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Abstract. We introduce the problem Partial VC Dimension that
asks, given a hypergraph H = (X, E) and integers k and �, whether one
can select a set C ⊆ X of k vertices of H such that the set {e∩C, e ∈ E}
of distinct hyperedge-intersections with C has size at least �. The sets
e ∩ C define equivalence classes over E. Partial VC Dimension is a
generalization of VC Dimension, which corresponds to the case � = 2k,
and of Distinguishing Transversal, which corresponds to the case
� = |E| (the latter is also known as Test Cover in the dual hyper-
graph). We also introduce the associated fixed-cardinality maximization
problem Max Partial VC Dimension that aims at maximizing the
number of equivalence classes induced by a solution set of k vertices. We
study the approximation complexity of Max Partial VC Dimension

on general hypergraphs and on more restricted instances, in particular,
neighborhood hypergraphs of graphs.

1 Introduction

We study identification problems in discrete structures. Consider a hypergraph
(or set system) H = (X,E), where X is the vertex set and E is a collection
of hyperedges, that is, subsets of X. Given a subset C ⊆ X of vertices, we say
that two hyperedges of E are distinguished (or separated) by C if some element
in C belongs to exactly one of the two hyperedges. In this setting, one can tell
apart the two distinguished hyperedges simply by comparing their intersections
with C. Following this viewpoint, one may say that two hyperedges are related if
they have the same intersection with C. This is clearly an equivalence relation,
and one may determine the collection of equivalence classes induced by C: each
such class corresponds to its own subset of C. Any two hyperedges belonging to
distinct equivalence classes are then distinguished by C. We call these classes
neighborhood equivalence classes. In general, one naturally seeks to distinguish
as many pairs of hyperedges as possible, using a small set C.

It is a well-studied setting to ask for a maximum-size set C such that C
induces all possible 2|C| equivalence classes. In this case, C is said to be shat-
tered. The maximum size of a shattered set in a hypergraph H is called its
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Vapnis-Červonenkis dimension (VC dimension for short). This notion,
introduced by Vapnis and Červonenkis [40] arose in the context of statistical
learning theory as a measure of the structural complexity of the data. It has
since been widely used in discrete mathematics; see the references in the the-
sis [9] for more references. We have the following associated decision problem.

VC Dimension

Input: A hypergraph H = (X,E), and an integer k.
Question: Is there a shattered set C ⊆ X of size at least k in H?

The complexity of VC Dimension was studied in e.g. [17,21,34]; it is a
complete problem for the complexity class LOGNP defined in [34] (it is therefore
a good candidate for an NP-intermediate problem). VC Dimension remains
LOGNP-complete for neighborhood hypergraphs of graphs [30] (the neighborhood
hypergraph of G has V (G) as its vertex set, and the set of closed neighborhoods
of vertices of G as its hyperedge set).

In another setting, one wishes to distinguish all pairs of hyperedges (in other
words, each equivalence class must have size 1) while minimizing the size of the
solution set C. Following [26], we call the associated decision problem, Distin-

guishing Transversal.

Distinguishing Transversal

Input: A hypergraph H = (X,E), and an integer k.
Question: Is there a set C ⊆ X of size at most k that induces |E| distinct
equivalence classes?

There exists a rich literature about Distinguishing Transversal. It was
studied under different names, such as Test Set in Garey and Johnson’s
book [25, SP6]; other names include Test Cover [18–20], Discriminating

Code [16] or Separating System [7,37].1 A celebrated theorem of Bondy [8]
also implicitely studies this notion. A version of Distinguishing Transversal

called Identifying Code was defined for graphs instead of hypergraphs [23,27].
Similarly as for the well-known relation between the classic graph problem Dom-

inating Set and the hypergraph problem Hitting Set, it is easy to check that
an identifying code in graph G is the same as a distinguishing transversal in the
neighborhood hypergraph of G.

The goal of this paper is to introduce and study the problem Partial

VC Dimension, that generalizes both Distinguishing Transversal and VC

Dimension, and defined as follows.

1 Technically speaking, in Test Set, Test Cover and Separating System, the
goal is to distinguish the vertices of a hypergraph using a set C of hyperedges, and
in Discriminating Code the input is presented as a bipartite graph. Nevertheless,
these formulations are equivalent to Distinguishing Transversal by considering
either the dual hypergraph of the input hypergraph H = (X, E) (with vertex set E
and hyperedge set X, and hyperedge x contains vertex e in the dual if hyperedge
e contains vertex x in H), or the bipartite incidence graph (defined over vertex set
X ∪ E, and where x and e are adjacent if they were incident in H).
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Partial VC Dimension

Input: A hypergraph H = (X,E), and two integers k and �.
Question: Is there a set C ⊆ X of size k that induces at least � distinct
equivalence classses?

Partial VC Dimension belongs to the category of partial versions of com-
mon decision problems, in which, instead of satisfying the problem’s constraint
task for all elements (here, all 2k equivalence classes), we ask whether we can sat-
isfy a certain number, �, of these constraints. See for example the papers [22,29]
that study some partial versions of standard decision problems, such as Set

Cover or Dominating Set.
When � = |E|, Partial VC Dimension is precisely the problem Distin-

guishing Transversal. When � = 2k, we have the problem VC Dimension.
Hence, Partial VC Dimension is NP-hard, even on many restricted classes.
Indeed, Distinguishing Transversal is NP-hard [25], even on hypergraphs
where each vertex belongs to at most two hyperedges [20], or on neighborhood
hypergraphs of graphs that are either: unit disk graphs [32], planar bipartite
subcubic [23], graphs that are interval and permutation [24], split graphs [23].
Min Distinguishing Transversal cannot be approximated within a factor
of o(log n) on hypergraphs of order n [20], even on hypergraphs without 4-
cycles [10], and on neighborhood hypergraphs of bipartite, co-bipartite or split
graphs [23].

When � = 2k, Partial VC Dimension is equivalent to VC Dimension

and unlikely to be NP-hard (unless all problems in NP can be solved in quasi-
polynomial time), since |X| � 2k and a simple brute-force algorithm has quasi-
polynomial running time. Moreover, VC Dimension (and hence Partial VC

Dimension) is W[1]-complete when parameterized by k [21].
Recently, the authors in [12] introduced the notion of (α, β)-set systems, that

is, hypergraphs where, for any set S of vertices with |S| � α, S induces at most β
equivalence classes. Using this terminology, if a given hypergraph H is an (α, β)-
set system, (H, k, �) with k = α is a YES-instance of Partial VC Dimension

if and only if � � β.
We will also study the approximation complexity of the following fixed-

cardinality maximization problem associated to Partial VC Dimension.

Max Partial VC Dimension

Input: A hypergraph H = (X,E), and an integer k.
Output: A set C ⊆ X of size k that maximizes the number of equivalence
classes induced by C.

Similar fixed-cardinality versions of classic optimization problems such as
Set Cover, Dominating Set or Vertex Cover, derived from the “partial”
counterparts of the corresponding decision problems, have gained some attention
in the recent years, see for example [13,14,29].

Max Partial VC Dimension is clearly NP-hard since Partial VC

Dimension is NP-complete; other than that, its approximation complexity is
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completely unknown since it cannot be directly related to the one of approxi-
mating Min Distinguishing Transversal or Max VC Dimension (the min-
imization and maximization versions of Distinguishing Transversal and VC

Dimension, respectively).

Our Results. Our focus is on the approximation complexity of Max Partial

VC Dimension. We give positive results in Sect. 3. We first provide polynomial-
time approximation algorithms using the VC-dimension for the maximum degree
or for the maximum edge-size of the input hypergraph. We apply these to obtain
approximation ratios of the form nδ (for δ < 1 a constant) in certain special
cases, as well as a better approximation ratio but with exponential time. For
neighbourhood hypergraphs of planar graphs, Max Partial VC Dimension

admits a PTAS (this is also shown for Min Distinguishing Transversal). In
Sect. 4, we give hardness results. We show that any 2-approximation algorithm
for Max Partial VC Dimension implies a 2-approximation algorithm for Max

VC Dimension. Finally, we show that Max Partial VC Dimension is APX-
hard, even for graphs of maximum degree at most 7.

2 Preliminaries

Twin-free Hypergraphs. In a hypergraph H, we call two equal hyperedges twin
hyperedges. Similarly, two vertices belonging to the same set of hyperedges are
twin vertices.

Clearly, two twin hyperedges will always belong to the same neighborhood
equivalence classes. Similarly, for any set T of mutually twin vertices, there is
no advantage in selecting more than one of the vertices in T when building a
solution set C.

Observation 1. Let H = (X,E) be a hypergraph and let H ′ = (X ′, E′) be the
hypergraph obtained from H by deleting all but one of the hyperedges or vertices
from each set of mutual twins. Then, for any set C ⊆ X, the equivalence classes
induced by C in H are the same as those induced by C ∩ X ′ in H ′.

Therefore, since it is easy to detect twin hyperedges and vertices in an input
hypergraph, in what follows, we will always restrict ourselves to hypergraphs
without twins. We call such hypergraphs twin-free.

Degree conditions. In a hypergraph H, the degree of a vertex x is the number
of hyperedges it belongs to. The maximum degree of H is the maximum value
of the degree of a vertex of H; we denote it by Δ(H).

The next theorem gives an upper bound on the number of neighborhood
equivalence classes that can be induced when the degrees are bounded.

Theorem 2 ([18,20,27]). Let H = (X,E) be a hypergraph with maximum
degree Δ and let C be a subset of X of size k. Then, C cannot induce more
than k(Δ+1)

2 + 1 neighborhood equivalence classes.
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The Sauer-Shelah lemma. The following theorem is known as the Sauer-Shelah
Lemma [38,39] (it is also credited to Perles in [39] and a weaker form was stated
by Vapnik and Červonenkis [40]). It is a fundamental tool in the study of the
VC dimension.

Theorem 3 (Sauer-Shelah Lemma [38,39]). Let H = (X,E) be a hyper-
graph with strictly more than

∑d−1
i=0

(|X|
i

)
distinct hyperedges. Then, S has VC-

dimension at least d.

Theorem 3 is known to be tight. Indeed, the system that consists of consid-
ering all subsets of {1, . . . , n} of cardinality at most d − 1 has VC-dimension
equal to d − 1. Though the original proofs of Theorem3 were non-constructive,
Ajtai [1] gave a constructive proof that yields a (randomized) polynomial-time
algorithm, and an easier proof of this type can be found in Miccianio [31].

The following direct corollary of Theorem3 is observed for example in [10].

Corollary 4. Let S = (X,E) be a hypergraph with VC dimension at most d.
Then, for any subset X ′ ⊆ X, there are at most

∑d
i=0

(|X′|
i

)
� |X ′|d + 1 equiva-

lence classes induced by X ′.

Approximation. An algorithm for an optimization problem is a c-approximation
algorithm if it returns a solution whose value is always at most a factor of c
away from the optimum. The class APX contains all optimization problems that
admit a polynomial-time c-approximation algorithm for some fixed constant c.
A polynomial-time approximation scheme (PTAS for short) for an optimization
problem is an algorithm that, given any fixed constant ε > 0, returns in polyno-
mial time (in terms of the instance and for fixed ε) a solution that is a factor of
1+ ε away from the optimum. An optimization problem is APX-hard if it admits
no PTAS (unless P=NP).

Given an optimization problem P , an instance I of P , we denote by optP (I)
(or opt(I) if there is no ambiguity) the value of an optimal solution for I.

Definition 5 (L-reduction [33]). Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants α, β > 0 and
two polynomial time computable functions f , g such that: (i) f maps an instance
I of A into an instance I ′ of B such that optB(I ′) � α · optA(I), (ii) g maps
each solution S′ of I ′ into a solution S of I such that ||S|−optA(I)| � β · ||S′|−
optB(I ′)|.

L-reductions are useful in order to apply the following theorem.

Theorem 6 [33]. Let A and B be two optimization problems. If A is APX-hard
and L-reducible to B, then B is APX-hard.
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3 Positive Approximation Results for Max Partial VC
Dimension

We start with a greedy polynomial-time procedure that always returns (if it
exists), a set |X ′| that induces at least |X ′| + 1 equivalence classes.

Lemma 7. Let H = (X,E) be a twin-free hypergraph and let k � |X| − 1 be an
integer. One can construct, in time O(k(|X| + |E|)), a set C ⊆ X of size k that
produces at least min{|E|, k + 1} neighborhood equivalence classes.

Proof. We produce C in an inductive way. First, let C1 = {x} for an arbitrary
vertex x of X for which there exists at least one hyperedge of E with x /∈ E (if
such hyperedge does not exist, then all edges are twin edges; since H is twin-free,
|E| � 1 and we are done). Then, for each i with 2 � i � k, we build Ci from
Ci−1 as follows: select vertex xi as a vertex in X \ Ci−1 such that Ci−1 ∪ {x}
maximizes the number of equivalence classes.

We claim that either we already have at least |E| equivalence classes, or Ci

induces at least one more equivalence class than Ci−1. Assume for a contradiction
that we have strictly less than |E| equivalence classes, but Ci has the same
number of equivalence classes as Ci−1. Since we have strictly less than |E| classes,
there is an equivalence class consisting of at least two edges, say e1 and e2. But
then, since H is twin-free, there is a vertex x that belongs to exactly one of e1
and e2. But Ci−1 ∪ {x} would have strictly more equivalence classes than Ci, a
contradiction since Ci was maximizing the number of equivalence classes.

Hence, setting C = Ck finishes the proof. ��

Proposition 8. Max Partial VC Dimension is min{2k,|E|}
k+1 -approximable in

polynomial time. For hypergraphs with VC dimension at most d, Max Partial

VC Dimension is kd−1-approximable. For hypergraphs with maximum degree Δ,
Max Partial VC Dimension is Δ+1

2 -approximable.

Proof. By Lemma 7, we can always compute in polynomial time, a solution with
at least k + 1 neighborhood equivalence classes (if it exists; otherwise, we solve
the problem exactly). Since there are at most min{2k, |E|} possible classes, the
first part of the statement follows. Similarly, by Corollary 4, if the hypergraph
has VC dimension at most d, there are at most kd + 1 equivalence classes, and
kd+1
k+1 � kd−1. Finally, if the maximum degree is at most Δ, by Theorem 2 there

are at most k(Δ+1)+2
2 possible classes (and when Δ � 1, k(Δ+1)+2

2(k+1) � Δ+1
2 ). ��

Corollary 9. For hypergraphs of VC dimension at most d, Max Partial VC

Dimension is |E|(d−1)/d-approximable.

Proof. By Proposition 8, we have a min{kd−1, |E|/k})-approximation. If kd−1 <
|E|(d−1)/d we are done. Otherwise, we have kd−1 � |E|(d−1)/d and hence k �
|E|1/d, which implies that |E|

k � |E|(d−1)/d. ��
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For examples of concrete applications of Corollary 9, hypergraphs with no 4-
cycles in its bipartite incidence graph2 have VC-dimension at most 3 and hence
we have an |E|2/3-approximation for this class. Hypergraphs with maximum
edge-size d also have VC dimension at most d. Other examples, arising from
graphs, are neighborhood hypergraphs of: Kd+1-minor-free graphs (that have
VC dimension at most d [11]); graphs of rankwidth at most r (VC dimension at
most 22

O(r)
[11]); interval graphs (VC dimension at most 2 [10]); permutation

graphs (VC dimension at most 3 [10]); line graphs (VC dimension at most 3);
unit disk graphs (VC dimension at most 3) [10]; C4-free graphs (VC dimension at
most 2); chordal bipartite graphs (VC dimension at most 3 [10]); undirected path
graphs (VC dimension at most 3 [10]). Typical graph classes with unbounded
VC dimension are bipartite graphs and their complements, or split graphs.

In the case of hypergraphs with no 4-cycles in its bipartite incidence graph
(for which Max Partial VC Dimension has an |E|2/3-approximation algo-
rithm by Corollary 9), we can also relate Max Partial VC Dimension to
Max Partial Double Hitting Set, defined as follows.

Max Partial Double Hitting Set

Input: A hypergraph H = (X,E), an integer k.
Output: A subset C ⊆ X of size k maximizing the number of hyperedges
containing at least two elements of C.

Theorem 10. Any α-approximation algorithm for Max Partial Double

Hitting Set on hypergraphs without 4-cycles in its bipartite incidence graph
can be used to obtain a 4α-approximation algorithm for Max Partial VC

Dimension on hypergraphs without 4-cycles in its bipartite incidence graph.

Proof. Let H = (X,E) be a hypergraph without 4-cycles in its bipartite inci-
dence graph, and let C ⊆ X be a subset of vertices. Since H has no 4-cycles in
its bipartite incidence graph, note that if some hyperedge contains two vertices
of X, then no other hyperedge contains these two vertices. Therefore, the num-
ber of equivalence classes induced by C is equal to the number of hyperedges
containing at least two elements of C, plus the number of equivalence classes
corresponding to a single (or no) element of C. Therefore, the maximum num-
ber opt(H) of equivalence classes for a set of size k is at most opt2HS(H)+k+1,
where opt2HS(H) is the value of an optimal solution for Max Partial Double

Hitting Set on H. Observing that opt2HS(H) � k
2 (since one may always iter-

atively select pairs of vertices covering a same hyperedge to obtain a valid double
hitting set of H), we get that opt(H) � 3opt2HS(H)+1 � 4opt2HS(H). Moreover,
in polynomial time we can apply the approximation algorithm of Max Par-

tial Double Hitting Set to H to obtain a set C inducing at least opt2HS(H)
α

neighborhood equivalence classes. Thus, C induces at least opt(H)
4α neighborhood

equivalence classes. ��
2 In the dual hypergraph, this corresponds to the property that each pair of hyperedges

have at most one common element, see for example [2].
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Unfortunately, the complexity of approximating Max Partial Double

Hitting Set seems not to be well-known, even when restricted to hypergraphs
with no 4-cycles in its bipartite incidence graph. In fact, the problem Max

Densest Subgraph (which, given an input graph, consists of maximizing the
number of edges of a subgraph of order k) is precisely Max Partial Double

Hitting Set restricted to hypergraphs where each hyperedge has size at most 2
(that is, to graphs), that can be assumed to contain no 4-cycles in its bipartite
incidence graph (a 4-cycle would imply the existence of two twin hyperedges).
Although Max Densest Subgraph (and hence Max Partial Double Hit-

ting Set for hypergraphs with no 4-cycles in its bipartite incidence graph)
is only known to admit no PTAS [28], the best known approximation ratio
for it is O(|E|1/4) [5].3 We deduce from this result, the following corollary of
Theorem 10 for hypergraphs of hyperedge-size bounded by 2. This improves on
the O(|E|1/2)-approximation algorithm given by Corollary 9 for this case.

Corollary 11. Let α be the best approximation ratio in polynomial time for
Max Densest Subgraph. Then, Max Partial VC Dimension can be 3α-
approximated in polynomial time on hypergraphs with hyperedges of size at
most 2. In particular, there is a polynomial-time O(|E|1/4)-approximation algo-
rithm for this case.

We will now apply the following result from [4].

Lemma 12 ([4]). If an optimization problem is r1(k)-approximable in fpt-time
with respect to parameter k for some strictly increasing function r1 depending
solely on k, then it is also r2(n)-approximable in fpt-time w.r.t. parameter k for
any strictly increasing function r2 depending solely on the instance size n.

Using Proposition 8 showing that Max Partial VC Dimension is 2k

k+1 -
approximable and Lemma12, we directly obtain the following.

Corollary 13. For any strictly increasing function r, Max Partial VC

Dimension parameterized by k is r(n)-approximable in FPT-time.

In the following we establish polynomial time approximation schemes for Min

Distinguishing Transversal and Max Partial VC Dimension on planar
graphs using the layer decomposition technique introduced by Baker [3].

Given a planar embedding of an input graph, we call the vertices which are
on the external face level 1 vertices. By induction, we define level t vertices as
the set of vertices which are on the external face after removing the vertices of
levels smaller than t [3]. A planar embedding is t-level if it has no vertices of
level greater than t. If a planar graph is t-level, it has a t-outerplanar embedding.

Theorem 14. Max Partial VC Dimension on neighborhood hypergraphs of
planar graphs admits a PTAS.

3 Formally, it is stated in [5] as an O(|V |1/4)-approximation algorithm, but we may
assume that the input graph is connected, and hence |V | = O(|E|).
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Proof. Let G be a planar graph with a t-level planar embedding for some
integer t. We aim to achieve an approximation ratio of 1 + ε. Let λ = � 1

ε	 − 1.
Let Gi (0 � i � λ) be the graph obtained from G by removing the vertices

on levels i mod (λ+1). Thus, graph Gi is the disjoint union of several subgraphs
Gij (0 � j � p with p = � t+i

λ+1	) where Gi0 is induced by the vertices on
levels 0, . . . , i − 1 (note that G00 is empty) and Gij with j � 1 is induced
by the vertices on levels (j − 1)(λ + 1) + i + 1, . . . j(λ + 1) + i − 1. In other
words, each subgraph Gij is the union of at most λ consecutive levels and is
thus λ-outerplanar. Hence, Gi is also λ-outerplanar and it has treewidth at
most 3λ − 1 [6]. Using Courcelle’s theorem4, for any integer t and any subgraph
Gij , we can efficiently determine an optimal set St

ij of t vertices of Gij that
maximizes the number of (nonempty) induced equivalence classes in Gij . We
then use dynamic programming to construct a solution for Gi. Denote by Si(q, y)
a solution corresponding to the maximum feasible number of equivalence classes
induced by a set of y vertices of Gi (0 � y � k) among the first q subgraphs
Gi1, . . . , Giq (1 � q � p). We have Si(q, y) = max0�x�y(Sx

iq + Si(q − 1, y − x)).
Let Si = Si(p, k).

Among S0, . . . , Sλ, we choose the best solution, that we denote by S. We
now prove that S is an (1 + ε)-approximation of the optimal value opt(G) for
Max Partial VC Dimension on G. Let Sopt be an optimal solution of G.
Then, there is at least one integer r such that at most 1/(λ+1) of the equivalent
classes induced by Sopt in G are lost when we remove vertices on the levels
congruent to r mod (λ + 1).

Thus, val(S) � val(Sr) � opt(G) − opt(G)
λ+1 = λ

λ+1opt(G) � (1 − 1
ε )opt(G),

which completes the proof.
The overall running time of the algorithm is λ times the running time for

graphs of treewidth at most 3λ − 1, that is, O(λn). ��
As a side result, using the same technique, we provide the following theorem

about Min Distinguishing Transversal, which is an improvement over the
7-approximation algorithm that follows from [36] (in which it is proved that any
YES-instance satisfies � � 7k) and solves an open problem from [23]. Due to
space constraints, its proof is omitted.

Theorem 15. Min Distinguishing Transversal on neighborhood hyper-
graphs of planar graphs (equivalently, Min Identifying Code on planar
graphs) admits a PTAS.

4 Hardness of Approximation Results for Max Partial
VC Dimension

We define Max VC Dimension as the maximization version of VC Dimension.
4 We can indeed encode the decision version of our problem in MSOL as follows:

∃x1, . . . , xk, y1, . . . , yl, s
1
1, s

2
1, . . . , s

�
�−1, s

j
i =
∨k

q=1 xq,
∨(�

2)
i,j=0(s

j
i ∈ yi ∧ sj

i /∈ yj) ∨ (sj
i /∈

yi ∧ sj
i ∈ yj).
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Max VC Dimension

Input: A hypergraph H = (X,E).
Output: A maximum-size shattered subset C ⊆ X of vertices.

Not much is known about the complexity of Max VC Dimension: it is
trivially log2 |E|-approximable by returning a single vertex; a lower bound on
the running time of a potential PTAS has been proved [17]. It is mentioned as
an outstanding open problem in [15]. In the following we establish a connection
between the approximability of Max VC Dimension and Max Partial VC

Dimension.

Theorem 16. Any 2-approximation algorithm for Max Partial VC Dimen-

sion can be transformed into a randomized 2-approximation algorithm for Max

VC Dimension with polynomial overhead in the running time.

Proof. Let H be a hypergraph on n vertices that is an instance for Max VC

Dimension, and suppose we have a c-approximation algorithm A for Max

Partial VC Dimension.
We run A with k = 1, . . . , log2 |X|, and let k0 be the largest value of k such

that the algorithm outputs a solution with at least 2k

c neighborhood equivalence
classes. Since A is a c-approximation algorithm, we know that the optimum
for Max Partial VC Dimension for any k > k0 is strictly less than 2k. This
implies that the VC-dimension of S is at most k0.

Now, let X be the solution set of size k0 computed by A , and let HX be
the sub-hypergraph of H induced by X. By our assumption, this hypergraph
has at least 2k0

c distinct edges. We can now apply the Sauer-Shelah Lemma
(Theorem 3).

We have c = 2, and we apply the lemma with |X| = k0 and d = k0
2 + 1; it

follows that the VC dimension of HX (and hence, of H) is at least k0
2 +1. By the

constructive proof of Theorem 3, a shattered set Y of this size can be computed
in (randomized) polynomial time [1,31]. Set Y is a 2-approximation, since we
saw in the previous paragraph that the VC dimension of H is at most k0. ��

We note that the previous proof does not seem to apply for any other con-
stant than 2, because the Sauer-Shelah Lemma would not apply. Though the
approximation complexity of Max VC Dimension is not known, our result
shows that Max Partial VC Dimension is at least as hard to approximate.

Before proving our next result, we first need an intermediate result for Max

Partial Vertex Cover (also known as Max k-Vertex Cover [14]), which
is defined as follows.

Max Partial Vertex Cover

Input: A graph G = (V,E), an integer k.
Output: A subset S ⊆ V of size k covering the maximum number of edges.
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Proposition 17 ([35]). Max Partial Vertex Cover is APX-hard, even for
cubic graphs.

Theorem 18. Max Partial VC Dimension is APX-hard, even for graphs of
maximum degree 7.

Proof. We will give an L-reduction from Max Partial Vertex Cover (which
is APX-hard, by Proposition 17) to Max Partial VC Dimension. The result
will then follow from Theorem6. Given an instance I = (G, k) of Max Partial

Vertex Cover with G = (V,E) a cubic graph, we construct an instance I ′ =
(G′, k′) of Max Partial VC Dimension with G′ = (V ′, E′) of maximum
degree 7 in the following way. For each vertex v ∈ V , we create a gadget Pv with
twelve vertices where four among these twelve vertices are special: they form the
set Fv = {f1

v , f2
v , f3

v , f4
v }. The other vertices are adjacent to the subsets {f4

v },
{f2

v , f3
v }, {f1

v , f3
v }, {f2

v , f4
v }, {f1

v , f4
v }, {f1

v , f3
v , f4

v }, {f1
v , f2

v , f4
v },{f1

v , f2
v , f3

v , f4
v },

respectively. We also add edges between f1
v and f2

v , between f2
v and f3

v and
between f3

v and f4
v . Since G is cubic, for each vertex v of G, there are three

edges e1, e2 and e3 incident with v. For each edge ei (1 � i � 3), the endpoint
v is replaced by f i

v. Moreover, each of these original edges of G is replaced in
G′ by two edges by subdividing it once (see Fig. 1 for an illustration). We call
the vertices resulting from the subdivision process, edge-vertices. Finally, we set
k′ = 4k.

f1
v

f2
v

f3
v

f4
v

a) b)

v

u1

u2

u3

Pv

Pu1

Pu2

Pu3

Fig. 1. a) Vertex-gadget Pv and b) illustration of the reduction.

From any optimal solution S with |S| = k covering opt(I) edges of G, we
construct a set C = {f j

v : 1 � j � 4, v ∈ S} of size 4k. By construction, C
induces 12 equivalence classes in each vertex gadget. Moreover, for each covered
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edge e = xy in G, the corresponding edge-vertex ve in G′ forms a class of
size 1 (which corresponds to one or two neighbor vertices f i

x and f j
y of ve in C).

Finally, all vertices in G′ corresponding to edges not covered by S in G, as well
as all vertices in vertex gadgets corresponding to vertices not in S, belong to the
same equivalence class (corresponding to the empty set). Thus, C induces in G′

12k + opt(I) + 1 equivalence classes, and hence we have

opt(I ′) � 12k + opt(I) + 1. (1)

Conversely, given a solution C ′ of I ′ with |C ′| = 4k, we transform it into a
solution for I as follows. First, we show that C ′ can be transformed into another
solution C ′′ such that (1) C ′′ only contains vertices of the form f i

v, (2) each
vertex-gadget contains either zero or four vertices of C ′′, and (3) C ′′ does not
induce less equivalence classes than C ′. To prove this, we proceed step by step
by locally altering C ′ whenever (1) and (2) are not satisfied, while ensuring (3).

Suppose first that some vertex-gadget Pv of G′ contains at least four vertices
of C ′. Then, the number of equivalence classes involving some vertex of V (Pv)∩
C ′ is at most twelve within Pv (since there are only twelve vertices in Pv), and at
most three outside Pv (since there are only three vertices not in Pv adjacent to
vertices in Pv). Therefore, we can replace V (Pv)∩C ′ by the four special vertices
of the set Fv in Pv; this choice also induces twelve equivalence classes within Pv,
and does not decrease the number of induced classes.

Next, we show that it is always best to select the four special vertices of Fv

from some vertex-gadget (rather than having several vertex-gadgets containing
less than four solution vertices each). To the contrary, assume that there are two
vertex-gadgets Pu and Pv containing respectively a and b vertices of C ′, where
1 � b � a � 3. Then, we remove an arbitrary vertex from C ′ ∩ V (Pv); moreover
we replace C ′ ∩ V (Pu) with the subset {f i

u, 1 � i � a + 1}, and similarly we
replace C ′ ∩V (Pv) with the subset {f i

v, 1 � i � b−1}. Before this alteration, the
solution vertices within V (Pu) ∪ V (Pv) could contribute to at most 2a + 2b − 2
equivalence classes. After the modification, one can check that this quantity is
at least 2a+1+2b−1−2 classes. Observing that 2a+1+2b−1−2 � 2a +2b −2 since
2a − 2b−1 � 0 yields our claim. Hence, by this argument, we conclude that all
vertex-gadgets (except possibly at most one) contain either zero or four vertices
from the solution set C ′.

Suppose that there exists one vertex-gadget Pv with i solution vertices, 1 �
i � 3. We show that we may add 4−i solution vertices to it so that C ′ ∩V (Pv) =
Fv. Consider the set of edge-vertices belonging to C ′. Since we had |C ′| = 4k
and all but one vertex-gadget contain exactly four solution vertices, there are at
least 4−i edge-vertices in the current solution set. Then, we remove an arbitrary
set of 4 − i edge-vertices from C ′ and instead, we replace the set V (Pv) ∩ C ′ by
the set Fv of special vertices of Pv. We now claim that this does not decrease the
number of classes induced by C ′. Indeed, any edge-vertex, since it has degree 2,
may contribute to at most three equivalence classes, and the i solution vertices
in Pv can contribute to at most 2i classes. Summing up, in the old solution set,
these four vertices contribute to at most 3(4 − i) + 2i classes, which is less than
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12 since 1 � i � 3. In the new solution, these four vertices contribute to at least
12 classes, which proves our above claim.

We now know that there are 4i edge-vertices in C ′, for some i � k. All
other solution vertices are special vertices in some vertex-gadgets. By similar
arguments as in the previous paragraph, we may select any four of them and
replace them with some set Fv of special vertices of some vertex-gadget Pv.
Before this modification, these four solution vertices may have contributed to at
most 3 · 4 = 12 classes, while the new four solution vertices now contribute to at
least 12 classes.

Applying the above arguments, we have proved the existence of the required
set C ′′ that satisfies conditions (1)–(3).

Therefore, we may now assume that the solution C ′′ contains no edge-
vertices, and for each vertex-gadget Pv, C ′′ ∩ V (Pv) ∈ {∅, Fv}. We define as
solution S for I the set of vertices v of G for which Pv contains four ver-
tices of C ′′. Then, val(S) = val(C ′) − 12k − 1. Considering an optimal solu-
tion C ′ for I ′, we have opt(I) � opt(I ′) − 12k − 1. Using (1), we conclude that
opt(I ′) = opt(I) + 12k + 1 � opt(I) + 24opt(I) + 1 since k � 2opt(I) and thus
opt(I ′) � 26opt(I).

Moreover, we have opt(I)−val(S) = opt(I ′)−12k−1−(val(C ′)−12k−1) =
opt(I ′) − val(C ′).

Thus, our reduction is an L-reduction with α = 26 and β = 1. ��
Proposition 8 and Theorem 18 give the following corollary:

Corollary 19. Max Partial VC Dimension is APX-complete for bounded
degree graphs.

5 Conclusion

In this paper, we defined and studied generalization of Distinguishing

Transversal and VC Dimension. The probably most intriguing open ques-
tion seems to be the approximation complexity of Max Partial VC Dimen-

sion. In particular, does the problem admit a constant-factor approximation
algorithm? As a first step, one could determine whether such an approxima-
tion algorithm exists in superpolynomial time, or on special subclasses such as
neighbourhood hypergraphs of specific graphs. We have seen that there exist
polynomial-time approximation algorithms with a sublinear ratio for special
cases; does one exist in the general case?
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