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Abstract. We introduce a new graph-theoretic concept in the area of
network monitoring. A set M of vertices of a graph G is a distance-edge-

monitoring set if for every edge e of G, there is a vertex x of M and a
vertex y of G such that e belongs to all shortest paths between x and y.
We denote by dem(G) the smallest size of such a set in G. The vertices
of M represent distance probes in a network modeled by G; when the
edge e fails, the distance from x to y increases, and thus we are able to
detect the failure. It turns out that not only we can detect it, but we can
even correctly locate the failing edge.

In this paper, we initiate the study of this new concept. We show that
for a nontrivial connected graph G of order n, 1 ≤ dem(G) ≤ n − 1 with
dem(G) = 1 if and only if G is a tree, and dem(G) = n − 1 if and only
if it is a complete graph. We compute the exact value of dem for grids,
hypercubes, and complete bipartite graphs.

Then, we relate dem to other standard graph parameters. We show
that dem(G) is lower-bounded by the arboricity of the graph, and upper-
bounded by its vertex cover number. It is also upper-bounded by five
times its feedback edge set number.

Then, we show that determining dem(G) for an input graph G is an
NP-complete problem, even for apex graphs. There exists a polynomial-
time logarithmic-factor approximation algorithm, however it is NP-hard
to compute an asymptotically better approximation, even for bipartite
graphs of small diameter and for bipartite subcubic graphs. For such
instances, the problem is also unlikely to be fixed parameter tractable
when parameterized by the solution size.

This paper is dedicated to the memory of Mirka Miller, who sadly passed away in
January 2016. This research was started when Mirka Miller and Joe Ryan visited Ralf
Klasing at the LaBRI, University of Bordeaux, in April 2015.
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1 Introduction

The aim of this paper is to introduce a new concept of network monitoring using
distance probes, called distance-edge-monitoring. Our networks are naturally
modeled by finite undirected simple connected graphs, whose vertices represent
computers and whose edges represent connections between them. We wish to be
able to monitor the network in the sense that when a connection (an edge) fails,
we can detect this failure. We will select a (hopefully) small set of vertices of the
network, that will be called probes. At any given moment, a probe of the network
can measure its graph distance to any other vertex of the network. Our goal is
that, whenever some edge of the network fails, one of the measured distances
changes, and thus the probes are able to detect the failure of any edge.

Probes that measure distances in graphs are present in real-life networks, for
instance this is useful in the fundamental task of routing [6,11]. They are also
frequently used for problems concerning network verification [2–4].

We will now proceed with the formal definition of our main concept. In this
paper, by graphs we refer to connected simple graphs (without multiple edges
and loops). A graph with loops or multiple edges is called a multigraph.

We denote by dG(x, y) the distance between two vertices x and y in a graph
G. When there is no path connecting x and y in G, we let dG(x, y) = ∞. For an
edge e of G, we denote by G − e the graph obtained by deleting e from G.

Definition 1. For a set M of vertices and an edge e of a graph G, let P (M, e)
be the set of pairs (x, y) with x a vertex of M and y a vertex of V (G) such that
dG(x, y) �= dG−e(x, y). In other words, e belongs to all shortest paths between x
and y in G.

For a vertex x, let M(x) be the set of edges e such that there exists a vertex
v in G with (x, v) ∈ P ({x}, e). If e ∈ M(x), we say that e is monitored by x.

A set M of vertices of a graph G is distance-edge-monitoring if every edge
e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty.
Equivalently,

⋃

x∈M M(x) = E(G).
We note dem(G) the smallest size of a distance-edge-monitoring set of G.

Note that V (G) is always a distance-edge-monitoring set of G, so dem(G) is
always well-defined.

Consider a graph G modeling a network, and a set M of vertices of G, on
which we place probes that are able to measure their distances to all the other
vertices. If M is distance-edge-monitoring, if a failure occurs on any edge of
the network (in the sense that the communication between its two endpoints is
broken), then this failure is detected by the probes.

In fact, it turns out that not only the probes can detect a failing edge, but
they can also precisely locate it (the proof of the following is delayed to Sect. 2).

Proposition 2. Let M be a distance-edge-monitoring set of a graph G. Then,
for any two distinct edges e and e′ in G, we have P (M, e) �= P (M, e′).
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Thus, assume that we have placed probes on a distance-edge-monitoring set
M of a network G and initially computed all the sets P (M, e). In the case a
unique edge of the network has failed, Proposition 2 shows that by measuring
the set of pairs (x, y) with x ∈ M and y ∈ V (G) whose distance has changed,
we know exactly which is the edge that has failed.

We define the decision and optimization problem associated to distance-edge-
monitoring sets.

Related Notions. A weaker model is studied in [2,3] as a network discovery
problem, where we seek a set S of vertices such that for each edge e, there exists
a vertex x of S and a vertex y of G such that e belongs to some shortest path
from x to y.

Distance-edge-monitoring sets are related to resolving sets and edge-resolving
sets, that also model sets of sensors that can measure the distance to all other
vertices in a graph. A resolving set is a set R of vertices such that for any two
distinct vertices x and y in G, there is a vertex r in R such that dG(r, x) �=
dG(r, y). The smallest size of a resolving set in G is the metric dimension of
G [12,20]. If instead, the set R distinguishes the edges of G (that is, for any pair
e, e′ of edges of G, there is a vertex r ∈ R with dG(x, e) �= dG(x, e′), where for
e = uv, dG(x, e) = min{dG(x, u), dG(x, v)}), we have an edge-resolving set [15].

Another related concept is the one of strong resolving sets [18,19]: a set R of
vertices is strongly resolving if for any pair x, y of vertices, there exists a vertex
z of R such that either x is on a shortest path from z to y, or y is on a shortest
path from z to x. It is related to distance-edge-monitoring sets in the following
sense. Given a distance-edge-monitoring set M , for every pair x, y of adjacent
vertices, there is a vertex z of M such that either x is on every shortest path
from z to y, or y is on every shortest path from z to x.

Another related concept is the one of an (strong) edge-geodetic set. A set S of
vertices is an edge-geodetic set if for every edge e of G, there are two vertices x, y
of S such that e is on some shortest path from x to y. It is a strong edge-geodetic
set if to every pair x, y of S, we can assign a shortest x − y path to {x, y} such

that every edge of G belongs to one of these
(

|S|
2

)

assigned shortest paths [16].

Our Results. We first derive a number of basic results about distance-edge-
monitoring sets in Sect. 2 (where we also give some useful definitions).

In Sect. 3, we study dem for some basic graph families (like trees and grids)
and relate this parameter to other standard graph parameters such as arboricity
arb, vertex cover number vc and feedback edge set number fes. We show that
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dem(G) = 1 if and only if G is a tree. We show that for any graph G of order
n, dem(G) ≥ arb(G). Moreover, dem(G) ≤ vc(G) ≤ n − 1 (with equality if and
only if G is complete). We show that for some families of graphs G, dem(G) =
vc(G), for instance this is the case for complete bipartite graphs and hypercubes.
Then we show that dem(G) ≤ 5fes(G) − 5 when fes(G) ≥ 2 (when fes(G) ≤ 1,
dem(G) = fes(G) + 1).

In Sect. 4, we show that Distance-Edge-Monitoring Set is NP-complete,
even for apex graphs (graphs obtained from a planar graph by adding an extra
vertex). Then, we show that Min Distance-Edge-Monitoring Set can be
approximated in polynomial time within a factor of ln(|E(G)|+1) by a reduction
to the set cover problem. Finally, we show that no essentially better ratio can be
obtained (unless P = NP), even for graphs that are of diameter 4, bipartite and
of diameter 6, or bipartite and of maximum degree 3. For the same restrictions,
the problem is unlikely to be fixed parameter tractable when parameterized by
the solution size. These hardness results are obtained by reductions from the set
cover problem.

We conclude our paper in Sect. 5. Due to the given space constraints, some
proofs are not included.

2 Preliminaries

We now give some useful lemmas about basic properties of distance-edge-
monitoring sets. We start with the proof of Proposition 2.

Proof (Proof of Proposition 2). Suppose by contradiction that there are two
distinct edges e and e′ with P (M, e) = P (M, e′). Since by definition, P (M, e) �=
∅, we have (x, v) ∈ P (M, e) (and thus (x, v) ∈ P (M, e′)), where x ∈ M and
v ∈ V (G). Thus, all shortest paths between x and v contain both e and e′.
Assume that on these shortest paths, e is closer to x than e′, and let w be
the endpoint of e that is closest to v. Then, we have (x,w) ∈ P (M, e) but
(x,w) /∈ P (M, e′): a contradiction. ⊓⊔

An edge e in a graph G is a bridge if G − e has more connected components
than G. We will now show that bridges are very easy to monitor.

Lemma 3. Let G be a connected graph and let e be a bridge of G. For any vertex
x of G, we have e ∈ M(x).

Proof. Assume that e = uv. Since e is a bridge, we have dG(x, u) �= dG(x, v).
If dG(x, u) < dG(x, v), then (x, v) ∈ P ({x}, e). Otherwise, we have (x, u) ∈
P ({x}, e). In both cases, e ∈ M(x). ⊓⊔

Given a vertex x of a graph G and an integer i, we let Li(x) denote the set
of vertices at distance i of x in G.

Lemma 4. Let x be a vertex of a connected graph G. Then, an edge uv belongs
to M(x) if and only if u ∈ Li(x) and v is the only neighbour of u in Li−1(x).
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Proof. Let uv ∈ M(x). Then, there exists a vertex y such that all shortest paths
from y to x go through uv. Thus, one of u and v (say, u) is in a set Li(x) and
the other (v) is in a set Li−1(x), for some positive integer i. Moreover, v must
be the only neighbour of u in Li−1(x), since otherwise there would be a shortest
path from y to x going through u but avoiding uv.

Conversely, if u is a vertex in Li(x) with a unique neighbour v in Li−1(x),
then the edge uv belongs to M(x) since all shortest paths from u to x use it. ⊓⊔

We obtain some immediate consequences of Lemma 4.

Lemma 5. For a vertex x of a graph G, the set of edges M(x) induces a forest.

Proof. Let Gx be the subgraph of G induced by the edges in M(x). By Lemma 4,
an edge e belongs to M(x) if and only if e = uv, u ∈ Li(x) and v is the only
neighbour of u in Li−1(x). In this case, we let v be the parent of u. Each vertex
in Gx has at most one parent in Gx, and each edge of Gx is an edge between a
vertex and its parent. Thus, Gx is a forest. ⊓⊔

Lemma 6. Let G be a graph and x a vertex of G. Then, for any edge e incident
with x, we have e ∈ M(x).

Proof. For every vertex y of L1(x) (that is, every neighbour of x), x is the unique
neighbour of y in L0(x) = {x}. Thus, the claim follows from Lemma 4. ⊓⊔

3 Basic Graph Families and Bounds

In this section, we study dem for standard graph classes, and its relation with
other standard graph parameters.

Theorem 7. Let G be a connected graph with at least one edge. We have
dem(G) = 1 if and only if G is a tree.

Proof. In a tree, every edge is a bridge. Thus, by Lemma3, if G is a tree, any
vertex x of G is a distance-edge-monitoring set and we have dem(G) ≤ 1 (and
of course as long as there is an edge in G, dem(G) ≥ 1).

For the converse, suppose that dem(G) = 1. Then, clearly, G must have at
least one edge. Moreover, since all edges of G must belong to M(x), by Lemma 5,
G must be a forest. Since G is connected, G is a tree. ⊓⊔

Let Ga,b denote the grid of dimension a × b. By Theorem 7, we have
dem(G1,a) = 1. We can compute all other values.

Theorem 8. For any integers a, b ≥ 2, we have dem(Ga,b) = max{a, b}.

The arboricity arb(G) of a graph G is the smallest number of sets into which
E(G) can be partitioned and such that each set induces a forest. The clique
number ω(G) of G is the size of a largest clique in G.
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Theorem 9. For any graph G of order n and size m, we have dem(G) ≥

arb(G), and thus dem(G) ≥ m
n−1 and dem(G) ≥ ω(G)

2 .

Proof. By Lemma 5, for each vertex x of a distance-edge-monitoring set M ,
M(x) induces a forest. Thus, to each edge e of G we can assign one of the forests
M(x) such that e ∈ M(x). This is a partition of G into |M | forests, and thus
arb(G) ≤ dem(G).

Moreover, it is not difficult to see that arb(G) ≥ m
n−1 (since a forest has

at most n − 1 edges) and arb(G) ≥ ω(G)
2 (since a clique of size k = ω(G) has

k(k − 1)/2 edges but a forest that is a subgraph of G can contain at most k − 1
of these edges). ⊓⊔

We next see that distance-edge-monitoring sets are relaxations of vertex cov-
ers. A set C of vertices is a vertex cover of G if every edge of G has one of its
endpoints in C. The smallest size of a vertex cover of G is denoted by vc(G).

Theorem 10. In any graph G of order n, any vertex cover of G is a distance-
edge-monitoring set, and thus dem(G) ≤ vc(G) ≤ n − 1. Moreover, we have
dem(G) = n − 1 if and only if G is the complete graph of order n.

Proof. Let C be a vertex cover of G. By Lemma 6, for every edge e, there is a
vertex in x with e ∈ M(x), thus C is distance-edge-monitoring.

Moreover, any graph G of order n has a vertex cover of size n − 1: for any
vertex x, the set V (G) \ {x} is a vertex cover of G.

Finally, suppose that dem(G) = n − 1: then also vc(G) = n − 1. If G is not
connected, we have vc(G) ≤ n− 2 (starting with V (G) and removing any vertex
from each connected component of G yields a vertex cover), thus G is connected.
Suppose by contradiction that G is not a complete graph. Then, we have three
vertices x, y and z in G such that xy and yz are edges of G, but xz is not. Then,
V (G) \ {x, z} is a vertex cover of G, a contradiction.

This completes the proof. ⊓⊔

In some graphs, any distance-edge-monitoring set is a vertex cover.

Observation 11. If, for every vertex x of a graph G, M(x) consists exactly of
the sets of edges incident with x, then a set M is a distance-edge-monitoring set
of G if and only if it is a vertex cover of G.

Note that Observation 11 does not provide a characterization of graphs with
dem(G) = vc(G). For example, as seen in Theorem 8, for the grid Ga,2, we have
dem(Ga,2) = vc(Ga,2) = a, but for any vertex x of Ga,2, M(x) consists of the
whole row and column of Ga,2.

Let Ka,b be the complete bipartite graph with parts of sizes a and b, and
let Hd denote the hypercube of dimension d. We can deduce the following from
Observation 11.

Corollary 12. We have dem(Ka,b) = vc(Ka,b) = min{a, b}, and dem(Hd) =
vc(Hd) = 2d−1.
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A feedback edge set of a graph G is a set of edges such that removing them
from G leaves a forest. The smallest size of a feedback edge set of G is denoted
by fes(G) (it is sometimes called the cyclomatic number of G).

Theorem 7 states that for any tree G (that is, a graph with feedback edge
set number 0), we have dem(G) = fes(G) + 1. We now show the same bound for
graphs G with fes(G) = 1, that is, unicyclic graphs (graphs with a unique cycle).

Proposition 13. If G is a unicyclic graph, then dem(G) = 2.

We will now give a weaker (but similar) bound for any value of fes(G). But
first, we need the following terminology and lemma from [9] about the structure
of graphs G with given feedback edge set number.

In a graph, a vertex is a core vertex if it has degree at least 3. The base graph
of a graph G is the graph obtained from G by iteratively removing vertices of
degree 1 (thus, the base graph of a forest is the empty graph).

The following lemma can be found in Sect. 5.3.1 of [9].

Lemma 14 ([9]). Let G be a graph with fes(G) = k ≥ 2. The base graph of G
has at most 2k − 2 core vertices, that are joined by at most 3k − 3 edge-disjoint
paths with internal vertices of degree 2 and whose endpoints are (not necessarily
distinct) core vertices.

In other words, Lemma 14 says that the base graph of a graph G with
fes(G) = k ≥ 2 can be obtained from a multigraph H of order at most 2k − 2
and size 3k − 3 by subdividing its edges an arbitrary number of times.

Theorem 15. Let G be a graph with fes(G) ≥ 2. Then, dem(G) ≤ 5fes(G) − 5.

Proof. Let fes(G) = k and Gb, the base graph of G. By Lemma 14, Gb contains
at most 2k − 2 core vertices, joined by at most 3k − 3 edge-disjoint paths
with internal vertices of degree 2 and whose endpoints are core vertices (both
endpoints can be the same vertex). Let {P1, . . . , Pt} be the set of these paths.

By Lemma 3, any non-empty distance-edge-monitoring set of Gb is also one
of G, since all edges of G not present in Gb are bridges. Thus, it is sufficient to
construct a distance-edge-monitoring set M of Gb of size at most 5k − 5. We
build M as follows: first of all, M contains all core vertices of Gb. Moreover, for
each path Pi of length at least 2 connecting two core vertices x and y of Gb, we
add to M an internal vertex z of Pi. If x �= y or Pi has length at most 3, we let
z be a neighbour of, say, x. Otherwise, x = y and Pi has length at least 4; we
choose z as a vertex at distance 2 of x on Pi. Thus, |M | ≤ 5k − 5.

Let us prove that M is distance-edge-monitoring in Gb. Let e be an edge of
Gb; necessarily, e belongs to some path Pi connecting two core vertices x and y.
If e is incident with x or y, by Lemma 6 e is monitored by M . Thus, suppose this
is not the case. So, Pi has length at least 3 and so there is an internal vertex z
of Pi in M . Again if e is incident with z we are done.

If x = y, Pi forms a cycle and for any vertex v, M(v) ∩ E(Pi) consists of
the two edges (if Pi has even length) or the unique edge (if Pi has odd length)
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that are opposite to v on the cycle. Since x and z are non-adjacent, we have
e ∈ M(x) ∪ M(z) and so z is monitored.

If x �= y, assume that e = uv with u the vertex of e closest to x. Let dx

be the distance from x to u on Pi, and dy the distance from y to v on Pi. If
e ∈ M(x) ∪ M(y), we are done. Otherwise, there must exist a path from x
to y that is edge-disjoint with Pi (otherwise e would be a bridge and would be
monitored by x or y). Let p be the length of a shortest such path. Since e /∈ M(x),
there exists a shortest path from v to x avoiding e. This shortest path must go
through y, and then use a path of length p. Thus, we have dy + p ≤ dx + 1. By
a similar argument with u and x, we have dx + p ≤ dy + 1. We obtain from this
that dx = dy, |Pi| is odd, and p = 1. But then, the unique shortest path from v
to z goes through e, and we have e ∈ M(z). This completes the proof. ⊓⊔

We do not believe that the bound of Theorem15 is tight. For the sake of
simplicity, we have not tried to optimize the bound of Theorem15, as we do
not believe that this method will provide a tight bound. There are examples of
graphs G where dem(G) = fes(G) + 1, for example this is the case for the grid
Ga,2: by Theorem 8, when a ≥ 2 we have dem(Ga,2) = a, and fes(Ga,2) = a − 1.

Note that Ga,b for a, b ≥ 2 provides examples of a family of graphs where for
increasing a, b the difference between fes(Ga,b) and dem(Ga,b) is unbounded by
a constant. Indeed by Theorem8 we have dem(Ga,b) = max{a, b} but fes(Ga,b)
is linear in the order ab.

4 Complexity

A c-approximation algorithm for a given optimization problem is an algorithm
that returns a solution whose size is always at most c times the optimum. We
refer to the books [1,13] for more details. For a decision problem Π and for
some parameter p of the instance, an algorithm for Π is said to be fixed param-
eter tractable (fpt for short) if it runs in time f(p)nc, where f is a computable
function, n is the input size, and c is a constant. In this paper, we will always
consider the solution size k as the parameter. The class FPT contains the param-
eterized decisions problems solvable by an fpt algorithm. The classes W[i] (with
i ≥ 1) denote complexity classes with parameterized decision problems that are
believed not to be fpt. We refer to the books [8,17] for more details.

We will now use the connection to vertex covers hinted in Sect. 3 to derive an
NP-hardness result. For two graphs G, H, G ⊲⊳ H denotes the graph obtained
from disjoint copies of G and H with all possible edges between V (G) and V (H).
We denote by K1 the graph on one single vertex.

Theorem 16. For any graph G, we have vc(G) ≤ dem(G ⊲⊳ K1) ≤ vc(G) + 1.
Moreover, if G has radius at least 4, then vc(G) = dem(G ⊲⊳ K1).

We deduce the following from the second part of the statement of Theorem16
and the NP-hardness of Vertex Cover for planar subcubic graphs with radius
at least 4 [10].
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Corollary 17. Distance-Edge-Monitoring Set is NP-complete, even for
graphs obtained from a planar subcubic graph by attaching a universal vertex.

Given a hypergraph H = (X,S) with vertex set X and egde set S, a set cover
of H is a subset C ⊆ S of edges such that each vertex of X belongs to at least one
edge of C. We will provide reductions for Min Distance-Edge-Monitoring

Set to and from Set Cover and Min Set Cover.

It is known that Min Set Cover is approximable in polynomial time within
a factor of ln(|X|+1) [14], but, unless P = NP, not within a factor of (1−ǫ) ln |X|
(for every positive ǫ) [7]. Moreover, Set Cover is W[2]-hard (when parameter-
ized by k) and not solvable in time |X|o(k)|H|O(1) unless FPT = W[1] [5].

Theorem 18. Min Distance-Edge-Monitoring Set is approximable within
a factor of ln(|E(G)| + 1) in polynomial time.

Proof. Let G be a graph and consider the following hypergraph H = (X,S)
with X = E(G) and such that S contains, for each vertex x of G, the set
Sx = {e ∈ X | e ∈ M(x)}. Now, it is not difficult to see that there is a one-to-
one correspondence between set covers of H and distance-edge-monitoring sets
of G, where we associate to each vertex x of a distance-edge-monitoring set of
G, the set Sx in a set cover of H. Thus, the result follows from the ln(|X| + 1)-
approximation algorithm for Min Set Cover from [14]. ⊓⊔

Theorem 19. Even for graphs G that are (a) of diameter 4, (b) bipartite and of
diameter 6, or (c) bipartite and of maximum degree 3, Min Distance-Edge-

Monitoring Set is not approximable within a factor of (1 − ǫ) ln |E(G)| in
polynomial time, unless P = NP . Moreover, for such instances, Distance-

Edge-Monitoring Set cannot be solved in time |G|o(k), unless FPT = W[1],
and it is W[2]-hard for parameter k.

Proof. For an instance (H, k) of Set Cover, we will construct in polynomial
time instances (G, k +2) or (G, k +1) of Distance-Edge-Monitoring Set so
that H has a set cover of size k if and only if G has a distance-edge-monitoring
set of size at most k + 2 or k + 1.

In our first reduction, the obtained instance has diameter 4, while in our
second reduction, the obtained instance is bipartite and has diameter 6, and in
our third reduction, the graph G is bipartite and has maximum degree 3. The
three constructions are similar.
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The statement will follow from the hardness of approximating Min Set

Cover proved in [7], the parameterized hardness of Set Cover (parameterized
by solution size), and the lower bound on its running time [5].

First of all, we point out that we may assume that in an instance (H =
(X,S), k) of Set Cover, there is no vertex of X that belongs to a unique set
of S. Indeed, otherwise, we are forced to take S in any set cover of H; thus, by
removing S and all vertices in S, we obtain an equivalent instance (H ′, k − 1).
We can iterate until the instance satisfies this property.

We now describe the first reduction, in which the obtained instance has
diameter 4. Let (H, k) = ((X,S), k) be an instance of Set Cover, where
X = {x1, x2, . . . , x|X|}, S = {C1, C2, . . . , C|S|} and Ci = {ci,j | xj ∈ Ci}.
Construct the following instance (G, k + 2) = ((V,E), k + 2) of Distance-

Edge-Monitoring Set, where V = V1 ∪ V2 ∪ . . . ∪ V5 ∪ V ′
1 ∪ V ′

2 ∪ V ′
3 ∪ V ′

4 ,
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E′

1 ∪ E′
2 ∪ E′

3 ∪ E′
4 ∪ E′

5 and
V1 = {u1, u2, u3}, V2 = {vi | 1 ≤ i ≤ |S|}, V3 = S, V4 = {ci,j | 1 ≤ i ≤

|S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, V5 = X
V ′

1 = {u′
1, u

′
2, u

′
3}, V ′

2 = {v′
i | 1 ≤ i ≤ |S|}, V ′

3 = {c′
i,j | 1 ≤ i ≤ |S|, 1 ≤

j ≤ |X|, xj ∈ Ci}, V ′
4 = {w′

j | 1 ≤ j ≤ |X|}
E1 = {(u1, u2), (u1, u3), (u2, u

′
1), (u3, u

′
1)}, E2 = {(u1, vi), (vi, Ci) | 1 ≤

i ≤ |S|}, E3 = {(Ci, ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, E4 =
{(ci,j , xj) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}

E′
1 = {(u′

1, u
′
2), (u

′
2, u

′
3), (u

′
3, u

′
1)}, E′

2 = {(u′
1, v

′
i), (v

′
i, Ci) | 1 ≤ i ≤

|S|}, E′
3 = {(u′

1, c
′
i,j), (c

′
i,j , ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X|, xj ∈ Ci}, E′

4 =
{(u′

1, w
′
j), (w

′
j , xj) | 1 ≤ j ≤ |X|}, E′

5 = {(u′
1, vi) | 1 ≤ i ≤ |S|}.

An example is given in Fig. 1.
To see that G has diameter 4, observe that every vertex of G has a path of

length at most 2 to the vertex u′
1.

Let C be a set cover of H of size k. Define M = C ∪ {u1, u
′
2}. Then, by

Lemma 4, u1 monitors (in particular) the edges (u1, u2), (u1, u3), (u′
1, u

′
3), and

all the edges in E2 ∪ E3. Similarly, u′
2 monitors the edges (u′

1, u
′
2), (u′

2, u
′
3),

(u3, u
′
1), (u2, u

′
1) and all the edges in E′

2 ∪E′
3 ∪E′

4 ∪E′
5. It thus remains to show

that all edges of E4 are monitored. Notice that among those edges, vertex Ci of
S monitors exactly all edges cj1,j2 with xj2 ∈ Ci. Thus, if e = (ci,j , xj), there is
i′ such that xj ∈ Ci′ and Ci′ ∈ C, and e is monitored by Ci′ (either i = i′ and
the only shortest path from xj to Ci contains e, or i �= i′ and the only shortest
path from ci,j to Ci′ contains e). Hence, M is a distance-edge-monitoring set of
G of size at most k + 2.

Conversely, let M be a distance-edge-monitoring set of G of size at most
k + 2. In order to monitor the edge (u′

2, u
′
3), either u′

2 ∈ M or u′
3 ∈ M . In

order to monitor the edges (u1, u3) and (u1, u2), there must be a vertex of M in
{u1, u2, u3}. We may replace M ∩ {u1, u2, u3} by u1 and M ∩ {u′

2, u
′
3} by u′

2, as
u1 monitors the same edges as {u1, u2, u3} (among those not already monitored
by u′

2) and u′
2 monitors the same edges as {u′

2, u
′
3} (among those not already

monitored by u1). As seen in the previous paragraph, all edges of E1, E′
1, E2,

E3, E′
2, E′

3, E′
4 and E′

5 are monitored by {u1, u
′
2}. However, no edge of E4 is
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u1

v1

v2

v3

C1

C2

C3

c1,1

c1,2

c3,1

c2,2

c2,3

c2,4

c3,3

c3,4

x1

x2

x3

x4

u1

u2 u3

u
′

1

u
′

2 u
′

3

Fig. 1. First reduction from Set Cover to Distance-Edge-Monitoring Set

from the proof of Theorem 19 applied to the hypergraph ({x1, x2, x3, x4}, {C1 =
{x1, x2}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}}). Vertices and edges of V ′

i and E′

i for
i = 2, 3, 4 are only suggested.

monitored by any vertex of V1∪V ′
1 . Thus, all remaining vertices of M are needed

precisely to monitor the edges of E4.
If vi ∈ M , let M = M \ {vi} ∪ {Ci}, and the set of monitored edges does

not decrease. If ci,j ∈ M , let M = M \ {ci,j} ∪ {Ci}, and the set of monitored
edges does not decrease. If xj ∈ M , let M = M \ {xj} ∪ {Ci0} where i0 =
min{i | xj ∈ Ci}, and the set of monitored edges does not decrease. If v′

i ∈ M ,
let M = M \ {v′

i} ∪ {Ci}, and the set of monitored edges does not decrease. If
c′
i,j ∈ M , let M = M \ {c′

i,j} ∪ {Ci}, and the set of monitored edges does not
decrease. If w′

j ∈ M , let M = M \{w′
j}∪{Ci0} where i0 = min{i | xj ∈ Ci}, and

the set of monitored edges does not decrease. Iterating this process, we finally
obtain a distance-edge-monitoring set M ′ of G with |M ′ ∩V1| = 1, |M ′ ∩V ′

1 | ≥ 1,
|M ′ ∩ V3| ≤ k, M ′ ∩ (V2 ∪ V4 ∪ V5 ∪ V ′

2 ∪ V ′
3 ∪ V ′

4) = ∅. Let C = M ′ ∩ V3. If C
is not a set cover of H, then there is xj ∈ X that is not covered by C. Recall
that we assumed that each vertex of X belongs to at least two edges of S. Then,
according to Lemma 4, any edge (ci,j , xj) is not monitored by any of the vertices
in M ′ = (M ′ ∩ V1) ∪ (M ′ ∩ V ′

1) ∪ C, a contradiction. Hence, C is a set cover of
H of size at most k.

Due to space constraints, we omit the two other reductions. They are very
similar to the above one. To obtain a bipartite graph, we remove the odd cycles
of the construction at the expense of a higher diameter. To obtain maximum
degree 3, we replace the set V2 by some suitably defined binary trees. ⊓⊔
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5 Conclusion

We have introduced a new graph parameter useful in the area of network moni-
toring. We have related it to other standard graph parameters by the means of
lower and upper bounds. It would be interesting to improve them. In particular,
is it true that dem(G) ≤ fes(G)+1? As we have seen, this bound would be tight.

It would also be interesting to determine graph classes where Distance-

Edge-Monitoring Set has a polynomial-time (or parameterized) exact or
constant-factor approximation algorithm.
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19. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2),
383–393 (2004)

20. Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)

https://doi.org/10.1007/978-3-662-05269-3

	Monitoring the Edges of a Graph Using Distances
	1 Introduction
	2 Preliminaries
	3 Basic Graph Families and Bounds
	4 Complexity
	5 Conclusion
	References


