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Abstract. In this paper, we study the computational complexity of find-
ing the geodetic number of graphs. A set of vertices S of a graph G is a
geodetic set if any vertex of G lies in some shortest path between some
pair of vertices from S. The Minimum Geodetic Set (MGS) problem is
to find a geodetic set with minimum cardinality. In this paper, we prove
that solving MGS is NP-hard on planar graphs with a maximum degree
six and line graphs. We also show that unless P = NP , there is no poly-
nomial time algorithm to solve MGS with sublogarithmic approximation
factor (in terms of the number of vertices) even on graphs with diameter
2. On the positive side, we give an O ( 3

√

n log n)-approximation algorithm
for MGS on general graphs of order n. We also give a 3-approximation
algorithm for MGS on solid grid graphs which are planar.

1 Introduction and Results

Suppose there is a city-road network (i.e. a graph) and a bus company wants
to open bus terminals in some of the cities. The buses will go from one bus
terminal to another (i.e. from one city to another) following the shortest route
in the network. Finding the minimum number of bus terminals required so that
any city belongs to some shortest route between some pair of bus terminals is
equivalent to finding the geodetic number of the corresponding graph. Formally,
an undirected simple graph G has vertex set V (G) and edge set E(G). For two
vertices u, v ∈ V (G), let I(u, v) denote the set of all vertices in G that lie in
some shortest path between u and v. A set of vertices S is a geodetic set if
∪u,v∈SI(u, v) = V (G). The geodetic number, denoted as g(G), is the minimum
integer k such that G has a geodetic set of cardinality k. Given a graph G,
the Minimum Geodetic Set (MGS) problem is to compute a geodetic set of
G with minimum cardinality. In this paper, we shall study the computational
complexity of MGS in various graph classes.
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The notion of geodetic sets and geodetic number was introduced by Harary
et al. [18]. The notion of geodetic number is closely related to convexity
and convex hulls in graphs, which have applications in game theory, facility
location, information retrieval, distributed computing and communication net-
works [2,10,15,19,22]. In 2002, Atici [1] proved that finding the geodetic num-
ber of arbitrary graphs is NP-hard. Later, Dourado et al. [8,9] strengthened the
above result to bipartite graphs, chordal graphs and chordal bipartite graphs.
Recently, Bueno et al. [3] proved that MGS remains NP-hard even for sub-
cubic graphs. On the positive side, polynomial time algorithms to solve MGS
are known for cographs [8], split graphs [8], ptolemaic graphs [12], outer planar
graphs [21] and proper interval graphs [11]. In this paper, we prove the following
theorem.

Theorem 1. MGS is NP-hard for planar graphs of maximum degree 6.

Then we focus on line graphs. Given a graph G, the line graph of G, denoted
by L(G), is a graph such that each vertex of L(G) represents an edge of G and
two vertices of L(G) are adjacent if and only if their corresponding edges share
a common endpoint in G. A graph H is a line graph if H ∼= L(G) for some G.
Some optimisation problems which are difficult to solve in general graphs admit
polynomial time algorithms when the input is a line graph [14,17]. We prove the
following theorem.

Theorem 2. MGS is NP-hard for line graphs.

From a result of Dourado et al. [8], it follows that solving MGS is NP-hard
even for graphs with diameter at most 4. On the other hand, solving MGS on
graphs with diameter 1 is trivial (since those are exactly complete graphs). In this
paper, we prove that unless P = NP, there is no polynomial time algorithm with
sublogarithmic approximation factor for MGS even on graphs with diameter at
most 2. A universal vertex of a graph is adjacent to all other vertices of the
graph. We shall prove the following stronger theorem.

Theorem 3. Unless P = NP, there is no polynomial time o(log n)-
approximation algorithm for MGS even on graphs that have a universal vertex,
where n is the number of vertices in the input graph.

On the positive side, we show that a reduction to the Minimum Rainbow
Subgraph of Multigraph problem (defined in Sect. 3.1) gives the first sub-
linear approximation algorithm for MGS on general graphs.

Theorem 4. Given a graph, there is a polynomial-time O( 3
√

n log n)-
approximation algorithm for MGS where n is the number of vertices.

Then we focus on solid grid graphs, an interesting subclass of planar graphs.
A grid embedding of a graph is a collection of points with integer coordinates
such that each point in the collection represents a vertex of the graph and two
points are at a distance one if and only if the vertices they represent are adjacent
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in the graph. A graph is a grid graph if it has a grid embedding. A graph is a
solid grid graph if it has a grid embedding such that all interior faces have
unit area. Approximation algorithms for optimisation problems like Longest
path, Longest Cycle, Node-Disjoint Path etc. on grid graphs and solid
grid graphs have been studied [4,6,20,23,25,27]. In this paper, we prove the
following theorem.

Theorem 5. Given a solid grid graph, there is an O(n) time 3-approximation
algorithm for MGS, even if the grid embedding is not given as part of the input.
Here n is the number of vertices in the input graph.

Note that recognising solid grid graphs is NP-complete [16].

Organisation of the Paper: In Sect. 2, we prove the hardness results for pla-
nar graphs, line graphs and graphs with diameter 2. In Sect. 3, we present our
approximation algorithms. Finally we draw our conclusions in Sect. 4.

2 Hardness Results

In Sect. 2.1, we prove that MGS is NP-hard for planar graphs with maximum
degree 6 (Theorem 1). Then in Sect. 2.2 we prove that MGS is NP-hard for line
graphs (Theorem 2). In Sect. 2.3 we prove the inapproximability result (Theo-
rem 3).

2.1 NP-hardness on Planar Graphs

Given a graph G, a subset S ⊆ V (G) is a dominating set of G if any vertex in
V (G)\S has a neighbour in S. The problem Minimum Dominating set (MDS)
consists in computing a dominating set of an input graph G with minimum
cardinality. To prove Theorem 1, we reduce the NP-complete MDS on subcubic
planar graphs [13] to MGS on planar graphs with maximum degree 6.

Let us describe the reduction. From a subcubic planar graph G with a given
planar embedding, we construct a graph f(G) as follows. Each vertex v of
G will be replaced by a vertex gadget Gv. This vertex gadget has vertex set
{cv, tv0, t

v
1, t

v
2} ∪ {xv

i,j , y
v
i,j , z

v
i,j | 0 ≤ i < j ≤ 2}. For simplicity we will consider

that xv
i,j and xv

j,i refers to the same vertex (the same holds for yv
i,j and yv

j,i,
and for zv

i,j and zv
j,i). There are no other vertices in f(G). For the edges within

Gv, vertex tvi (for 0 ≤ i ≤ 2) is adjacent to vertices cv, xv
i,i+1, yv

i,i+1, xv
i−1,i,

yv
i−1,i (indices taken modulo 3). Moreover, for each pair i, j with 0 ≤ i < j ≤ 2,

xv
i,j is adjacent to cv and yv

i,j , and yv
i,j is adjacent to zv

i,j . We now describe
the edges outside of the vertex-gadgets. They will depend on the embedding of
G. We assume that the edges incident with any vertex v are labeled ev

i with
0 ≤ i < degG(v), in such a way that the numbering increases counterclockwise
around v with respect to the embedding (thus the edge vw will have two labels:
ev
i and ew

j ). Consider two vertices v and w that are adjacent in G, and let ev
i

and ew
j be the two labels of edge vw in G. Then, tvi is adjacent to twj , yv

i,i+1 is
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adjacent to yw
j−1,j and yv

i−1,i is adjacent to yw
j+1,j (indices are taken modulo the

degree of the original vertex of G). It is clear that a planar embedding of f(G)
can easily be obtained from the planar embedding of G. Thus f(G) is planar
and has maximum degree 6. The construction is depicted in Fig. 1, where v and
w are adjacent in G and the edge vw is labeled ev

0 and ew
0 .

We will show that G has a dominating set of size k if and only if f(G) has a
geodetic set of size 3|V (G)| + k.

Fig. 1. Illustration of the reduction used in the proof of Theorem 1. Here, two vertex
gadgets Gv, Gw are depicted, with v and w adjacent in G. Dashed lines represent
potential edges to other vertex-gadgets.

Assume first that G has a dominating set D of size k. We construct a geodetic
set S of f(G) of size 3|V (G)| + k as follows. For each vertex v in G, we add the
three vertices zv

i,j (0 ≤ i < j ≤ 2) of Gv to S. If v is in D, we also add vertex cv

to S.
Let us show that S is indeed a geodetic set. First, we observe that, in any

vertex gadget Gv that is part of f(G), the unique shortest path between two
distinct vertices zv

i,j , zv
i′,j′ has length 4 and goes through vertices yv

i,j , tvk and
yv

i′,j′ (where {k} = {i, j} ∩ {i′, j′}). Thus, it only remains to show that vertices
cv and xv

i,j (0 ≤ i < j ≤ 2) belong to some shortest path of vertices of S. Assume
that v is a vertex of G in D. The shortest paths between cv and zv

i,j have length 3
and one of them goes through vertex xv

i,j . Thus, all vertices of Gv belong to some
shortest path between vertices of S. Now, consider a vertex w of G adjacent to
v and let zw

i,j be the vertex of Gw that is farthest from cv. The shortest paths
between cv and zw

i,j have length 6; one of them goes through vertices cw and
xw

i,j ; two others go through the two other vertices xw
i′,j′ and xw

i′′,j′′ . Thus, S is a
geodetic set.

For the converse, assume we have a geodetic set S′ of f(G) of size 3|V (G)|+k.
We will show that G has a dominating set of size k. First of all, observe that all
the 3|V (G)| vertices of type zv

i,j are necessarily in S′, since they have degree 1.
As observed earlier, the shortest paths between those vertices already go through
all vertices of type tvi and yv

i,j . However, no other vertex lies on a shortest path
between two such vertices: these shortest paths always go through the boundary
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Fig. 2. (a) A triangle-free graph G and (b) the graph HG.

6-cycle of the vertex-gadgets. Let S′
0 be the set of the remaining k vertices of S′.

These vertices are there to cover the vertices of type cv and xv
i,j . We construct

a subset D′ of V (G) as follows: D′ contains those vertices v of G whose vertex-
gadget Gv contains a vertex of S′

0. We claim that D′ is a dominating set of G.
Suppose by contradiction that there is a vertex v of G such that neither Gv nor
any of Gw (with w adjacent to v in G) contains any vertex of S′

0. Here also, the
shortest paths between vertices of S always go through the boundary 6-cycle
of Gv and thus, they never include vertex cv, a contradiction. Thus, D′ is a
dominating set of size k, and we are done.

2.2 NP-hardness on Line Graphs

In this section, we prove that MGS remains NP-hard on line graphs. For a
graph G and edges e, e′ ∈ E(G), define d(e, e′) = 1 if e, e′ shares a vertex, and
d(e, e′) = i > 1 if e, e′ do not share a vertex and e′ shares a vertex with an edge
e′′ with d(e, e′′) = i − 1. A path between two edges e, e′ is defined in the usual
way.

Observation 1. A path between two edges e, e′ of a graph G corresponds to a
path between the vertices e and e′ in L(G).

Given a graph G, a set S ⊆ E(G) is a line geodetic set of G if every edge e ∈
E(G) \ S belongs to some shortest path between some pair of edges {e, e′} ⊆ S.
Observation 1 implies the following.

Observation 2. A graph G has a line geodetic set of cardinality k if and only
if L(G) has a geodetic set of size k.

We shall show (in Lemma 8) that finding a line geodetic set of a graph with
minimum cardinality is NP-hard. Then Observation 2 shall imply that solving
MGS on line graphs is NP-hard. For the above purpose we need the following
definition. Given a graph G, a set S ⊆ E(G) is a good edge set if for any edge
e ∈ E(G) \ S, there are two edges e′, e′′ ∈ S such that (i) e lies in some shortest
path between e′ and e′′, and (ii) d(e′, e′′) is 2 or 3.

Lemma 6. Computing a good edge set of a triangle-free graph with minimum
cardinality is NP-hard.
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Proof. We shall reduce the NP-complete Edge Dominating set problem on
triangle-free graphs [26] to the problem of computing a good edge set of a graph
with minimum cardinality on triangle-free graphs. Given a graph G, a set S ⊆
E(G) is an edge dominating set of G if any edge e ∈ E(G) \ S shares a vertex
with some edge in S. The Edge Dominating Set problem is to compute an
edge dominating set of G with minimum cardinality.

Let G be a triangle-free graph. For each vertex v ∈ V (G), take a new edge
xvyv. Construct a graph G∗ whose vertex set is the union of V (G) and the set
{xv, yv}v∈V (G) and E(G∗) = E(G) ∪ {vxv}v∈V (G) ∪ {xvyv}v∈V (G). Notice that
G∗ is a triangle-free graph and we shall show that G has an edge dominating set
of cardinality k if and only if G∗ has a good edge set of cardinality k + n where
n = |V (G)|.

Let S be an edge dominating set of G. For each v ∈ G, let Hv be written as
xv, yv, zv. Notice that the set S ∪{xvyv}v∈V (G) forms a good edge set of G∗ and
has cardinality k+n. Let S′ be a good edge set of G∗ of size at most k+n. Notice
that for each v ∈ V (G), S′ must contain the edge xvyv. Hence, the cardinality
of the set S′ ∩ E(G) is at most k. Moreover, for each e ∈ E(G∗) ∩ E(G), there
is an edge e′ ∈ S′ which is at distance 2 from e. As S′ is a good edge set of G∗,
any edge in E(G) \ S′ shares a vertex with some edge of S′. Hence S′ ∩ E(G) is
an edge dominating set of G of cardinality at most k. ⊓⊔

For a triangle-free graph G, let HG be the graph with V (HG) = V (G) ∪
{a, b, c, d} and E(HG) = E(G) ∪ {ab, cd} ∪ E′ where E′ = {bv}v∈V (G) ∪
{cv}v∈V (G). See Fig. 2(a) and (b) for an example. We prove the following propo-
sition.

Lemma 7. For a triangle-free graph G, there is a line geodetic set Q of HG

with minimum cardinality such that Q ∩ E′ = ∅.

Proof. For a set S ⊆ E(HG), an edge f ∈ S covers an edge e ∈ E(HG), if there
is another edge f ′ ∈ S such that e lies in the shortest path between f and f ′.
Notice that the edges {ab, cd} lie in any line geodetic set of HG and all edges in
E′ are covered by ab and cd. First we prove the following claims.

Claim 1. Let Q be a line geodetic set of HG and e ∈ E′ ∩Q. If e does not cover
any edge of E(G), then Q \ {e} is a line geodetic set of HG.

The proof of the above claim follows from the fact that all edges in E′ ∪{ab, cd}
are covered by ab and cd.

Claim 2. Let Q be a line geodetic set of HG and e ∈ E′ ∩ Q. There is another
edge e′ ∈ E(G) \ Q such that (Q ∪ {e′}) \ {e} is a line geodetic set of HG.

To prove the claim above, first we define the ecentricity of an edge e ∈ E(HG) to
be the maximum shortest path distance between e and any other edge in E(HG).
Notice that the ecentricity of any edge in E′ is two and the ecentricity of any
edge of E(G) in HG is at most three. Now remove all edges from E′ ∩ Q which
do not cover any edge of E(G). By Claim 1, the resulting set, say Q′, is a line
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geodetic set of HG. Let e be an edge Q′ ∩E′ and let {f1, f2, . . . , fk} ⊆ E(G)\Q′

be the set of edges covered by e. Since the ecentricity of e is two, there must
exist e1, e2, . . . , ek in Q′ such that fi has a common endpoint with both e and ei

for each i ∈ {1, 2, . . . , k}. Therefore the distance between e and ei is two for each
i ∈ {1, 2, . . . , k}. As G is triangle-free, ei �= ej for any i, j ∈ {1, 2, . . . , k}. Choose
any edge fj ∈ {f1, f2, . . . , fk}. Observe that the distance between fj and ei is
two when i �= j. Therefore, for each i ∈ {1, 2, . . . , j − 1, j + 1, . . . k}, the edge fi

lies in the shortest path between fj and ei. Therefore, (Q′ ∪ {fj}) \ {e} is a line
geodetic set of HG.

Given any line geodetic set P of HG, we can use the arguments used in
Claims 1 and 2 repeatedly on P to construct a line geodetic set Q of HG such
that |Q| ≤ |P | and Q ∩ E′ = ∅. Thus we have the proof. ⊓⊔

Lemma 8. Computing a line geodetic set of a graph with minimum cardinality
is NP-hard.

Proof. We shall reduce the NP-complete problem of computing a good edge set of
a triangle-free graph with minimum cardinality (Lemma 6). Let G be a triangle-
free graph. Construct the graph HG as stated above (just before Lemma 7). The
set E′ is also defined as before. We shall show that a triangle-free graph G has
a good edge set of cardinality k if and only if HG has a line geodetic set of
cardinality k + 2.

Let P be a good edge set of G. Notice that, for each edge e ∈ E(G), there
are two edges e′, e′′ ∈ P such that e belongs to a shortest path between e′ and
e′′ in HG. Also any edge of E′ belongs to a shortest path between the edges ab
and cd in HG. Hence P ∪ {ab, cd} is a line geodetic set of HG with cardinality
k + 2.

Let Q be a line geodetic set of HG of size k+2. Notice that {ab, cd} ⊆ Q and
let Q′ = Q \ {ab, cd}. Due to Lemma 7, we can assume that Q′ does not contain
any edge of E′. Let e be an edge in E(G) \ Q′ and let e′, e′′ ∈ Q′ such that e lies
in some shortest path between e′ and e′′ in HG. Since the distance between e′

and e′′ is at most three in HG, it follows that Q′ is a good edge set of G with
cardinality k. ⊓⊔

2.3 Inapproximability on Graphs with Diameter 2

Given a graph G, a set S ⊆ V (G) is a 2-dominating set of G if any vertex
w ∈ V (G) \ S has at least two neighbours in S. The 2-MDS problem is to
compute a 2-dominating set of graphs with minimum cardinality. We shall use
the following result.

Theorem 9 ([5,7]). Unless P = NP , there is no polynomial time o(log n)-
approximation algorithm for the 2-MDS problem on triangle-free graphs.

Lemma 10. Let G be a triangle-free graph and G′ be the graph obtained by
adding an universal vertex v to G. A set S of vertices of G′ is a geodetic set if
and only if S \ {v} is a 2-dominating set of G.
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Proof. Let S be a geodetic set of G′. Observe that for any vertex u ∈ V (G) \ S
there must exist vertices u1, u2 ∈ S \ {v} such that u ∈ I(u1, u2) and
u1u2 /∈ E(G). Hence, S is a 2-dominating set of G. Conversely, let S′ be any
2-dominating set of G. For any vertex u ∈ V (G) \ S′ there exist v, v′ ∈ S′ such
that uv, uv′ ∈ E(G). Since G is triangle-free, v and v′ are non-adjacent. Hence,
u ∈ I(v, v′) and S′ ∪ {v} is a geodetic set of G′. ⊓⊔

The proof of Theorem 3 follows due to Lemma 10 and Theorem 9.

3 Approximation Algorithms

In Sects. 3.1 and 3.2 we present approximation algorithms for MGS on general
graphs and solid grid graphs, respectively.

3.1 General Graphs

We will reduce the Minimum Geodetic Set problem to the Minimum Rain-
bow Subgraph of Multigraph (MRSM) problem. A subgraph H of an edge
colored multigraph G is colorful if H contains at least one edge of each color.
Given an edge colored multigraph G, the MRSM problem is to find a colorful
subgraph of G of minimum cardinality. The following is a consequence of a result
due to Tirodkar and Vishwanathan [24].

Theorem 11 ([24]). Given an edge colored multigraph G, there is a polynomial
time O( 3

√
n log n)-approximation algorithm to solve the MRSM problem where

n = |V (G)|.
We note that Tirodkar and Vishwanathan [24] proved the above theorem for

simple graphs only, but the proof works for multigraphs as well.
Given a graph G form an edge colored multigraph HG as follows. The vertex

set of HG is the same as G. For each triplet of not necessarily distinct vertices
(u, v, w) such that u lies in some shortest path between v and w, add an edge
in HG between v and w having the color u. Observe that, G has a geodetic set
of cardinality k if and only if HG has a colorful subgraph with k vertices. The
proof of Theorem 4 follows from Theorem 11.

3.2 Solid Grid Graphs

In this section, we shall give a linear time 3-approximation algorithm for MGS
on solid grid graphs. From now on G shall denote a solid grid graph and R is a
grid embedding of G where every interior face has unit area.

Let G be a solid grid graph. A path P of G is a corner path if (i) no vertex of
P is a cut vertex, (ii) both end-vertices of P have degree 2, and (iii) all vertices
except the end-vertices of P have degree 3. See Fig. 3(a) for an example. Observe
that for a corner path P , either the x-coordinates of all vertices of P are the
same or the y-coordinates of all vertices of P are the same. Moreover, all vertices
of a corner path lie in the outer face of G. The next observation follows from the
definition of corner path and the fact that G is a solid grid graph.
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Observation 3. Let P be a corner path of G. Consider the set Q = {v ∈
V (G) : v /∈ V (P ), N(v) ∩ P �= ∅}. Then Q induces a path in G. Moreover, if the
x-coordinates (resp. the y-coordinates) of all the vertices of P are the same, then
the x-coordinates (resp. the y-coordinates) of all vertices in Q are the same.

We shall use Observation 3 to prove a lower bound on the geodetic number of
G in terms of the number of corner paths of G.

Fig. 3. (a) The black and gray vertices are the vertices of the corner paths. The gray
vertices indicate the corner vertices. (b) The gray vertices are vertices of the red path.
Vertices in the shaded box form a rectangular block. (c) Example of a solid grid graph
whose number of corner vertices is exactly three times the geodetic number.

Lemma 12. Any geodetic set of G contains at least one vertex from each corner
path.

Proof. Without loss of generality, we assume the x-coordinates of all vertices
of P are the same. By Observation 3, the set {v ∈ V (G) : v /∈ V (P ), N(v) ∩
P �= ∅} induces a path Q and the x-coordinates of all vertices in Q are the
same. Now consider any two vertices a, b ∈ V (G) \ V (P ) and with a path P ′

between a and b that contains one of the end-vertices, say u, of P . Observe that
P ′ can be expressed as P ′ = a c1 c2 . . . ct d f1 f2 . . . ft′ u g h1 h2 . . . ht′′ b
such that {d, g} ⊆ V (Q) and {f1, f2, . . . , ft′} ⊆ V (P ). Then there is a path
P ′′ = a c1 c2 . . . ct d f ′

2 . . . f ′
t′ g h1 h2 . . . ht′′ b where for 2 ≤ i ≤ t′, f ′

i is the
vertex in Q which is adjacent to fi in G. Observe that the length of P ′′ is strictly
less than that of P ′. Therefore u /∈ I(a, b) whenever a, b ∈ V (G) \ V (P ). Hence
any geodetic set of G contains at least one vertex from P . ⊓⊔

Any geodetic set of G contains all vertices of degree 1. Inspired by the above
fact and Lemma 12, we define the term corner vertex as follows. A vertex v of G
is a corner vertex if v has degree 1 or v is an end-vertex of some corner path. See
Fig. 3(a) for an example. Observe that two corner paths may have at most one
corner vertex in common. Moreover, a corner vertex cannot be in three corner
paths. Therefore it follows that the cardinality of the set of corner vertices is at
most 3 · g(G).
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Remark 13. Note that there are solid grid graphs whose number of corner ver-
tices is exactly three times the geodetic number. See Fig. 3(c) for one such
example.

Now we prove that the set of all corner vertices of G is indeed a geodetic set
of G. We shall use the following proposition of Ekim and Erey [10].

Theorem 14 ([10]). Let F be a graph and F1, . . . , Fk its biconnected compo-
nents. Let C be the set of cut vertices of G. If Xi ⊆ V (Fi) is a minimum set
such that Xi ∪ (V (Fi) ∩ C) is a minimum geodetic set of Fi then ∪k

i=1Xi is a
minimum godetic set of F .

The next observation follows from Theorem 14.

Observation 4. Let C(G) be the set of corner vertices of G and S be the set of
cut vertices of G. Let {H1,H2, . . . , Ht} be the set of biconnected components of
G. The set C(G) is a geodetic set of G if and only if (C(G)∩V (Hi))∪(S∩V (Hi))
is a geodetic set of Hi for all 1 ≤ i ≤ t.

From now on, C(G) is the set of corner vertices of G and H1,H2, . . . , Ht are
the biconnected components of G. Due to Theorem 14 and Observation 4, it is
enough to show that for each 1 ≤ i ≤ t, the set (C(G) ∩ V (Hi)) ∪ (S ∩ V (Hi))
is a geodetic set of Hi. First, we introduce some more definitions below.

Let H be a biconnected component of G. Recall that each vertex of H is
a pair of integers and each edge is a line segment with unit length. An edge
e ∈ E(H) is an interior edge if all interior points of e lie in an interior face of
H. For a vertex v ∈ V (H), let Pv denote the maximal path such that all edges
of Pv are interior edges and each vertex in Pv has the same x-coordinate as v.
Similarly, let P ′

v denote the maximal path such that all edges of Pv are interior
edges and each vertex in P ′

v has the same y-coordinate as v. A path P of H is a
red path if (i) there exists a v ∈ V (H) such that P ∈ {Pv, P ′

v} and (ii) at least
one end-vertex of P is a cut-vertex or a vertex of degree 4. A vertex v of H is
red if v lies on some red path. See Fig. 3(b) for an example.

Definition 15. A subgraph F of H is a rectangular block if F satisfies the fol-
lowing properties.

1. For any two vertices (a1, b1), (a2, b2) of F , we have that any pair (a3, b3) with
a1 ≤ a3 ≤ a2 and b1 ≤ b3 ≤ b2 is a vertex of F .

2. Let a, a′ be the maximum and minimum x-coordinates of the vertices in F .
The x-coordinate of any red vertex of F must be equal to a or a′. Similarly,
let b, b′ be the maximum and minimum y-coordinates of the vertices in F . The
y-coordinate of any red vertex of F must be equal to b or b′.

Observe that H can be decomposed into rectangular blocks such that each
non-red vertex belongs to exactly one rectangular block. See Fig. 3(b) for an
example. Let B1, B2, . . . , Bk be a decomposition of H into rectangular blocks.
Recall that C(G) is the set of corner vertices of G and S is the set of cut vertices
of G. We have the following lemma.



112 D. Chakraborty et al.

Lemma 16. For each 1 ≤ i ≤ k, there are two vertices xi, yi ∈ (C(G)∩V (H))∪
(S ∩ V (H)) such that V (Bi) ⊆ I(xi, yi).

Proof. Let X ∈ {B1, B2, . . . , Bk} be an arbitrary rectangular block. A vertex v
of X is a northern vertex if the y-coordinate of v is maximum among all vertices
of X. Analogously, western vertices, eastern vertices and southern vertices are
defined. A vertex of X is a boundary vertex if it is either northern, western,
southern or an eastern vertex of X. Let nw(X) be the vertex of X which is both
a northern vertex and a western vertex. Similarly, ne(X) denotes the vertex
which is both northern vertex and eastern vertex, sw(X) denotes the vertex of
X which is both southern and western vertex and se(X) denotes the vertex of
X which is both southern and eastern vertex.

First we prove the lemma assuming that all boundary vertices of X are red
vertices. Let a (resp. b) denote the vertex with minimum y-coordinate such that
Pa (resp. Pb) contains sw(X) (resp. se(X)). Similarly, let c (resp. d) denote
the vertex with maximum y-coordinate such that Pc (resp. Pd) contains nw(X)
(resp. ne(X)). Let a′ (resp. c′) denote the vertex with minimum x-coordinate
such that P ′

a′ (resp. P ′
b′) contains sw(X) (resp. nw(X)). Let b′ (resp. d′) denote

the vertex with maximum x-coordinate such that P ′
b′ (resp. P ′

d′) contains se(X)
(resp. ne(X)). Observe that the vertices a′, a, b, b′, d′, d, c, c′ lie on the exterior
face of the embedding.

For two vertices i, j ∈ {a′, a, b, b′, d′, d, c, c′}, let Pij denote the path between
i, j that can be obtained by traversing the exterior face of the embedding in
the counter-clockwise direction starting from i. Observe that, if both Pa′a and
Pd′d (resp. Pbb′ and Pcc′) contain a corner or cut vertex each, say f, f ′, then
{sw(X), ne(X)} ⊆ I(f, f ′) (resp. {nw(X), se(X)} ⊆ I(f, f ′)) and therefore
V (X) ⊆ I(f, f ′). Now consider the case when at least one of the paths in
{Pa′a, Pd′d} does not contain any corner vertex or cut vertex and when at least
one of the paths in {Pb′b, Pcc′} does not contain any corner vertex or cut vertex.
Due to symmetry of rotation and reflection on grids, without loss of generality we
can assume that both Pa′a and Pbb′ have no corner vertex or cut vertex. Observe
that in this case there must be a corner vertex f in Pab whose x-coordinate is
the same as that of b and therefore of se(X). If Pcc′ contains a corner vertex
f ′, then {nw(X), se(X)} ⊆ I(f, f ′)) and therefore V (X) ⊆ I(f, f ′). Otherwise,
there must be a corner vertex f ′ in Pc′a′ whose y-coordinate is the same as that
of c′ and therefore of nw(X). Hence we have {nw(X), se(X)} ⊆ I(f, f ′) and
therefore V (X) ⊆ I(f, f ′) in this case also.

Now we consider the case when there are some non-red boundary vertices of
X. Let v be a non-red vertex of X. Without loss of generality, we can assume
that v is a western vertex of X. Now we redefine the vertices a, a′, b, b′, c, c′, d, d′

as follows. Let a′ = sw(X), c′ = nw(X) and a (resp. b) be the vertex with
minimum y-coordinate such that there is a path from a to sw(X) (resp. from
b to se(X)) containing vertices with the same x-coordinate as that of sw(X)
(resp. se(X)). Similarly, let c (resp. d) be the vertex with maximum y-coordinate
such that there is a path from c to nw(X) (resp. from d to ne(X)) con-
taining vertices with the same x-coordinate as that of nw(X) (resp. ne(X)).
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Finally, let d′ (resp. b′) be the vertex with maximum x-coordinate such that
there is a path from d′ to ne(X) (resp. from b′ to se(X)) containing vertices
with the same y-coordinate as that of ne(X) (resp. se(X)). Using similar argu-
ments on the paths Pij with i, j ∈ {a′, a, b, b′, d′, d, c, c′} as before, we can show
that there exists corner vertices f, f ′ such that V (X) ⊆ I(f, f ′). So we have the
proof. ⊓⊔

By Observation 4 and Lemma 16, C(G) is a geodetic set of G.

Time Complexity: If the grid embedding of G is given as part of the input, then
the set of corner vertices can be computed in O(|V (G)|) time by simply traversing
the exterior face of the embedding. Otherwise, the set of corner vertices can be
computed in O(|V (G)|) time as follows (we shall only describe the procedure
to find corner vertices of degree two as the other case is trivial). Let H be a
biconnected component of G, v be a vertex of H having degree 2 and u0, x0 be
its neighbours. If both u0 and x0 have degree 4, then v is not a corner vertex.
Moreover, if at least one of u0 and x0 have degree 2 then v is a corner vertex.
Otherwise, apply the following procedure. Assume u0 has degree 3 and denote v
as u−1 for technical reasons. Set i = 0. As H is a biconnected solid grid graph,
ui and xi must have exactly one common neighbour which is different from ui−1.
Denote this vertex as xi+1. Let ui+1 be the neighbour of ui different from both
xi+1 and ui−1. If degH(ui+1) = 4 or ui+1 is a cut vertex in G then terminate.
If degG(ui+1) = 2 then v is a corner vertex. Otherwise, set i = i + 1 and repeat
the above steps. Observe that, when the above procedure terminates either we
know that v is a corner vertex or there is no corner path that contains both u0

and v. Now swapping roles of u0 and x0 in the above procedure, we can decide
if v is a corner vertex. We can find all the corner vertices of H by applying
the above procedure to all vertices of degree 2 of H. Similarly by applying the
above procedure to all the biconnected components of G, we can find all corner
vertices. Notice that, the total running time of the algorithm remains linear in
the number of vertices of G.

This completes the proof of Theorem 5.

4 Conclusion

In this paper, we studied the computational complexity of MGS in various
graph classes. We proved that MGS remains NP-hard on planar graphs and
line graphs. We also gave an O ( 3

√
n log n)-approximation algorithm for MGS

on general graphs and proved that unless P = NP, there is no polynomial time
o(log n)-approximation algorithm for MGS even on graphs with diameter 2. This
motivates the following questions.

Question 1. Are there constant factor approximation algorithms for MGS on
planar graphs and line graphs?

Question 2. Is there a O(log n)-approximation algorithm for MGS on general
graphs ?
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