Theorem 11. Let C be a class of graphs that is closed under the graph trans-
formation f1. If Locating-Dominating Set is NP-complete for graphs in C,
then it is also NP-complete for graphs in C that have diameter 2.

Theorem 12. Let C be a class of graphs that is closed under the graph transfor-
mation f2. If Locating-Dominating Set is NP-complete for graphs in C, then
Metric Dimension is also NP-complete for graphs in C that have diameter 2.

Since Theorems 11 and 12 can be applied to interval graphs and permutation
graphs, Corollary 10 implies the following.

Corollary 13. Locating-Dominating Set and Metric Dimension are NP-
complete for diameter 2-graphs that are both interval and permutation graphs.

3 METRIC DIMENSION is FPT on Interval Graphs

We now prove that Metric Dimension (parameterized by solution size) is
FPT on interval graphs. The algorithm is based on dynamic programming over
a path-decomposition.

Given an interval graph G, we can assume that in its interval model, all
endpoints are distinct, and that the intervals are closed. We define two natural
total orderings of V (G) based on this model: x <L y if and only if the left
endpoint of x is smaller then the left endpoint of y, and x <R y if and only if
the right endpoint of x is smaller than the right endpoint of y. We will work
with the fourth distance-power G4 of the input graph G which is also an interval
graph and has an interval model inducing the same orders <L and <R as G [17].

Our algorithm will use dynamic programming on a nice path-decomposition
of G4. The classic concepts of tree-decompositions and its “nice” variant, due to
Kloks [27].

Definition 14. A tree-decomposition of a graph G is a pair (T ,X ), where T
is a tree and X := {Xt : t ∈ V (T )} is a collection of subsets of V (G) (called
bags), and they must satisfy the following conditions:

(i)
⋃

t∈V (T ) Xt = V (G);
(ii) for every edge uv ∈ E(G), there is a bag of X that contains both u and v;
(iii) for every vertex v ∈ V (G), the set of bags containing v induces a connected
subtree of T .

Given a tree-decomposition of (T ,X ), the maximum size of a bag Xt over all
tree nodes t of T minus one is called the width of (T ,X ). The minimum width of
a tree-decomposition of G is the treewidth of G. The notion of tree-decomposition
has been used extensively in algorithm design, especially via dynamic program-
ming over the tree-decomposition.

We consider a rooted tree-decomposition by fixing a root of T and orienting
the tree edges from the root toward the leaves. A rooted tree-decomposition is
nice (see Kloks [27]) if each node t of T has at most two children and falls into
one of the four types:
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(i) Join node: t has exactly two children t1 and t2, and Xt = Xt1 = Xt2 .
(ii) Introduce node: t has a unique child t′, and Xt = Xt′ ∪ {v}.
(iii) Forget node: t has a unique child t′, and Xt = Xt′ \ {v}.
(iv) Leaf node: t is a leaf node in T .

Given a tree-decomposition, a nice tree-decomposition of the same width always
exists and can be computed in linear time [27].

If G is an interval graph, we can construct a tree-decomposition of G (in fact,
a path-decomposition) with special properties.

Proposition 15. Let G be an interval graph with clique number ω and an inter-
val model inducing orders <L and <R. Then, G has a nice tree-decomposition
(P,X ) of width ω − 1 that can be computed in linear time, where moreover:

(a) P is a path (hence there are no join nodes);
(b) every bag is a clique;
(c) going through P from the leaf to the root, the order in which vertices are

introduced in an introduce node corresponds to <L;
(d) going through P from the leaf to the root, the order in which vertices are

forgotten in a forget node corresponds to <R;
(e) the root’s bag is empty, and the leaf’s bag contains only one vertex.

Proof. Given a graph G, one can decide if it is an interval graph and, if so,
compute a representation of it in linear time [3]. This also gives us the ordered
set of endpoints of intervals of G.

To obtain (P,X ), we first create the leaf node t, whose bag Xt contains the
interval with smallest left endpoint. We then go through the set of all endpoints
of intervals of G, from the second smallest to the largest. Let t be the last created
node. If the new endpoint is a left endpoint �(I), we create an introduce node
t′ with Xt′ = Xt ∪ {I}. If the new endpoint is a right endpoint r(I), we create
a forget node t′ with Xt′ = Xt \ {I}. In the end we create the root node as a
forget node t with Xt = ∅ that forgets the last interval of G.

Observe that one can associate to every node t (except the root) a point
p of the real line, such that the bag Xt contains precisely the set of intervals
containing p: if t is an introduce node, p is the point �(I) associated to the
creation of t, and if t is a forget node, it is the point r(I)+ε, where ε is sufficiently
small and r(I) is the endpoint associated to the creation of t. This set forms a
clique, proving Property (b). Furthermore this implies that the maximum size
of a bag is ω, hence the width is at most ω − 1 (and at least ω − 1 since every
clique must be included in some bag).

Moreover it is clear that the procedure is linear-time, and by construction,
Properties (a), (c), (d), (e) are fulfilled.

Let us now show that (P,X ) is a tree-decomposition. It is clear that every
vertex belongs to some bag, proving Property (i) of Definition 14. Moreover
let u, v be two adjacent vertices of G, and assume u <L v. Then, consider the
introduce node of P where v is introduced. Since u has started before v but has
not stopped before the start of v, both u, v belong to Xt, proving Property (ii).
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Finally, note that a vertex v appears exactly in all bags starting from the bag
where v is introduced, until the bag where v is forgotten. Hence Property (iii) is
fulfilled, and the proof is complete. �	

Lemma 16. Let G be an interval graph with an interval model inducing orders
<L and <R, let d ≥ 1 be an integer and let (P,X ) be a tree-decomposition
of Gd obtained by Proposition 15 (recall that Gd is an interval graph, and it
has an intersection model inducing the same orders <L and <R [17]). Then the
following holds.

(a) Let t be an introduce node of (P,X ) with child t′, with Xt = Xt′ ∪ {v}.
Then, Xt contains every vertex w in G such that dG(v, w) ≤ d and w <L v.

(b) Let t′ be the child of a forget node t of (P,X ), with Xt = Xt′ \ {v}. Then,
Xt′ contains every vertex w in G such that dG(v, w) ≤ d and v <R w.

We now present the most crucial preliminary results necessary for our algo-
rithm. We first start with a definition related to the linear structure of an interval
graph that we will use extensively.

Definition 17. Given a vertex u of an interval graph G, the rightmost path
PR(u) of u is the path uR

0 , . . . , uR
p where u = uR

0 , for every uR
i (i ∈ {0, . . . , p−1})

uR
i+1 is the neighbour of uR

i with the largest right endpoint, and thus uR
p is the

interval in G with largest right endpoint. Similarly, we define the leftmost path
PL(u) = uL

0 , . . . , uL
q where for every uL

i (i ∈ {0, . . . , q−1}) uL
i+1 is the neighbour

of uL
i with the smallest left endpoint.

Note that PR(u) and PL(u) are two shortest paths from u to uR
p and uL

q ,
respectively. We say that a pair u, v of intervals in an interval graph G is sep-
arated by interval x strictly from the right (strictly from the left, respectively)
if x starts after both right endpoints of u, v (ends before both left endpoints of
u, v respectively). In other words, x is not a neighbour of any of u and v.

The next lemma is crucial for our algorithm.

Lemma 18. Let u, v, x be three intervals in an interval graph G and let i be
an integer such that x starts after both right endpoints of uR

i ∈ PR(u) and
vR
i ∈ PR(v). Then the three following facts are equivalent:

(1) x separates uR
i , vR

i ;
(2) for every j with 0 ≤ j ≤ i, x separates uR

j , vR
j ;

(3) for some j with 0 ≤ j ≤ i, x separates uR
j , vR

j .

A symmetric statement holds for PL(u).

We now define a distance-2 resolving set as a set S of vertices where for each
pair u, v of vertices at distance at most 2, there is a vertex x ∈ S such that
d(u, x) �= d(v, x). Thanks to this local version of resolving sets, we will manage
to “localize” the dynamic programming, as we will only need to distinguish pairs
of vertices that will be present together in one bag, as claimed by the following
lemma.
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Lemma 19. Any distance-2 resolving set of an interval graph is a resolving set.

Proof. Assume that S is not a resolving set. It means that there is a pair of
vertices u, v at distance at least 3 that are not separated by any vertex of S.
Among all such pairs, we choose one, say {u, v}, such that d(u, v) is minimized.
Without loss of generality, we assume that u ends before v starts.

Consider uR
1 (vL

1 , respectively), the interval intersecting u (v, respectively)
that has the largest right endpoint (smallest left endpoint, respectively). We have
uR
1 �= vL

1 (since d(u, v) ≥ 3) and d(uR
1 , vL

1 ) = d(u, v)−2 < d(u, v). By minimality,
uR
1 and vL

1 are separated by some vertex s ∈ S. But s does not separate u and
v, thus s /∈ {uR

1 , vL
1 }.

Without loss of generality, we can assume that d(uR
1 , s) < d(vL

1 , s). In par-
ticular, d(vL

1 , s) ≥ 2 and s ends before vL
1 starts. Thus there is a shortest path

from s to v finishing by vL
1 and so d(v, s) = d(vL

1 , s) + 1. However, we also have
d(u, s) ≤ d(uR

1 , s) + 1 ≤ d(vL
1 , s) < d(v, s). Hence s is separating u and v, a

contradiction. �	

The next lemma enables us to bound the size of the bags in our path-
decomposition, which will induce subgraphs of diameter 4 of G.

Lemma 20. Let G be an interval graph with a resolving set of size k, and let
B ⊆ V (G) be a subset of vertices such that for each pair u, v ∈ B, dG(u, v) ≤ d.
Then |B| ≤ 4dk2 + (2d + 3)k + 1.

We are now ready to describe our algorithm.

Theorem 21. Metric Dimension can be solved in time 2O(k4)n on interval
graphs, i.e. it is FPT on this class when parameterized by the solution size k.

Proof. Let (P,X ) be a path-decomposition of the interval graph G4 obtained
using Proposition 15. Our algorithm is a dynamic programming algorithm over
(P,X ).

Let t be a node of P. We let P(Xt) be the set of pairs of Xt that are at
distance at most 2 in G (by Lemma 19, these are the pairs that we need to
separate). For each node t of P, we compute a set of configurations using the
configurations of the child of t in P. A configuration contains full information
about the local solution on Xt, but also stores necessary information about
the vertex pairs that still need to be separated. More precisely, a configuration
C = (S, sep, toSepR, cnt) of t is a tuple where:

• S ⊆ Xt contains the vertices of the sought solution belonging to Xt;
• sep : P(Xt) → {0, 1, 2} assigns, to every pair in P(Xt), value 0 if the pair has

not yet been separated, value 2 if it has been separated strictly from the left,
and value 1 otherwise;

• toSepR : P(Xt) → {0, 1} assigns, to every pair in P(Xt), value 1 if the pair
needs to be separated strictly from the right (and it is not yet the case), and
value 0 otherwise;
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• cnt is an integer counting the total number of vertices in the partial solution
that has led to C.

Starting with the leaf of P, for each node our algorithm goes through all possi-
bilities of choosing S; however, sep, toSepR and cnt are computed along the way.
At each new visited node t of P, a set of configurations is constructed from
the configuration sets of the child of t. The algorithm makes sure that all the
information is consistent, and that configurations that will not lead to a valid
resolving set (or with cnt > k) are discarded.

The most crucial point of the algorithm is to use Lemma 18 to “localize”
the problem by reducing it to separating pairs inside the current bag Xt. More
precisely, for each pair u, v ∈ P(Xt), we can deduce from sep(u, v) and S whether
u, v are already separated from a previous step of the algorithm or by a solution
vertex of S ⊆ Xt. If this is not the case and if t is a forget node that forgets u
or v, then the pair u, v needs to be separated from the right in a future step of
the algorithm corresponding to a bag that does not not contain the pair u, v. By
Lemma 18, this will be done by separating some pair uR

i , vR
i (that will be present

together in a bag considered later), and hence we can set toSepR(uR
1 , vR

1 ) = 1.
The algorithm will then make sure that uR

i , vR
i are separated from the right by

carrying over this constraint until it is met, along PR(u) and PR(v).
The final step of the algorithm simply consists of checking whether, at the

root node, we obtained a configuration with cnt ≤ k. By Proposition 15(b),
every bag of (P,X ) is a clique of G4 (i.e. a subgraph of diameter at most 4
in G) and hence by Lemma 20, it has O(k2) vertices. Since there are 2O(|Xt|2)

configurations for a bag Xt and all computations are polynomial-time in terms
of |Xt|, the running time is indeed 2O(k4)n. �	

4 Conclusion

We proved that both Locating-Dominating Set and Metric Dimension
are NP-complete even for graphs of diameter 2 that are both interval and per-
mutation graphs. This is in contrast to related problems such as Dominating
Set, which is linear-time solvable on both classes. However, we do not know
their complexity for unit interval graphs or bipartite permutation graphs (note
that both problems are polynomial-time solvable on chain graphs, a subclass
of bipartite permutation graphs [12]). We also note that our reduction can be
adapted to related problems such as Identifying Code (see the full version of
this paper [16]).

Regarding our FPT algorithm for Metric Dimension on interval graphs,
we do not know whether the result holds for graph classes such as permutation
graphs or chordal graphs. The main obstacles for adapting our algorithm to
chordal graphs are (i) that Lemma 18, which is essential for our algorithm,
heavily relies on the two orderings induced by intersection models of interval
graphs, and (ii) that Lemma 19 is not true for chordal graphs.

Acknowledgments. We thank Adrian Kosowski for helpful discussions.
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