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Abstract. Given a graph H, a graph G is called H-critical if G does
not admit a homomorphism to H, but any proper subgraph of G

does. Observe that Kk−1-critical graphs are the classic k-(colour)-critical
graphs. This work is a first step towards extending questions of extremal
nature from k-critical graphs to H-critical graphs. Besides complete
graphs, the next classic case is odd cycles. Thus, given integers l ≥ k

we ask: what is the smallest order η(k, l) of a C2l+1-critical graph of
odd-girth at least 2k + 1? Denoting this value by η(k, l), we show that
η(k, l) = 4k for l ≤ k ≤

3l+i−3
2

(2k = i mod 3) and that η(3, 2) = 15.
The latter is to say that a smallest graph of odd-girth 7 not admitting a
homomorphism to the 5-cycle is of order 15 (there are at least 10 such
graphs on 15 vertices).

1 Introduction

A k-critical graph is a graph which is k-chromatic but any proper subgraph of
it is (k − 1)-colourable. Extremal questions on critical graphs are a rich source
of research in graph theory. Many well-known results and conjectures are about
this subject, see for example [4,6–8,15]. Typical questions are for example:

Problem 1. What is the smallest possible order of a k-critical graph having a
certain property, such as low clique number, high girth or high odd-girth?

For example, Erdős’ proof of existence of graphs of high girth and high
chromatic number [5] is a starting point for Problem 1. This fact implies that
each of the above questions have a finite answer. The specific question of the
smallest 4-critical graph without a triangle has received considerable attention:
Grötzsch built a graph on 11 vertices which is triangle-free and not 3-colourable.
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Harary [11] showed that any such graph must have at least 11 vertices, and
Chvátal [3] showed that the Grötzsch graph is the only one with 11 vertices.

Every graph with no odd cycle being 2-colourable, in the context of colour-
ing, it is of interest to consider the odd-girth, the size of a smallest odd-cycle
of a graph (rather than the girth). Extending construction of Grötzsch’s graph,
Mycielski [14] introduced the construction, now knows as the Mycielski construc-
tion, to increase the chromatic number without increasing the clique number. A
generalization of this construction is used to build 4-critical graphs of high odd-
girth, more precisely every generalized Mycielski construction on C2k+1, denoted
Mk(C2k+1) is a 4-critical graph. The graph M2(C5) is simply the classic Myciel-
ski construction for C5, that is, the Grötzsch graph. Mk(C2k+1) has odd-girth
2k+1, and several authors (starting with Payan [18]) showed that Mk(C2k+1) is
4-chromatic for any k ≥ 1 and in fact 4-critical, thus providing an upper bound
of 2k2 + k + 1 for the minimum order of a 4-critical graph of odd-girth at least
2k + 1. We refer to [10,16,19,20] for several other proofs. Among these authors,
Ngoc and Tuza [16] asked whether this upper bound of 2k2 + k + 1 is essen-
tially optimal. The best known lower bound is due to Jiang [13], who proved the
bound of (k −1)2 +2, which establishes the correct order of magnitude at Θ(k2)
(see [17] for an earlier but weaker lower bound).

The current work is a first step towards generalizing these extremal questions
for k-critical graphs to H-critical graphs, defined using the terminology of homo-
morphisms. A homomorphism of a graph G to a graph H is a vertex-mapping
that preserves adjacency, i.e., a mapping ψ : V (G) → V (H) such that if x and
y are adjacent in G, then ψ(x) and ψ(y) are adjacent in H. If there exists a
homomorphism of G to H, we may write G → H and we may say that G is
H-colourable. In the study of homomorphisms, it is usual to work with the core
of a graph, that is, a minimal subgraph which admits a homomorphism from the
graph itself. It is not difficult to show that a core of any graph is unique up to
isomorphism. A graph is said to be a core if it admits no homomorphism to a
proper subgraph. We refer to the book [12] for a reference on these notions.

It is a classic fact that homomorphisms generalize proper vertex-colourings.
Indeed a homomorphism of G to Kk is equivalent to a k-colouring of G. However,
the extension of the notion of colour-criticality to a homomorphism-based one
has been almost forgotten. As defined by Catlin [2], for a graph H, (we may
assume H is a core), a graph G is said to be H-critical if G does not have a
homomorphism to H but any proper subgraph of G does. Thus:

Observation 2. A graph G is k-critical if and only if it is Kk−1-critical.

This gives a large number of interesting extremal questions. By Observa-
tion 2, these questions are well-studied when H is a complete graph. The next
most important family to be considered is when H is an odd cycle. This is the
goal of this work. More precisely we ask:

Problem 3. Given positive integers k, l, what is the smallest order η(k, l) of a
C2l+1-critical graph of odd-girth at least 2k + 1?
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In this work, we study Problem 3 when l ≥ 2. As we discuss in Sect. 2, it
follows from a theorem of Gerards [9] that η(k, l) ≥ 4k whenever l ≤ k, and
η(k, k) = 4k. We prove (in Sect. 3) that, surprisingly, η(k, l) = 4k whenever l ≤
k ≤ 3l+i−3

2 (with 2k = i mod 3). We then prove (in Sect. 4) that η(3, 2) = 15. We
conclude with further research questions in the last section. Table 1 summarizes
the known bounds for Problem 3 and small values of k and l.

Note that the value of η(3, 2) indeed was the initial motivation of this work.
In [1], we use the fact that η(3, 2) = 15 to prove that if a graph B of odd-
girth 7 has the property that any series-parallel graph of odd-girth 7 admits a
homomorphism to B, then B has at least 15 vertices.

Table 1. Known values/bounds on the smallest order of a not C2l+1-colourable graph
of odd-girth 2k + 1. Bold values are proved in this paper.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

l = 1 4 11[11] 15–22

[Th. 12]–[18]

17–37

[Co. 13]–[18]

20–56

[Co. 8]–[18]

27–79

[13]–[18]

38–106

[13]–[18]

51–137

[13]–[18]

l = 2 3 8 [Co. 6] 15 [Th. 12] 17–37

[Co. 13]–[18]

20–56

[Co. 8]–[18]

24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 3 3 5 12 [Co. 6] 16 [Th. 10] 20–56

[Co. 8]–[18]

24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 4 3 5 7 16 [Co. 6] 20 [Th. 10] 24–79

[Co. 8]–[18]

28–106

[Co. 8]–[18]

32–137

[Co. 8]–[18]

l = 5 3 5 7 9 20 [Co. 6] 24 [Th. 10] 28 [Th. 10] 32–137

[Co. 8]–[18]

l = 6 3 5 7 9 11 24 [Co. 6] 28 [Th. 10] 32 [Th. 10]

l = 7 3 5 7 9 11 13 28 [Co. 6] 32 [Th. 10]

l = 8 3 5 7 9 11 13 15 32 [Co. 6]

2 Preliminaries

This section is devoted to introduce useful preliminary notions and results.

Circular chromatic number. We recall some basic notions related to circular
colourings. For a survey on the matter, consult [21]. Given two integers p and
q with gcd(p, q) = 1, the circular clique C(p, q) is the graph on vertex set
{0, . . . , p − 1} with i adjacent to j if and only if q ≤ |i − j| ≤ p − q. A homo-
morphism of a graph G to C(p, q) is called a (p, q)-colouring, and the circu-
lar chromatic number of G, denoted χc(G), is the smallest rational p/q such
that G has a (p, q)-colouring. Since C(p, 1) is the complete graph Kp, we have
χc(G) ≤ χ(G). On the other hand C(2l + 1, l) is the cycle C2l+1. Thus C2l+1-
colourability is about deciding whether χc(G) ≤ 2 + 1

l
. It is a well-known fact

that C(p, q) → C(r, s) if and only if p

q
≤ r

s
(e.g. see [21]), in particular we will

use the fact that C(12, 5) → C5.

Odd-K4’s and a theorem of Gerards. The following notion will be central in our
proofs. An odd-K4 is a subdivision of the complete graph K4 where each of
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the four triangles of K4 has become an odd-cycle [9]. Furthermore, we call it a
(2k + 1)-odd-K4 if each such cycle has length exactly 2k + 1. Since subdivided
triangles are the only odd-cycles of an odd-K4, the odd-girth of a (2k + 1)-odd-
K4 is 2k + 1. The following is an easy fact about odd-K4’s whose proof we leave
as an exercise.

Proposition 4. Let K be an odd-K4 of odd-girth at least 2k + 1. Then, K has
order at least 4k, with equality if and only if K is a (2k+1)-odd-K4. Furthermore,
in the latter case any two disjoint edges of K4 are subdivided the same number
of times when constructing K.

A (2k + 1)-odd-K4 is, more precisely, referred to as an (a, b, c)-odd-K4 if
three edges of a triangle of K4 are subdivided into paths of length a, b and c
respectively (by Proposition 4 this is true for all four triangles). Note that while
the terms “odd-K4” or “(2k +1)-odd-K4” refer to many non-isomorphic graphs,
an (a, b, c)-odd-K4 (a + b + c = 2k + 1) is unique up to a relabeling of vertices.

An odd -K2
3 is a graph obtained from three disjoint odd-cycles and three

disjoint paths (possibly of length 0) joining each pair of cycles [9]. Thus, in such
graph, any two of the three cycles have at most one vertex in common (if the
path joining them has length 0). Hence, an odd-K2

3 of odd-girth at least 2k + 1
has order at least 6k.

Theorem 5. (Gerards [9]). If G has neither an odd-K4 nor an odd-K2
3 as a

subgraph, then it admits a homomorphism to its shortest odd-cycle.

Corollary 6. For any positive integer k, we have η(k, k) = 4k.

Proof. Consider a C2k+1-critical graph G of odd-girth 2k + 1. It follows from
Theorem 5 that G contains either an odd-K4, or an odd-K2

3 . If it contains the
latter, then G has at least 6k vertices. Otherwise, G must contain an odd-K4 of
odd-girth at least 2k + 1, and then by Proposition 4, G has at least 4k vertices.
This shows that η(k, k) ≥ 4k.

Moreover, any (2k + 1)-odd-K4 has order 4k (by Proposition 4) and admits
no homomorphism to C2k+1, showing that η(k, k) ≤ 4k. ⊓⊔

Since C2l+3 maps to C2l+1 and by transitivity of homomorphisms, a graph
with no homomorphism to C2l+1 also has no homomorphism to C2l+3. Thus:

Observation 7. Let k, l be two positive integers. We have η(k, l) ≥ η(k, l + 1).

We obtain this immediate consequence of Corollary 6 and Observation 7:

Corollary 8. For any two integers k, l with k ≥ l ≥ 1, we have η(k, l) ≥ 4k.
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3 Rows of Table 1

In this section, we study the behavior of η(k, l) when l is a fixed value, that is,
the behavior of each row of Table 1. Note again that whenever l ≥ k+1, η(k, l) =
2k +1. As mentioned before, the first row (i.e. l = 1) is about the smallest order
of a 4-critical graph of odd-girth 2k + 1 and we know η(k, 1) = Θ(k2) [17].

It is not difficult to observe that for k ≥ l, the function η(k, l) is strictly
increasing, in fact with a little bit of effort we can even show the following.

Proposition 9. For k ≥ l, we have η(k + 1, l) ≥ η(k, l) + 2.

Proof. Let G be a C2l+1-critical graph of odd-girth 2k + 3 and order η(k + 1, l).
Consider any (2k + 3)-cycle v0 · · · v2k+2 of G, and build a smaller graph by
identifying v0 with v2 and v1 with v3. It is not difficult to check that the resulting
graph has odd-girth exactly 2k + 1 and does not map to C2l+1 (otherwise, G
would), proving the claim. ⊓⊔

While we expect that for a fixed l, η(k, l) grows quadratically in terms of k,
we show, somewhat surprisingly, that at least just after the threshold of k = l,
the function η(k, l) only increases by 4 when l increases by 1, implying that
Proposition 9 cannot be improved much in this formulation. More precisely, we
have the following theorem.

Theorem 10. For any k, l ≥ 3 and l ≤ k ≤ 3l+i−3
2 (where 2k = i mod 3), we

have η(k, l) = 4k.

To prove this theorem, we give a family of C2l+1-critical odd-K4’s which are
of odd-girth 2k+1. This is done in the next theorem, after which we give a proof
of Theorem 10.

Given a graph G, a thread of G is a path in G where the internal vertices
have degree 2 in G. When G is clear from the context, we simply use the term
thread.

Theorem 11. Let p ≥ 3 be an integer. If p is odd, any (a, b, c)-odd-K4 with
(a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)} has no homomorphism to C2p+1. If p is
even, any (p − 1, p, p)-odd-K4 has no homomorphism to C2p+1.

Proof. Let (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p), (p − 1, p, p)} and let K be an
(a, b, c)-odd-K4. Let t, u, v, w be the vertices of degree 3 in K with the tu-
thread of length a, the uv-thread of length b and the tv-thread of length c. We
now distinguish two cases depending on the parity of p and the values of (a, b, c).

Case 1. Assume that p is odd and (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)}. By
contradiction, we assume that there is a homomorphism h of K to C2p+1. Then,
the cycle Ctvw formed by the union of the tv-thread, the vw-thread and the
tw-thread is an odd-cycle of length a + b + c. Therefore, its mapping by h to
C2p+1 must be onto. Thus, u has the same image by h as some vertex u′ of Ctvw.
Note that u′ is not one of t, v or w, indeed by identifying u with any of these
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vertices we obtain a graph containing an odd-cycle of length p or 2p−1; thus, this
identification cannot be extended to a homomorphism to C2p+1. Therefore, u′ is
an internal vertex of one of the three maximal threads in Ctvw. Let Cu be the
odd-cycle of length a + b + c containing u and u′. After identifying u and u′, Cu

is transformed into two cycles, one of them being odd. If (a, b, c) = (p, p, p), then
Cu has length 3p. Then, the two newly created cycles have length at least p + 1,
and thus at most 2p − 1. If (a, b, c) = (p − 1, p− 1, p), then Cu has length 3p − 2,
and the two cycles have length at least p and at most 2p − 2. In both cases, we
have created an odd-cycle of length at most 2p − 1. Hence, this identification
cannot be extended to a homomorphism to C2p+1, a contradiction.

Case 2. Assume that p is even and (a, b, c) = (p − 1, p, p), and that h is a
homomorphism of K to C2p+1. Again, the image of Ctvw by h is onto, and u
has the same image as some vertex u′ of Ctvw. If u′ = t, identifying u and u′

produces an odd (p − 1)-cycle, a contradiction. If u′ ∈ {v, w}, then we get a
(2p − 1)-cycle, a contradiction. Thus, u′ is an internal vertex of one of the three
maximal threads in Ctvw. Let Cu be the odd-cycle of length 3p − 1 containing
u and u′. As in Case 1, after identifying u and u′, Cu is transformed into two
cycles, each of length at least p and at most 2p − 1; one of them is odd, a
contradiction. ⊓⊔

We note that Theorem 11 is tight, in the sense that if p is odd and (a, b, c) ∈
{(p − 1, p − 1, p), (p, p, p)} or if p is even and (a, b, c) = (p − 1, p, p), any (a, b, c)-
odd-K4 has a homomorphism to C2p−1.

We can now prove Theorem 10.

Proof (Proof of Theorem 10). By Corollary 8, we know that η(k, l) ≥ 4k. We now
prove the upper bound. Recall that η(k, l) ≤ η(k, l − 1). If 2k = 0 mod 3, then
p = 2k+3

3 is an odd integer, and p ≤ l. By Theorem 11, a (p−1, p−1, p)-odd-K4,
which has order 6p−6 = 4k, has no homomorphism to C2p+1, and thus η(k, l) ≤
η(k, p) ≤ 4k. Similarly, if 2k = 1 mod 3, then p = 2k+2

3 is an even integer, and
p ≤ l. By Theorem 11, a (p − 1, p, p)-odd-K4, which has order 6p − 4 = 4k,
has no homomorphism to C2p+1, and thus η(k, l) ≤ η(k, p) ≤ 4k. Finally, if
2k = 2 mod 3, then p = 2k+1

3 is an odd integer, and p ≤ l. By Theorem 11, a
(p, p, p)-odd-K4, which has order 6p − 2 = 4k, has no homomorphism to C2p+1,
and thus η(k, l) ≤ η(k, p) ≤ 4k. ⊓⊔

4 The Value of η(3, 2)

We now determine η(3, 2), which is not covered by Theorem 11. By Corollary 8,
we know that η(3, 2) ≥ 12. In fact, we will show that η(3, 2) = 15. Using a
computer search, Gordon Royle (private communication, 2016) has found that
there are at least ten graphs of order 15 and odd-girth 7 that do not admit a
homomorphism to C5. For example, see the three graphs of Fig. 1. Thus, η(3, 2) ≤
15. Next, we prove that this upper bound is tight.
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Theorem 12. Any graph G of order at most 14 and odd-girth at least 7 admits
a homomorphism to C5, and thus η(3, 2) = 15.

Proof. We consider a C5 on the vertex set {0, 1, 2, 3, 4} where vertex i is adjacent
to vertices i+1 and i−1 (modulo 5). Thus, in the following, to give a C5-colouring
we will give a colouring using elements of {0, 1, 2, 3, 4} where adjacent pairs are
mapped into (cyclically) consecutive elements of this set.

Fig. 1. Three C5-critical graphs of order 15 and odd-girth 7.

Given a graph G and a vertex v of it, we partition V (G) into four sets
{v}, N1(v), N2(v) and N3+(v) where N1(v) (respectively N2(v)) designates the
set of vertices at distance exactly 1 (respectively 2) of v, and N3+(v) the vertices
at distance 3 or more of v. A proper 3-colouring of G[N3+(v)] using colours c1, c2

and c3 is said to be v-special if:

(i) each vertex with colour c3 is an isolated vertex of G[N3+(v)],
(ii) no vertex from N2(v) sees both colours c1 and c2.

A key observation is the following: given any graph G, if for some vertex
v of G, there exists a v-special colouring of G[N3+(v)], then G maps to C5.
Such a homomorphism is given by mapping c1-vertices to 0, c2-vertices to 1 and
c3-vertices to 3, and then extending as follows:

– for any vertex u in N2(v), if u has a c1-neighbour, map it to 4; otherwise,
map it to 2,

– all vertices of N1(v) are mapped to 3,
– vertex v is mapped to 2 or 4.

Now, let G be a minimal counterexample to Theorem 12. We first collect a
few properties of G. The previous paragraph allows us to state our first claim.

Claim 12.A. For no vertex v of G there is a v-special colouring of G[N3+(v)].

Since G is a minimal counterexample, it cannot map to a subgraph of itself
(which would be a smaller counterexample):

Claim 12.B. Graph G is a core. In particular, for any two vertices u and v of
G, N(u) �⊆ N(v).
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Recall that a walk between two vertices u and v is a sequence of (not neces-
sarily distinct) vertices starting with u and ending with v, where two consecutive
vertices in the sequence are adjacent. A walk between u and v is an uv-walk,
and a k-walk is a walk with k + 1 vertices.

Claim 12.C. For any two distinct vertices u and v of G, there is a uv-walk of
length 5.

Proof of claim. If not, identifying u and v would result in a smaller graph of yet
odd-girth 7 which does not map to C5, contradicting the minimality of G. (

�
)

Claim 12.D. Graph G has no thread of length 4 or more.

Proof of claim. Once again, by minimality of G, if we remove a thread of length 4,
the resulting graph maps to C5. But since there is a walk of length 4 between
any two vertices of C5, this mapping could easily be extended to G. (

�
)

Now we can state a more difficult claim.

Claim 12.E. There is no vertex of G of degree 4 or more, nor a vertex of degree
exactly 3 with a second neighbourhood of size 5 or more.

Proof of claim. For a contradiction, suppose that a vertex v has degree 4 or
more, or has degree 3 and a second neighbourhood of size 5 or more.

By Claim 12.B, the neighbours of v should have pairwise distinct neighbour-
hoods, so that even if v has degree 4 or more, we must have |N2(v)| ≥ 4. Thus,
by a counting argument (recall that G has at most 14 vertices), N3+(v) has size
at most 5. Since G has odd-girth 7, this means G[N3+(v)] is bipartite.

Suppose G[N3+(v)] has only one non-trivial connected component. Consider
any proper 3-colouring of G[N3+(v)] such that colours c1 and c2 are used for
the non-trivial connected component, and colour c3 is used for isolated vertices.
Then, no vertex of N2(v) can see both colours c1 and c2, as this would result
in a short odd-cycle in G. Thus, any such colouring is v-special. Such colouring
clearly exists, hence by Claim 12.A, we derive that G[N3+(v)] has at least two
non-trivial components. Since it has order at most 5, it must have exactly two.

Assume now that both non-trivial connected components are isomorphic to
K2. Consider all proper 3-colourings of G[N3+(v)] such that colours c1 and c2

are used for the copies of K2 (the potentially remaining vertex being coloured
with c3). One may check that since by Claim 12.A, none of them is v-special,
and hence there is a short odd-cycle in G, which is a contradiction.

Hence, G[N3+(v)] is isomorphic to the disjoint union of K2 and K2,1. Let u1

and u2 be the vertices of K2, and u3, u4 and u5 be the vertices of K2,1 such that
u4 is the central vertex.

Let ϕ1 and ϕ2 be two proper 2-colourings of G[N3+(v)] as follows: ϕ1(u1) =
ϕ1(u3) = ϕ1(u5) = c1 and ϕ1(u2) = ϕ1(u4) = c2, ϕ2(u2) = ϕ2(u3) = ϕ2(u5) =
c1 and ϕ2(u1) = ϕ2(u4) = c2. Since ϕ1 is not v-special, there is either a vertex t1
adjacent to u2 and u3 (by considering the symmetry of u3 and u5), or a vertex
t′1 adjacent to u1 and u4. Similarly, since ϕ2 is not v-special, either there is a
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vertex t2 adjacent to u1 and one to u3 and u5, or there is a vertex t′2 adjacent to
u2 and u4. The existence of some t′i (for i = 1 or 2), together with any of these
three remaining vertices would result in a short odd-cycle in G. Thus, t1 and t2
must exist and more precisely, t2 has to be a neighbour of u5.

Next, we show that u4 has degree at least 3. Suppose not, then it has degree
exactly 2. Let ϕ3 be a partial C5-colouring of G defined as follows: ϕ3(u1) =
ϕ3(u5) = 0, ϕ3(u2) = 1, ϕ3(u3) = 3 and ϕ3(u4) = 4. Then, no vertex in N2(v)
sees both 0 and 1 (by odd-girth arguments). Thus, we can extend ϕ3 to N2(v)
using only colours 2 and 4 on these vertices. Then, all vertices of N1(v) can be
mapped to 3 and v can be mapped to 2 and G → C5, a contradiction.

Hence, there exists a vertex t3 in N2(v) which is adjacent to u4. Note that,
by the odd-girth condition, t3 has no other neighbour in G[N3+(v)] and, in
particular, it must be distinct from t1 and t2. Vertices t1, t2 and t3 are in N2(v),
so there are vertices s1, s2 and s3 in N1(v) such that si is adjacent to ti for
i between 1 and 3. Moreover, vertices t1, t2 and t3 are pairwise connected by
a path of length 3. Therefore, their neighbourhoods cannot intersect, so that
vertices s1, s2 and s3 are distinct.

Now, consider the partial C5-colouring ϕ3 again. We may extend ϕ3 to N2(v)
by assigning colour 0 to neighbours of u4, colour 4 to neighbours of u1 and u5,
and colour 2 to the rest. If no vertex of N1(v) sees both colours 0 and 4 in N2(v),
we may colour N1(v) with 1 and 3 and colour v with 2, which is a contradiction.
Thus, there exists some vertex x in N1(v) seeing both colours 0 and 4 in N2(v).
The only vertices with colour 0 in N2(v) are neighbours of u4 so that x must be
at distance 2 from u4. Since there is no short odd-cycle in G, vertex x cannot
be at distance 2 from u5. Thus, it is at distance 2 from u1. Let t4 be the middle
vertex of this path from x to u1. Now t4 is a neighbour of u1 which is distinct
from t1, t2 and t3. By the symmetry between u1 and u2, there must be a fifth
vertex t5 in N2(v) which is a neighbour of u2 and distinct from t1, t2, t3 and t4.
Moreover, t5 has a neighbour y in N1(v) that is at distance 2 from u4. We can
readily check that y is distinct from x, s1 and s2. Thus, N1(v) has size at least 4
and N2(v) has size at least 5, which is a contradiction with the order of G (which
should be at most 14). This concludes the proof of Claim 12.E. (

�
)

Claim 12.F. G contains no 6-cycle.

Proof of claim. Suppose, by contradiction, that G contains a 6-cycle C :
v0, . . . , v5. For a pair vi and vi+2 (addition in indices are done modulo 6) of
vertices of C, the 5-walk connecting them (see Claim 12.C) is necessarily a 5-
path, which we denote by P i. Furthermore, at most one inner-vertex of P i may
belong to C, and if it does, it must be a neighbour of vi or vi+2 (one can check
that otherwise, there is a short odd-cycle in G).

Assume first that none of the six paths P i (0 ≤ i ≤ 5) has any inner-vertex
on C. In this case and by Claim 12.E, we observe that the neighbours of vi in P i

and P i+4 (additions in superscript are modulo 6) are the same. Let v′
i be this

neighbour of vi.
Vertices v′

i , i = 0, 1, . . . , 5 are all distinct, as otherwise we have a short odd-
cycle in G. Let x and y by two internal vertices of P 1 distinct from v′

0 and v′
2.
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By our assumption, x and y are distinct from vertices of C. We claim that they
are also distinct from v′

i, i = 0, . . . , 5. Vertex x is indeed distinct from v′
0 and

v′
2 by the choice of P 0. It is distinct from v′

1, v
′
3 and v′

4 as otherwise there will
be a short odd-cycle. Similarly, y is distinct from v′

0, v
′
1, v

′
2, v

′
4, v

′
5. For the same

reason, we cannot simultaneously have x = v′
5 and y = v′

3. Finally, if we have
x = v′

5 then {v′
0, v1, y, v3, v

′
4} ⊆ N2(x) and d(x) ≥ 3, contradicting Claim 12.E.

As a result, since |V (G)| ≤ 14, x and y are internal vertices of all P i’s. But then
it easy to find a short odd-cycle.

Hence, we may assume, without loss of generality, that P 1 has one inner-
vertex on C, say v′

1 = v0. Let v0x1x2x3v3 be the 4-path connecting v0 and v3

(recall that xi /∈ C for i = 1, 2, 3). We next assume that P 5 does not have any
inner-vertex in C. Then, no vertex of P 5 is a vertex from {x1, x2, x3}, for oth-
erwise we have a short odd-cycle in G. But then, v0 violates Claim 12.E. There-
fore, an inner-vertex of P 5 lies on C, say it is v2 and we have P 5 : v5y1y2y3v2v1.
Then, P 1 and P 5 are vertex-disjoint, for otherwise we have a short odd-cycle in
G. Remark that C together with the union of the paths P i, i = 0, . . . , 5, forms
a (2k + 1)-odd K4, in fact it is a (1, 2, 4)-odd-K4 (a subgraph of C(12, 5)). Now,
because of the odd-girth of G, and by Claim 12.E, the only third neighbour of
v1, if any, is v4 (and vice-versa). Furthermore, the set {x1, x2, x3, y1, y2, y3} of
vertices induces a subgraph matching the xiyi with i = 1, 2, 3. If there is no
additional vertex in G, then G has order 12 and it is a subgraph of C(12, 5).
But then, the circular chromatic number of G is at most 12/5, implying that
G has a homomorphism to C5, a contradiction. Thus, G has order at least 13.
Again by Claim 12.E, any of the two last potentially existing vertices of G can
be adjacent only to x2 or y2. Without loss of generality (considering the sym-
metries of the graph), assume that x2 has an additional neighbour, v. Then,
either v is also adjacent to y2 (then G has order 13), or v and y2 have a common
neighbour, say w. If v is adjacent to both x2 and y2, then there is no edge in
the set {x1, x2, x3, y1, y2, y3} (otherwise we have a short odd-cycle). But then,
we exhibit a homomorphism of G to C5: map x3, y1, v to 0; x2, y2 to 1; v1, x1,
y3 to 2; v0, v2, v4 to 3; v3 and v5 to 4. This is a contradiction. Thus, v and y2

have a common neighbour w, and both v and w are of degree 2. We now create
a homomorphic image of G by identifying v with y2 and w with x2. Then, this
image of G is a subgraph of C(12, 5), and thus the circular chromatic number of
G is at most 12/5, implying that G has a homomorphism to C5, a contradiction.
This completes the proof of Claim 12.F. (

�
)

Claim 12.G. G contains no 4-cycle.

Proof of claim. Assume by contradiction that G contains a 4-cycle C : tuvw.
As in the proof of Claim 12.F, there must be two 5-paths Ptv : ta1a2a3a4v and
Puw : ub1b2b3b4w connecting t with v and u with w, respectively. Moreover,
these two paths must be vertex-disjoint because of the odd-girth of G. Thus,
the union of C, Ptv and Puw forms a (1, 1, 5)-odd-K4, K. By assumption on the
odd-girth of G, any additional edge inside V (K) must connect an internal vertex
of Ptv to an internal vertex of Puw. But any such edge would either create a
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short odd-cycle or a 6-cycle in G, the latter contradicting Claim 12.F. Thus, the
only edges in V (K) are those of K. If there is no additional vertex in G, we
have two 5-threads in G, contradicting Claim 12.D; thus there is at least one
additional vertex in G, say x, and perhaps a last vertex, y. Note that t, u, v
and w are already, in K, degree 3-vertices with a second neighbourhood of size
4, thus by Claim 12.E none of t, u, v, w, a1, a4, b1 and b4 are adjacent to any
vertex not in K. Thus N(x), N(y) ⊆ {a2, a3, b2, b3, x, y}.

Assume that some vertex not in K (say x) is adjacent to two vertices of
K. Then, these two vertices must be a vertex on the tu-path of K (a2 or a3,
without loss of generality it is a2) and a vertex on the vw-path of K (b2 or
b3). By the automorphism of K that swaps v and w and reverses the vw-path,
without loss of generality we can assume that the second neighbour of x in K
is b3. Then, we claim that G has no further vertex. Indeed, if there is a last
vertex y, since a2 and b3 have already three neighbours, y must be adjacent to
at least two vertices among {a3, b2, x}. If it is adjacent to both a3 and b2, we
have a 6-cycle, contradicting Claim 12.F; otherwise, y is of degree 2 but part of a
4-cycle, implying that G is not a core, a contradiction. Thus, G has order 13 and
no further edge. We create a homomorphic image of G by identifying x and a3.
The obtained graph is a subgraph of C(12, 5). Hence, G has circular chromatic
number at most 12/5 and a homomorphism to C5, a contradiction.

Thus, any vertex not in K has at most one neighbour in K. Since G has no
4-thread, one vertex not in K (say x) is adjacent to one of a2 or a3 (without loss
of generality, say a2), and the last vertex, y, is adjacent to one of b2 and b3 (as
before, by the symmetries of K we can assume it is b2). Moreover, x and y must
be adjacent, otherwise they both have degree 1. Also there is no further edge
in G. But then, as before, we create a homomorphic image of G by identifying
x with b2 and y with a2. The resulting graph is a subgraph of C(12, 5), which
again gives a contradiction. This completes the proof of Claim 12.G. (

�
)

To complete the proof, we note that since G has no homomorphism to C5, it
also has no homomorphism to C7. Thus, by Theorem 5, G must contain either
an odd-K2

3 or an odd-K4 of odd-girth at least 7. Since such an odd-K2
3 must

have at least 18 vertices, G contains an odd-K4. Let H be such an odd-K4 of
G. Since its girth is at least 7, by Proposition 4 it has at least 12 vertices. We
consider three cases, depending on the order of H. Due to the space limit, the
proofs of these three cases are omitted but can be found in the full version of
the paper. ⊓⊔

We now deduce the following consequence of Theorem 12 and Proposition 9,
that improves the known lower bounds on η(4, 2) and η(4, 1) (noting that for
larger values of k, the bound of Corollary 8 is already stronger).

Corollary 13. We have η(4, 1) ≥ η(4, 2) ≥ 17.

5 Concluding Remarks

In this work, we have started investigating the smallest order of a C2l+1-critical
graph of odd-girth 2k+1. We have determined a number of previously unknown
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values, in particular we showed that a smallest C5-critical graph of odd-girth 7 is
of order 15. In contrast to the result of Chvátal on the uniqueness of the smallest
triangle-free 4-chromatic graph [3], we have found more than one such graph:
Gordon Royle showed computationally, that there are at least 10 such graphs
(private communication, 2016).

Regarding Table 1, we do not know the growth rate in each row of the table.
Perhaps it is quadratic; that would be to say that for a fixed l, η(k, l) = Θ(k2).
This is indeed true for l = 1, as proved by Nilli [17].

Our last remark is about Theorem 10. We think that for any given k, Theo-
rem 10 covers all values of k for which η(k, l) = 4k.
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165–192 (1963)
8. Gallai, T.: Kritische Graphen II. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8,
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