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Abstract. We study the complexity of the two dual covering and pack-
ing distance-based problems Broadcast Domination and Multipack-
ing in digraphs. A dominating broadcast of a digraph D is a function
f : V (D) → N such that for each vertex v of D, there exists a vertex t
with f(t) > 0 having a directed path to v of length at most f(t). The
cost of f is the sum of f(v) over all vertices v. A multipacking is a set
S of vertices of D such that for each vertex v of D and for every integer
d, there are at most d vertices from S within directed distance at most
d from v. The maximum size of a multipacking of D is a lower bound
to the minimum cost of a dominating broadcast of D. Let Broadcast
Domination denote the problem of deciding whether a given digraph
D has a dominating broadcast of cost at most k, and Multipacking
the problem of deciding whether D has a multipacking of size at least
k. It is known that Broadcast Domination is polynomial-time solv-
able for the class of all undirected graphs (that is, symmetric digraphs),
while polynomial-time algorithms for Multipacking are known only for
a few classes of undirected graphs. We prove that Broadcast Dom-
ination and Multipacking are both NP-complete for digraphs, even
for planar layered acyclic digraphs of small maximum degree. Moreover,
when parameterized by the solution cost/solution size, we show that
the problems are respectively W[2]-hard and W[1]-hard. We also show
that Broadcast Domination is FPT on acyclic digraphs, and that it
does not admit a polynomial kernel for such inputs, unless the polyno-
mial hierarchy collapses to its third level. In addition, we show that both
problems are FPT when parameterized by the solution cost/solution size
together with the maximum out-degree. Finally, we give for both prob-
lems polynomial-time algorithms for some subclasses of acyclic digraphs.
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1 Introduction

We study the complexity of the two dual problems Broadcast Domination
and Multipacking in digraphs. These concepts were previously studied only
for undirected graphs (which can be seen as symmetric digraphs, where for each
arc (u, v), the symmetric arc (v, u) exists). Unlike most standard packing and
covering problems, which are of local nature, these two problems have more
global features since the covering and packing properties are based on arbitrary
distances. This difference makes them algorithmically very interesting.

Broadcast Domination. Broadcast domination is a concept modeling a natu-
ral covering problem in telecommunication networks: imagine we want to cover
a network with transmitters placed on some nodes, so that each node can be
reached by at least one transmitter. Already in his book in 1968 [20], Liu pre-
sented this concept, where transmitters could broadcast messages but only to
their neighboring nodes. It is however natural that a transmitter could broad-
cast information at distance greater than one, at the price of some additional
power (and cost). In this setting, for a given non-zero integer cost d, a trans-
mitter placed at node v covers all nodes within radius d from its location. If the
network is directed, it covers all nodes with a directed path of length at most
d from v. For a feasible solution, the function f : V (G) → N assigning its cost
to each node of the graph G (a cost of zero means the node has no transmitter
placed on it) is called a dominating broadcast of G, and the total cost cf of f is
the sum of the costs of all vertices of G. The broadcast domination number γb(G)
of G is the smallest cost of a dominating broadcast of G. When all costs are in
{0, 1}, this notion coincides with the well-studied Dominating Set problem.
The concept of broadcast domination was introduced in 2001 (for undirected
graphs) by Erwin in his doctoral dissertation [13] (see also [11,12] for some
early publications on the topic), in the context of advertisement of shopping
malls – which could nowadays be seen as targeted advertising via “influencers”
in social networks. Note that in these contexts, directed arcs make sense since
the advertisement or the influence is directed towards someone. The associated
computational problem is as follows.

Broadcast Domination
• Input: A digraph D = (V,A), an integer k ∈ N.
• Question: Does there exist a dominating broadcast of D of cost at most k?

Multipacking. The dual notion for Broadcast Domination, studied from
the linear programming viewpoint, was introduced in [5,24] and called multi-
packing. A set S of vertices of a (di)graph G is a multipacking if for every vertex
v of G and for every possible integer d, there are at most d vertices from S at
(directed) distance at most d from v. The multipacking number mp(G) of G is
the maximum size of a multipacking in G. Intuitively, if a graph G has a multi-
packing S, any dominating broadcast of G will require to have cost at least |S|
to cover the vertices of S. Hence the multipacking number of G is a lower bound
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to its broadcast domination number [5]. Equality holds for many graphs, such
as strongly chordal graphs [4]. Consider the following computational problem.

Multipacking
• Input: A digraph D = (V,A), an integer k ∈ N.
• Question: Does there exist a multipacking S ⊆ V of D of size at least k?

Known Results. In contrast with most graph covering problems, which are
usually NP-hard, Heggernes and Lokshtanov designed in [17] (see also [21]) a
sextic-time algorithm for Broadcast Domination in undirected graphs. This
intriguing fact has motivated research on further algorithmic aspects of the prob-
lem. For general undirected graphs, no faster algorithm than the original one is
known. A quintic-time algorithm exists for undirected series-parallel graphs [2].
An analysis of the algorithm for general undirected graphs gives quartic time
when it is restricted to chordal graphs [17,18], and a cubic-time algorithm exists
for undirected strongly chordal graphs [4]. The problem is solvable in linear
time on undirected interval graphs [7] and undirected trees [4,9] (the latter was
extended to undirected block graphs [18]).

Regarding Multipacking, to the best of our knowledge, its complexity
is currently unknown, even for undirected graphs (an open question posed
in [24,25]). However, there exists a polynomial-time (2 + o(1))-approximation
algorithm for all undirected graphs [1]. Multipacking can be solved with the
same complexity as Broadcast Domination for undirected strongly chordal
graphs, see [4]. Improving upon previous algorithms from [22,24], the authors
of [4] give a simple linear-time algorithm for undirected trees.

Our Results. We study Broadcast Domination and Multipacking for
directed graphs (digraphs), which form a natural setting for not necessarily sym-
metric telecommunication networks. In contrast with undirected graphs, we show
that Broadcast Domination is NP-complete, even for planar layered acyclic
digraphs (defined afterwards) of maximum degree 4. This holds for Multipack-
ing, even for planar layered acyclic digraphs of maximum degree 3, or acyclic
digraphs with a single source and maximum degree 5. Moreover, when parame-
terized by the solution cost/solution size, we prove that Broadcast Domina-
tion is W[2]-hard (even for bipartite digraphs without directed 2-cycles) and
Multipacking is W[1]-hard. On the positive side, we show that Broadcast
Domination is FPT on acyclic digraphs (DAGs for short) but does not admit
a polynomial kernel for layered DAGs, unless the polynomial hierarchy collapses
to its third level. Moreover, we show that both Broadcast Domination and
Multipacking are polynomial-time solvable for layered DAGs with a single
source. We also design FPT algorithms for both problems when parameterized
by the solution cost/solution size together with the maximum out-degree. The
resulting complexity landscape is represented in Fig. 1. We start with some defi-
nitions in Sect. 2. We prove our results for Broadcast Domination in Sect. 3.
The results for Multipacking are presented in Sect. 4. We conclude in Sect. 5.
Due to lack of space, we omit some proofs that can be found in the full version
of the paper [14].
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Fig. 1. Complexity landscape of Broadcast Domination and Multipacking for
some classes of digraphs. An arc from class A to class B indicates that A is a subset
of B. Parameterized complexity results are for parameter solution cost/solution size.

2 Preliminaries

Directed Graphs. We mainly consider digraphs, usually denoted D = (V,A)1,
where V is the set of vertices and A the set of arcs. For an arc uv ∈ A, we
say that v is an out-neighbor of u, and u an in-neighbor of v. Given a subset of
vertices V ′ ⊆ V , we define the digraph induced by V ′ as D′ = (V ′, A′) where
A′ = {uv ∈ A : u ∈ V ′ and v ∈ V ′}. We denote such an induced subdigraph
by D[V ′]. A directed path from a vertex p1 to pl is a sequence {p1, . . . , pl}
such that pi ∈ V and pipi+1 ∈ A for every 1 � i < l. When p1 = pl, it is a
directed cycle. A digraph is acyclic whenever it does not contain any directed
cycle as an induced subgraph. An acyclic digraph is called a DAG for short.
The (open) out-neighborhood of a vertex v ∈ V is the set N+(v) = {u ∈ V :
vu ∈ A}, and its closed out-neighborhood is N+[v] = N+(v) ∪ {v}. We define
similarly the open and closed in-neighborhoods of v and denote them by N−(v)
and N−[v], respectively. A source is a vertex v such that N−(v) = ∅. For the
sake of readability, we always mean out-neighborhood when speaking of the
neighborhood of a vertex. A DAG D = (V,A) is layered when its vertex set can
be partitioned into {V0, . . . , Vt} such that N−(V0) = ∅ and N+(Vt) = ∅ (vertices
of V0 and Vt are respectively called sources and sinks), and uv ∈ A implies that
u ∈ Vi and v ∈ Vi+1, 0 � i < t. A single-sourced layered DAG is a layered DAG
with only one source, that is, satisfying |V0| = 1. A digraph is bipartite or planar
if its underlying undirected graph has the corresponding property. Every layered

1 Our reductions will also use undirected graphs, denoted G = (V,E) with V =
{v1, . . . , vn} and E = {e1, . . . , em}.
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digraph is bipartite. Given two vertices u and v, we denote by d(u, v) the length
of a shortest directed path from u to v. For a vertex v ∈ V and an integer d, we
define the ball of radius d centered at v by B+

d (v) = {u ∈ V : d(v, u) � d}∪{v}.
Consider a dominating broadcast f : V (D) → N on D. The set of broadcast
dominators is defined as Vf = {v ∈ V : f(v) > 0}. For any set S ⊆ V of vertices
of D, we define f(S) as the value f(S) =

∑
u∈S f(u).

Parameterized Complexity. A parameterized problem is a decision problem
together with a parameter, that is, an integer k depending on the instance. A
problem is fixed-parameter tractable (FPT for short) if it can be solved in time
f(k) · |I|c for an instance I of size |I| with parameter k, where f is a computable
function and c is a constant. Given a parameterized problem P , a kernel is a
function which associates to each instance of P an equivalent instance of P whose
size is bounded by a function h of the parameter. When h is a polynomial, the
kernel is said to be polynomial. An FPT-reduction between two parameterized
problems P and Q is a function mapping an instance (I, k) of P to an instance
(f(I), g(k)) of Q, where f and g are computable in FPT time with respect to
parameter k, and where I is a YES-instance of P if and only if f(I) is a YES-
instance of Q. When moreover f can be computed in polynomial time and g is
polynomial in k, we say that the reduction is a polynomial time and parame-
ter transformation [3]. Both reductions can be used to derive conditional lower
bounds: if a parameterized problem P does not admit an FPT algorithm (resp. a
polynomial kernel) and there exists an FPT-reduction (resp. a polynomial time
and parameter transformation) from P to a parameterized problem Q, then Q
is unlikely to admit an FPT algorithm (resp. a polynomial kernel). Both impli-
cations rely on certain standard complexity hypotheses; we refer the reader to
the book [8] for details.

3 Complexity of Broadcast Domination

3.1 Hardness Results

Theorem 1. Broadcast Domination is NP-complete, even for planar lay-
ered DAGs of maximum degree 4.

Theorem 2. Broadcast Domination parameterized by solution cost k is
W[2]-hard, even on bipartite digraphs without directed 2-cycles.

Proof (sketch). We provide a reduction from the W[2]-hard Multicolored
Dominating Set problem [6].

Multicolored Dominating Set
• Input: A graph G = (V,E) with V partitioned into sets {V1, . . . , Vk}, k ∈ N.
• Question: Does there exist a dominating set S of G s.t. |S ∩ Vi| = 1 for
1 � i � k?
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Construction. We build an instance (D′ = (V ′, A′), k′) of Broadcast Domi-
nation as follows. To obtain the vertex set V ′, we multiplicate V into four sets
V 0, V 1, V 2 and V 3 and we will have a set M of subdivided vertices. The set
V 0 ∪ V 1 will induce an oriented complete bipartite graph, while V 2 ∪ V 3 will
induce a matching. For a vertex v ∈ V , 0 � i � 3, its copy in V i is denoted vi.
We assume that |Vi| � 2, since otherwise one must take the only vertex in Vi.
For each 1 � i � k we then add the following arcs:

– for every pair v, w of distinct vertices of Vi, we add an arc from v0 to w1;
– for every v ∈ Vi, we add an arc from v1 to v0;
– for every v ∈ Vi, we add an arc from v2 to v3.

Moreover, for every edge vw in G, we add an arc from v1 to w2, and we
subdivide it once. The set of all subdivision vertices is called M . Finally, we
set k′ = 3k. Digraph D′ has no directed 2-cycles, and is bipartite with sets
V 0 ∪ M ∪ V 3 and V 1 ∪ V 2. One can check that G has a multicolored dominating
set of size k if and only if D′ has a dominating broadcast of cost 3k. �	

3.2 Complexity and Algorithms for (Layered) DAGs

We now address the special cases of (layered) DAGs. Note that Dominating
Set remains W[2]-hard on DAGs by a reduction from [23, Theorem 6.11.2]. In
contrast, we now give an FPT algorithm for Broadcast Domination on DAGs
that counterbalances the W[2]-hardness result.

Theorem 3. Broadcast Domination parameterized by solution cost k is
FPT for DAGs.

Proof. The proof relies on the following proposition, which is reminiscent of
a stronger statement of Dunbar et al. [11] for undirected graphs (stating that
there always exists an optimal dominating broadcast where each vertex is covered
exactly once, which is false for digraphs).

Proposition 4. For any digraph D = (V,A), there exists an optimal dominat-
ing broadcast such that every broadcast dominator is covered by itself only.

Proof. Let f be an optimal dominating broadcast of D, and assume there exists
two vertices u, v ∈ V such that f(v) � 1 and f(u) � d(u, v). In this case, v
is covered by both u and itself. Notice that d(u, v) + f(v) > f(u), since oth-
erwise setting f(v) to 0 would result in a better dominating broadcast. We
claim that setting f(u) to d(u, v) + f(v) and f(v) to 0 yields an optimal dom-
inating broadcast fu. Notice that since d(u, v) + f(v) > f(u), any vertex cov-
ered by u in f is still covered in fu. Similarly, any vertex covered by v in f
is now covered by u in fu. Finally, we have f(u) + f(v) � fu(u) + fu(v) since
fu(u) = d(u, v) + f(v) � f(u) + f(v) and fu(v) = 0, implying that the cost of
fu is at most the cost of f . �	
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We can now prove Theorem 3. Let D = (V,A) be a DAG. We consider the set V0

of sources of D. Observe that for every s ∈ V0, f(s) � 1 must hold. In particular,
this means that |V0| � k (otherwise we return NO). We provide a branching
algorithm based on this simple observation and on Proposition 4. We start with
an initial broadcast f consisting of setting f(s) = 1 for every vertex s in V0. At
each step of the branching algorithm, we let Nf = ∪v∈Vf

B+
f(v)(v) be the set of

currently covered vertices, and we consider the digraph Df = D[V \ Nf ]. Notice
that Df is acyclic and hence contains a source u. Since every vertex of Nf \ Vf

is covered, we may assume by Proposition 4 that in the sought optimal solution,
u is only covered by itself or by a vertex in Vf . This means that one needs to
branch on at most k +1 distinct cases: either setting f(u) = 1, or increasing the
cost of one of its at most k broadcasting ancestors in Vf . At every branching, the
parameter k decreases by 1, which ultimately gives an O∗(2k log k)-time algorithm
and completes the proof of Theorem 3. �	

We will now complement the previous result by a negative one, which can be
proved using a reduction from Hitting Set, defined as follows.

Hitting Set
• Input: A universe U of elements, a collection F of subsets of U , an integer
k ∈ N.
• Question: Does there exist a hitting set S of size k, that is, a set of k elements
from U such that each set of F contains an element of S?

Hitting Set has no polynomial kernel when parameterized by k+|U |, unless
the polynomial hierarchy collapses to its third level [10, Theorem 5.1].

Theorem 5. Broadcast Domination parameterized by solution cost k does
not admit a polynomial kernel even on layered DAGs, unless the polynomial
hierarchy collapses to its third level.

Theorem 6. Broadcast Domination is polynomial-time solvable on single-
sourced layered DAGs.

Proof (sketch). Let D = (V,A) be a single-sourced layered DAG with layers
{V0, . . . , Vt}. For the sake of readability, sets Vi such that |Vi| = 1 are denoted
si, for 0 � i � t. Due to lack of space, the following claim is given without proof.

Claim 1. There always exists an optimal dominating broadcast f of D such that:

(i) Vf ⊆ ⋃t
i=0 si

(ii) every si ∈ Vf , 0 � i � t, covers exactly B+
l (si), where l = j − i − 1 and j is

the smallest index such that j � i + 2 and |Vj | = 1.

We thus deduce a simple top-down procedure to compute an optimal domi-
nating broadcast f . We start with setting i = 0. While there remain uncovered
vertices, we let f(si) = j − i − 1 for the smallest value j such that sj exists and
j � i + 2. In other words, si will cover all vertices below it, until the closest ver-
tex of the set

⋃t
j=0 sj that is not a neighbour of si. We then carry on by setting

i = j. By Claim 1, this leads to f being an optimal dominating broadcast. �	
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We finally give an FPT algorithm for two parameters. By Theorems 1 and 2,
such a result probably does not hold for each of them individually.

Theorem 7. Broadcast Domination parameterized by solution cost k and
maximum out-degree is FPT.

4 Complexity of Multipacking

We will need the following results to prove our results for Multipacking. The
first one was proved for undirected graphs in [16].

Lemma 8. Let D = (V,A) be a digraph with a shortest directed path of length
3k − 3 vertices. Then, D has a multipacking of size k.

Proof. It suffices to select every third vertex on the path. �	
Lemma 9. Let D = (V,A) be a digraph. There always exists a multipacking of
maximum size containing every source of D.

The following lemma is the central result of both our polynomial-time algo-
rithm (Theorem 14) and NP-completeness reduction (Theorem 12).

Lemma 10. Let D = (V,A) be a single-sourced layered DAG. There always
exists a multipacking S ⊆ V of maximum size such that for every 1 � i � t,
|S ∩ Vi| � 1.

Proof. Let S ⊆ V be a multipacking of D of maximum size. By definition of a
multipacking, considering each ball centered at the source s, the following holds
for every 1 � i � t: ∣

∣S ∩ ∪i
j=0Vj

∣
∣ � i (1)

We will prove the result inductively, by locally modifying S in a top-down manner
until it has the desired property. Let j � 2 be the smallest index such that
|S ∩ Vj | � 2, and i < j be the largest index such that |S ∩ Vi| = 0. Notice that
i is well-defined due to (1). Moreover, let s1j and s2j be two vertices of S ∩ Vj .

Case 1. We assume first that i = j − 1. Let u1
i and u2

i be vertices of Vi such
that u1

i s
1
j and u2

i s
2
j belong to A (note that in a layered DAG every non-source

vertex has a predecessor in the previous layer). Since S is a multipacking, we
have u1

i 
= u2
i and neither u1

i nor u2
i is adjacent to both s1j and s2j . Moreover, a

vertex si−1 in S ∩Vi−1 cannot be adjacent to both u1
i and u2

i , since otherwise we
would have

∣
∣B+

2 (si−1) ∩ S
∣
∣ > 2. Moreover by minimality of the index j, there is

at most one vertex of S in Vi−1. Assuming w.l.o.g. that u1
i has no predecessor

in S, the set (S \ {s1j}) ∪ {u1
i } is a multipacking having the same size than S.

Case 2. We now consider the case where i < j−1. First, we will prove that there
is a vertex vi in Vi with no in-neighbor in S. If S ∩Vi−1 = ∅, any vertex of Vi can
be chosen as vertex vi. Otherwise, by choice of j we have |S ∩ Vi−1| = 1. Assume
S ∩ Vi−1 = {si−1}. We claim that si−1 is not adjacent to every vertex of Vi.
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Assume for a contradiction that this is the case. This means that si−1 is within
distance j − (i−1) of every vertex contained in ∪j

l=iVl. By the choice of indices i

and j we know that ∪j
l=iVl contains at least j − (i− 1) vertices from S, which in

turn implies that
∣
∣
∣B+

j−(i−1)(si−1) ∩ S
∣
∣
∣ = j − (i− 1)+1, contradicting (1). Thus,

there is a vertex vi in Vi that has no in-neighbor in S. Now, we know by choices
of i and j that |S ∩ Vp| = 1 for i < p < j. Hence the set (S \ {si+1}) ∪ {vi},
where {si+1} = S ∩ Vi+1, is a multipacking of D having the same size than S.
By iterating the above argument, we end up with i = j − 1, in which case we
can apply the argument from Case 1. Overall, after each iteration of Case 1, j
strictly increases. The procedure terminates when the value of j reaches t. �	

4.1 Hardness Results

Theorem 11. Multipacking is NP-complete, even for planar layered DAGs
of maximum degree 3.

Theorem 12. Multipacking is NP-complete on single-sourced DAGs of max-
imum degree 5.

Proof (sketch). We provide a reduction from the NP-complete Independent
Set problem [15]. We define the function f : V (G) → E such that for v ∈
V (G), f(v) = ei if and only if ei is the first edge in which v appears (recall that
E = {e1, . . . , em}). We create the digraph D = (V ′, A) as follows (see Fig. 2):

V ′ ={ui, vi, wi, xi, yi, zi : 1 � i � m} ∪ V ∪ {s, p}
A ={uiwi, uixi : 1 � i � m} ∪ {vixi : 1 � i � m} ∪ {wiyi, wizi : 1 � i � m}

⋃

{ziui+1, zivi+1 : 1 � i � m − 1} ∪ {xiu, xiv : 1 � i � m and ei = uv}
⋃

{uiu : 1 � i � m and f(u) = ei} ∪ {sp, pu1, pv1}

To conclude, one can see that G has an independent set of size k if and only
if D has a multipacking of size k′ = k + 2m + 1. �	
Theorem 13. Multipacking parameterized by solution size k is W[1]-hard.

Proof (sketch). We provide an FPT-reduction from Multicolored Indepen-
dent Set, which is W[1]-hard when parameterized by k [8].

Multicolored Independent Set
• Input: A graph G = (V,E) with V partitioned into sets {V1, . . . , Vk}, k ∈ N.
• Question: Does there exist an independent set S of G s.t. |S ∩ Vi| = 1 for
1 � i � k?

Construction. We construct an instance (D = (V ′, A′), k′) of Multipacking
as follows. We consider the bipartite incidence graph of G, that is we add V ∪E to
V ′. To construct A′, we add an arc from a vertex e ∈ E to a vertex v ∈ V if and
only if e contains v. We next group vertices of E into

(
k
2

)
sets Ei,j , 1 � i < j � k
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Fig. 2. Sketch of the construction in the proof of Theorem 12 for edges e0 = ab and
e1 = bc with f(a) = f(b) = e0 and f(c) = e1.

according to the colors of their corresponding endpoints, and add every possible
arc within each set Ei,j . We next duplicate the vertices of each set Vi into a set
V ′
i such that there is an arc from each vertex vi ∈ Vi to its corresponding copy

v′
i in V ′

i . Finally, we add k vertices {s1, . . . , sk} such that there is an arc from
si to every vertex of Vi. Notice in particular that the maximum finite distance
is 3. To conclude, one can see that the graph G has a multicolored independent
set of size k if and only if the digraph D has a multipacking of size k′ = 2k+

(
k
2

)
.

�	

4.2 Algorithms

Theorem 14. Multipacking can be solved in linear time on single-sourced
layered DAGs.

Proof. Let D = (V, A) be a single-sourced layered DAG. By Lemma 10, in every
single-sourced layered DAG there is a multipacking of maximum size that is a
maximum-size set of vertices with at most one vertex per layer such that two
chosen vertices of consecutive layers are not adjacent. We give a polynomial-time
bottom-up procedure to find such a set. At each step of the procedure, a layer
Vi is partitioned into a set of active vertices and a set of universal ones, denoted
respectively Ai and Ui. Our goal is to select exactly one vertex in each set of
active vertices. We initiate the algorithm by setting At = Vt and Ut = ∅. Now, for
every i with 0 � i < t, we set Ui = {u ∈ Vi : Ai+1 ⊆ N+(u)} and Ai = Vi \ Ui.
In other words, Ui contains the vertices of layer Vi that are adjacent to all active
vertices of Vi+1. During the procedure, if some layer Vi satisfies Ai = ∅, we let
Ai−1 = Vi−1 and repeat this process until V0 is reached.
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To construct a maximum multipacking, we start from V0, and for each 0 �
i � t we pick a vertex si in each non-empty set Ai of active vertices. Every time a
vertex si is picked, we remove its closed neighborhood from D. By construction,
every time a vertex si is picked, there exists a vertex si+1 ∈ Ai+1 such that
sisi+1 does not belong to A (otherwise si would belong to Ui). To prove the
optimality of our algorithm, let 0 � i < t be such that Ai = ∅, and j > i be the
smallest integer greater than i such that Vj = Aj . Such a j exists since At = Vt.

Claim 2. Let S be a multipacking with at most one vertex per layer. Then:
∣
∣
∣S ∩ ∪j

k=iVk

∣
∣
∣ � j − i (2)

Proof. Let S be an optimal multipacking with at most one vertex per layer.
Assume by contradiction that

∣
∣
∣S ∩ ⋃j

k=i Vk

∣
∣
∣ > j − i + 1, and call sk the vertex

in Vk ∩ S for every i � k � j. We know that si ∈ Ui, and since every vertex in
Ai+1 is an out-neighbor of si, then si+1 ∈ Ui+1. By induction, for every i � k � j,
we have sk ∈ Uk, but Uj = ∅ by choice of j, leading to a contradiction.

Note that Claim 2 gives one less vertex than what Lemma 10 implies, and
that it is the value reached by our algorithm, since for i � k � j, the only layer
with Uk = Vk is Vi. The sets of active and universal vertices can be constructed
by standard graph searching, so the whole algorithm takes O(|V | + |A|) time. �	
Theorem 15. Multipacking parameterized by solution size k and maximum
out-degree d is FPT.

Proof. Let (D = (V, A), k) be an instance of Multipacking such that D has
maximum out-degree d. By Lemma 8, if D has a shortest directed path of length
3k − 3, we can accept the input (this can be checked in polynomial time). Thus,
we can assume that the length of any shortest path is at most 3k−2. If a vertex u
has a directed path to a vertex v, we say that u absorbs v, and a set S of vertices
is absorbing if every vertex in D is absorbed by some vertex of S. If D has a
set of k vertices, no two of which are absorbed by some common vertex (e.g. a
set of k sources), we can accept, since this set forms a valid solution. Note that
this property is satisfied by any minimum-size absorbing set S: indeed, if some
vertex w absorbs two vertices u, v of S, we may replace them by w and obtain
a smaller absorbing set, a contradiction. We claim that we can find a minimum-
size absorbing set in FPT time. Indeed, we can reduce this problem to Hitting
Set (defined for the proof of Theorem 5) as follows. We let U = V (D), and
F contains a set Fv for every vertex v, where Fv comprises every vertex which
absorbs v (including v itself). Because D has out-degree at most d and the length
of any shortest path is at most 3k − 2, every vertex of U is contained in at most
dU =

∑3k−2
i=0 (d − 1)i + 1 sets of F . Moreover, a set of vertices of U = V (D)

is a hitting set of (U,F) if and only if it is an absorbing set of D. We can solve
Hitting Set in FPT time when parameterized by dU and solution size k [19],
which proves the above claim. As mentioned before, if the obtained minimum-
size absorbing set of D has size at least k, since it forms a valid multipacking,
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we can accept. Otherwise, D can be covered by k − 1 balls of radius at most
3k − 2. Each ball has at most

∑3k−2
i=0 (d − 1)i + 1 = dO(k) vertices, so in total D

has at most dO(k) vertices and a brute-force algorithm is FPT. �	

5 Conclusion

We have studied Broadcast Domination and Multipacking on various sub-
classes of digraphs, with a focus on DAGs. It turns out that they behave very
differently than for undirected graphs. We feel that Multipacking is slightly
more challenging. Indeed, some problems that we solved for Broadcast Domi-
nation are open for Multipacking. For example, it would be interesting to see
whether Multipacking is FPT for DAGs, and whether it remains W[1]-hard
for digraphs without directed 2-cycles. It is also unknown whether Multipack-
ing is NP-hard on undirected graphs, as asked in [24,25]. On the other hand, we
showed that Multipacking is NP-complete for single-sourced DAGs, but we do
not know whether the same holds for Broadcast Domination. It is not diffi-
cult to show that both problems are FPT when parameterized by the vertex cover
number. What about smaller parameters such as tree-width or DAG-width?
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