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Abstract
We study two geometric variations of the discriminating code problem. In the discrete version, a
finite set of points P and a finite set of objects S are given in Rd. The objective is to choose a subset
S∗ ⊆ S of minimum cardinality such that the subsets S∗

i ⊆ S∗ covering pi, satisfy S∗
i 6= ∅ for each

i = 1, 2, . . . , n, and S∗
i 6= S∗

j for each pair (i, j), i 6= j. In the continuous version, the solution set S∗

can be chosen freely among a (potentially infinite) class of allowed geometric objects.
In the 1-dimensional case (d = 1), the points are placed on some fixed-line L, and the objects in

S are finite segments of L (called intervals). We show that the discrete version of this problem is
NP-complete. This is somewhat surprising as the continuous version is known to be polynomial-
time solvable. This is also in contrast with most geometric covering problems, which are usually
polynomial-time solvable in 1D.

We then design a polynomial-time 2-approximation algorithm for the 1-dimensional discrete case.
We also design a PTAS for both discrete and continuous cases when the intervals are all required to
have the same length.

We then study the 2-dimensional case (d = 2) for axis-parallel unit square objects. We show
that both continuous and discrete versions are NP-hard, and design polynomial-time approximation
algorithms with factors 4 + ε and 32 + ε, respectively (for every fixed ε > 0).
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1 Introduction

We consider geometric versions of the Discriminating Code problem, which are variations
of classic geometric covering problems. A set of point sites P in Rd is given. For a set S
of objects of Rd, denote by Si the set of objects of S that contain pi ∈ P . The objective is
to choose a minimum-size set S∗ of objects such that S∗i 6= ∅ for all pi ∈ P (covering), and
S∗i 6= S∗j for each pair of distinct sites pi, pj ∈ P (discrimination). In the discrete version,
the objects of S∗ must be chosen among a specified set S of objects given in the input, while
in the continuous version, only the points are given, and the objects can be chosen freely
(among some infinite class of allowed objects).
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24:2 Discriminating Codes in Geometric Setups

The problem is motivated as follows. Consider a terrain that is difficult to navigate. A set
of sensors, each assigned a unique identification number (id), are deployed in that terrain, all
of which can communicate with a single base station. If a region of the terrain suffers from
some specific problem, a subset of sensors will detect that and inform the base station. From
the id’s of the alerted sensors, one can uniquely identify the affected region, and a rescue
team can be sent. The covering zone of each sensor can be represented by an object in S.
The arrangement of the objects divides the entire plane into regions. A representative point
of each region may be considered as a site. The set P consists of some of those sites. We
need to determine the minimum number of sensors such that no two sites in P are covered
by the same set of ids. Apart from coverage problems in sensor networks, this problem
has applications in fault detection, heat prone zone in VLSI circuits, disaster management,
environmental monitoring, localization and contamination detection [18, 24], to name a few.

The general version of the problem has been formulated as a graph problem, as follows.

Minimum Discriminating Code (Min-Disc-Code) [5, 6]
Input: A connected bipartite graph G = (U ∪ V,E), where E ⊆ {(u, v)|u ∈ U, v ∈ V }.
Output: A minimum-size subset U∗ ⊆ U such that U∗ ∩N(v) 6= ∅ for all v ∈ V , and
U∗ ∩N(v) 6= U∗ ∩N(v′) for every pair v, v′ ∈ V , v 6= v′.

In the geometric version of Min-Disc-Code, which will be further referred to as the
G-Min-Disc-Code, the two sets of nodes in the bipartite graph are U = a set of geometric
objects S, and V = a set of points P in Rd, and an object is adjacent to all the points it
contains. The code of a point p ∈ P with respect to a subset S′ ⊆ S is the subset of S′ that
contains p. Given an instance (P, S), two points pi, pj ∈ P are called twins if each member in
S that contains pi also contains pj , and vice-versa. An instance (P, S) of G-Min-Disc-Code
is twin-free if no two points in P are twins. Geometrically, if we consider the arrangement [8]
A of the geometric objects S, then the instance (P, S) is twin-free if each cell of A contains
at most one point of P . As mentioned earlier, for a twin-free instance, a subset of S that
can uniquely assign codes to all the points in P is said to discriminate the points of P and is
called a discriminating code or disc-code in short. In the discrete version of the problem, our
objective is to find a subset S∗ ⊆ S of minimum cardinality that is a disc-code for the points
in P . In the continuous version, we can freely choose the objects of S∗. The two problems
are formally stated as follows.

Discrete-G-Min-Disc-Code
Input: A point set P to be discriminated, and a set of objects S to be used for the
discrimination.
Output: A minimum-size subset S∗ ⊆ S which discriminates all points in P .

Continuous-G-Min-Disc-Code
Input: A point set P to be discriminated.
Output: A minimum-size set S∗ of objects that discriminate the points in P , and that
can be placed anywhere in the region under consideration.

Related work. The general Min-Disc-Code problem is NP-hard and hard to approxim-
ate [5, 6, 17]. In the context of the above-mentioned practical applications, Discrete-G-
Min-Disc-Code in 2D was defined in [2], where an integer programming formulation (ILP) of
the problem was given along with an experimental study. Continuous-G-Min-Disc-Code
was introduced in [13], and shown to be NP-complete for disks in 2D, but polynomial-time
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in 1D (even when the intervals are restricted to have bounded length). These two problems
are related to the class of geometric covering problems, for which also both the discrete and
continuous version are studied extensively [16]. A related problem is the Test Cover prob-
lem [9], which is similar to Min-Disc-Code (but defined on hypergraphs). It is equivalent
to the variant of Min-Disc-Code where the covering condition “U∗ ∩ N(v) 6= ∅” is not
required. Thus, a discriminating code is a test cover, but the converse may not be true.

Geometric versions of Test Cover have been studied under various names. For example,
the separation problems in [3, 7, 14] can be seen as continuous geometric versions of test
cover in 2D, where the objects are half-planes. Test Cover behaves very similarly to
Min-Disc-Code, and our techniques could be applied to Test Cover to obtain similar
results. Such results do not exist in the literature. Similar problems are also called shattering
problems, see [22]. A well-studied special case of Min-Disc-Code for graphs is the problem
Minimum Identifying Code (Min-ID-Code). This problem was studied in particular for
the related setting of geometric intersection graphs, for example on unit disk graphs [20] and
interval graphs [4, 10, 11].

Our results. We show that Discrete-G-Min-Disc-Code in 1D, that is, the problem of
discriminating points on a real line by interval objects of arbitrary length, is NP-complete.
For this we reduce from 3-SAT. Here, the challenge is to overcome the linear nature of the
problem and to transmit the information across the entire construction without affecting
intermediate regions. This result is in contrast with Continuous-G-Min-Disc-Code in
1D, which is polynomial-time solvable [13]. This is also in contrast with most geometric
covering problems, which are usually polynomial-time solvable in 1D [16]. We then design
a polynomial-time 2-factor approximation algorithm for Discrete-G-Min-Disc-Code in
1D. To this end we use the concept of minimum edge-covers in graphs, whose optimal
solution can be found by computing a maximum matching of the graph. We also design
a polynomial-time approximation scheme (PTAS) for both Discrete-G-Min-Disc-Code
and Continuous-G-Min-Disc-Code in 1D, when the objects are required to all have the
same (unit) length. We also study both problems in 2D for axis-parallel unit square objects,
which form a natural extension of 1D intervals to the 2D setting. The continuous version is
known to be NP-complete for unit disks [13], and we show that the reduction can be adapted
to our setting, for both the continuous and discrete case. We then design polynomial-time
constant-factor approximation algorithms for both problems in the same setting, of factors
4 + ε for Continuous-G-Min-Disc-Code, and 32 + ε for Discrete-G-Min-Disc-Code
(for any fixed ε > 0). To this end, we re-formulate the problem as an instance of stabbing a
set L of given line segments by placing unit squares in R2. (Here a line segment ` ∈ L is
stabbed by a unit square if exactly one end-point of ` is contained in the square.)

We propose a 4-factor approximation algorithm for this stabbing problem, which, to the
best of our knowledge, is the first polynomial-time constant-factor algorithm for it.1

Our results are summarized in Table 1. Due to space restrictions, the proofs of the
statements marked with ? can be found in the full version.

1 Such algorithms exist for a related, but different, segment-stabbing problem by unit disks, where a disk
stabs a segment if it intersects it once or twice [21, 15].
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24:4 Discriminating Codes in Geometric Setups

Table 1 Summary of our results.

Object Type
Continuous-G-Min-Disc-Code Discrete-G-Min-Disc-Code

Hardness Algorithm Hardness Algorithm

1D intervals - Polynomial [13] NP-hard (Thm. 5) 2-approximable (Thm. 9)

1D unit intervals Open PTAS (Thm. 13) Open PTAS (Thm. 13)

2D axis parallel
unit squares

NP-hard (Thm. 14) (4 + ε)-approximable (Thm. 17) NP-hard (Thm. 14) (32 + ε)-approximable (Thm. 18)

2 The one-dimensional case

An instance (P, S) of Discrete-G-Min-Disc-Code is a set P = {p1, . . . , pn} of points and
a set S of m intervals of arbitrary lengths placed on the real line R. Assuming that the points
are sorted with respect to their coordinate values, we define n+ 1 gaps G = {g1, . . . , gn+1},
where g1 = (−∞, p1), gi = (pi−1, pi) for 2 ≤ i ≤ n, and gn+1 = (pn,∞). One can check
whether (P, S) is twin-free in O(n logn+m logm) i.e. O(m logm) because m ≥ n

2 .
Observe that (i) if both endpoints of an interval s ∈ S lie in the same gap of G, then it

can not discriminate any pair of points; thus s is useless, and (ii) if more than one interval in
S have both their endpoints in the same two gaps, say ga = (pa, pa+1), gb = (pb, pb+1) ∈ G,
then both of them discriminate the exact same point-pairs. Thus, they are redundant and
we need to keep only one such interval. In a linear scan, we can first eliminate the useless
and redundant intervals. From now onwards, m will denote the number of intervals, none of
which are useless or redundant. Hence, m = O(n2).

2.1 NP-completeness for the general 1D case
Discrete-G-Min-Disc-Code is in NP, since given a subset S′ ⊆ S, in polynomial time one
can test whether the problem instance (P, S′) is twin-free (i.e. whether the code of every
point in P induced by S′ is unique). Our reduction for proving NP-hardness is from the
NP-complete 3-SAT-2l problem [26] (defined below), to Discrete-G-Min-Disc-Code.

3-SAT-2l
Input: A collection of m clauses C = {c1, c2, . . . , cm} where each clause contains at
most three literals, over a set of n Boolean variables X = {x1, x2, . . . , xn}, and each
literal appears at most twice.
Output: A truth assignment of X such that each clause is satisfied.

Given an instance (X,C) of 3-SAT-2l, we construct in polynomial time an instance
Γ(X,C) of Discrete-G-Min-Disc-Code on the real line R. The main challenge of this
reduction is to be able to connect variable and clause gadgets, despite the linear nature of
our 1D setting. The basic idea is that we will construct an instance where some specific set
of critical point-pairs will need to be discriminated (all other pairs being discriminated by
some partial solution forced by our gadgets). Let us start by describing our basic gadgets.

I Definition 1. A covering gadget Π consists of three intervals I, J , K and four points p1,
p2, p3 and p4 satisfying p1 ∈ I, p2 ∈ I ∩ J , p3 ∈ I ∩ J ∩K and p4 ∈ J ∩K as in Fig. 1.
Every other interval of the construction will either contain all four points, or none. There
may exist a set of points in K \ {I ∪ J}, depending on the need of the reduction.

I Observation 2. Points p1,p2,p3,p4 can only be discriminated by choosing all three intervals
I, J , K in the solution.
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I

J

K

Π

p1 p2 p3 p4

Figure 1 A covering gadget Π, and its schematic representation.

Proof. Follows from the fact that none of the intervals in Γ(X,C) that is not a member of
the covering gadget Π can discriminate the four points in Π. Moeover, if we do not choose I,
then p3, p4 are not discriminated. If we do not choose J , p1, p2 are not discrimnated. If we
do not choose K, p2, p3 are not discriminated. J

Let us now define the gadgets modeling the clauses and variables of the 3-SAT-2l instance.

I Definition 3. Let ci be a clause of C. The clause gadget for ci, denoted Gc(ci), is defined
by a covering gadget Π(ci) along with two points pci , p′ci placed in K \ {I ∪ J} (see Fig. 2).

I

J

K

p1 p2 p3 p4

Π(ci)

pci p′ci

Figure 2 A covering gadget Gc(ci), and its schematic representation.

The idea behind the clause gadget is that some interval that ends between points pci , p′ci
will have to be taken in the solution, so that this pair gets discriminated.

I Definition 4. Let xj be a variable of X. The variable gadget for xj, denoted Gv(xj),
is defined by a covering gadget Π(xj), and five points p1

xj , . . . , p
5
xj placed consecutively in

K \ {I ∪ J}. It also contains six intervals I0
xj , I

1
xj , I

2
xj , I

0
x̄j , I

1
x̄j , I

2
x̄j , as in Fig. 3. The right

end points will depend on the formula.

Π(xi)

p1
xj

p2
xj

p3
xj

p4
xj

p5
xj

I0
xj

I1
xj

I2
xj

I0
x̄j

I1
x̄j

I2
x̄j

Figure 3 A variable gadget Gv(xj).

In a variable gadget Gv(xj), the intervals I1
xj and I2

xj represent the occurrences of literal
xj , while I1

x̄j and I2
x̄j represent the occurrences of x̄j . The right end points of each of these

four intervals will be in the clause gadget of the clause that the occurrence of the literal
belongs to. Thus, Γ(X,C) is constructed as follows. Note that we can assume that every
literal appears in at least one clause (otherwise, we can fix the truth value of the variable
and obtain a smaller equivalent instance).

ISAAC 2020



24:6 Discriminating Codes in Geometric Setups

For each variable xi ∈ X, Γ(X,C) contains a variable gadget Gv(xi).
The gadgets Gv(x1), Gv(x2), . . . , Gv(xn) are positioned consecutively, in this order,
without overlap.
For each clause cj ∈ C, Γ(X,C) contains a clause gadget Gc(cj).
The gadgets Gc(c1), Gc(c2), . . . , Gc(cm) are positioned consecutively, in this order, after
the variable gadgets, without overlap.
For every variable xi, assume xi appears in clauses ci1 and ci2 , and x̄i appears in ci3 and
ci4 (possibly i1 = i2 or i3 = i4). Then, we extend interval I1

xi so that it ends between
pci1 and p′ci1 ; I

2
xi ends between pci2 and p′ci2 ; I

1
x̄i ends between pci3 and p′ci3 ; I

2
x̄i ends

between pci4 and p′ci4 .

Let CΠ be the union of the disc-codes (i.e. all intervals of type I, J,K, by Observation 2)
of all covering gadgets. Observe that CΠ discriminates the points p1, p2, p3, p4 in each covering
gadget Π, and any point covered by K from any other point not covered by K. It follows
that all point-pairs are discriminated by CΠ, except the following critical ones:

the pairs among the five points p1
xi , . . . , p

5
xi of each variable gadget Gv(xi), and

the point pair {pcj , p′cj} of each clause gadget Gc(cj).

I Theorem 5 (?). Discrete-G-Min-Disc-Code in 1D is NP-complete.

Proof (sketch). We prove that (X,C) is satisfiable if and only if Γ(X,C) has a disc-code of
size 6n+ 3m. In both parts of the proof, we will consider the set CΠ defined above. Each
variable gadget and clause gadget contains one covering gadget. Thus, |CΠ| = 3(n+m).

Consider first some satisfying truth assignment of X. We build a solution set C as follows.
First, we put all intervals of CΠ in C. Then, for each variable xi, if xi is true, we add
intervals I0

xi , I
1
xi and I

2
xi to C. Otherwise, we add intervals I0

x̄i , I
1
x̄i and I

2
x̄i to C. Notice that

|C| = 6n+ 3m. As observed before, it suffices to show that C discriminates the point-pair
{pcj , p′cj} of each clause gadget Gc(cj), and the points p1

xi , . . . , p
5
xi of each variable gadget

Gv(xi). (All other pairs are discriminated by CΠ.)
For the converse, assume that C is a discriminating code of Γ(X,C) of size 6n+ 3m. By

Observation 2, CΠ ⊆ C. Thus there are 3n intervals of C that are not in CΠ, and we show
that each variable gadget contains exactly three. Then, we show how to construct a truth
assignment of (X,C). Notice that at least one of I0

xi and I
0
x̄i must belong to C, otherwise

some points of Gv(xi) cannot be discriminated. If I0
xi ∈ C, but I

0
x̄i /∈ C, then necessarily

I1
xi ∈ C and I2

xi ∈ C, and we can set xi to true. Similarly, if I0
x̄i ∈ C but I0

xi /∈ C, we set it
to false. If both are in C, we choose the truth value depending on which third interval of
the gagdet belongs to C. The properties of the gadget then ensure that this assignment is
satisfying. J

2.2 A 2-approximation algorithm for the general 1D case
We next use the classic algorithm solving the edge-cover problem of an undirected graph to
design a 2-factor approximation algorithm for Discrete-G-Min-Disc-Code in 1D.

Edge-Cover
Input: An undirected graph G = (V,E).
Output: A subset E′ ⊆ E such that every vertex is incident to at least one edge of E′.
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s0
s1

s2
s3

s4
s5
s6

s7
s8

s9

p1 p2 p3 p4 p5 p6 p7 p8

g0 g1 g2 g3 g4 g5 g6 g7 g8

(a)

v0 v1 v2 v3 v4 v5 v6 v7 v8

e9

e7
e0e1

e6

e8
e3

e2

(b)

Figure 4 (a) An instance (P, S), (b) corresponding graph G = (V,E) with MEC edges highlighted.
Note that s4 and s5 are redundant intervals.

We create a graph G = (V,E), where V = {v0, v1, . . . , vn} corresponds to the set G of
gaps. For each interval si = (ai, bi) ∈ S, we create an edge ei = (vα, vβ) ∈ E if ai ∈ gα and
bi ∈ gβ . See Figure 4 for an example. As we have removed useless and redundant intervals
(as defined at the beginning of Section 2), there are no loops and multiple edges in G. Thus,
|V | = n+ 1 and |E| ≤ m. The minimum edge-cover (MEC) E′ consists of (i) the edges of a
maximum matching in G, and (ii) for each unmatched vertex (if exists), any arbitrary edge
incident to that vertex [12]. It can be computed in time O(min(n2,m

√
n)) [19].

Let S′ be the set of intervals corresponding to the edges of E′. Clearly, S′ discriminates
all consecutive point-pairs of P , since for each gap gi, there is an interval with an endpoint
in gi. Moreover, S′ is an optimal set of intervals discriminating all consecutive point-pairs.
Thus, any solution to Discrete-G-Min-Disc-Code for (P, S) has size at least |S′|, since
any such solution should in particular discriminate consecutive point-pairs.

I Lemma 6 (?). The points in P can be classified into sets U,Q0, . . . , Qk using the set S′,
with the following properties.

A subset U ⊆ P will receive unique codes by S′,
A subset Q0 ⊂ P may not be covered by the intervals of S′, and hence they will not receive
any code. If |Q0| > 0 then the elements in Q0 are non-consecutive.
Some subsets Q1, . . . , Qk of points (of sizes > 1) of P may each receive the same nonempty
code by S′. In that case, the members of each of those subsets are non-consecutive.

Proof of Lemma 6. Clearly, since S′ discriminates all consecutive point-pairs, for any in-
teger i, any two points of Qi cannot be consecutive. J

I Lemma 7. Denote by I(Qi), the interval starting at the first point of Qi and stopping at
the last point of Qi. Then, for any two distinct sets Qi and Qj, either I(Qi) and I(Qj) are
disjoint, or one of them (say Qj) is strictly included between two consecutive points of the
other (Qi). In that case, we say that Qj is nested inside Qi.

Proof. Suppose that I(Qi) and I(Qj) intersect. Recall that all the points in Qi have the
same code Ci by S′, and all the points in Qj have the same code Cj 6= Ci by S′. That is,
each interval of S′ either contains all points or no point of Qi and Qj , respectively, and there
is at least one interval I of S′ that contains, say, all points of Qj but no point of Qi. Then,
necessarily, I(Qj) is included between two consecutive points of Qi, as claimed. J

For a set Qi of size s, we denote q1
i , . . . , q

s
i the points in Qi. We give a lower bound

on |S′|.

ISAAC 2020
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s1
s2

s3
s4

s5

v0

p2 p3 p4 p5p1

s0

v1 v2 v3 v4 v5

s0

s5s1

s2 s4

s3

s1
s2

s3
s4

s5

p2 p3 p4 p5p1

s0

(a) (b)

v0 v1 v2 v3 v4 v5

s0

s5s1

s2 s4

s3

Figure 5 Illustration of Lemma 6 with two different MECs: the points in set U (red), Q0 (blue)
and Q1 (green).

I Lemma 8 (?). We have |S′| ≥
∑k
i=0(|Qi| − 1) + 1.

Proof. Consider the sets Q0, . . . , Qk (possibly Q0 = ∅). We will prove that every interval
I(Qi) contains a set S′i of at least |Qi|−1 intervals of S′ that are included in I(Qi). Moreover,
for every Qj that is nested inside Qi, none of the intervals of S′i are included in I(Qj).

We proceed by induction on the nested structure of the I(Qi)’s that follows from Lemma 7.
As a base case, assume that I(Qi) has no interval I(Qj) nested inside. Since by Lemma 6,
the points of Qi are non-consecutive inside P , between each pair qai , qa+1

i of consecutive
points of Qi, there is at least one point p of P . By definition of Qi, p is discriminated from
all points of Qi by S′. Hence, there is an interval of S′ that lies completely between qai and
qa+1
i : add it to S′i. Since there are |Qi| − 1 such consecutive pairs, |S′i| ≥ |Qi| − 1: the base
case is proved.

Next, assume by induction that the claim is true for all the intervals Qj that are nested
inside Qi. Consider a point qai of Qi that is not the last point of Qi. Again, between qai and
qa+1
i , there is a point of P . Let p be the point of P that comes just after qai . The set S′
discriminates the two consecutive points qai and p. However, there cannot be an interval of
S′ covering qai and ending between qai and p, otherwise it would also discriminate qai and
qa+1
i . Thus, there must be an interval I of S′ that starts between qai and p. Notice that I is
not included in any I(Qj), for Qj nested inside Qi. Thus, we can add I to S′i. Repeating
this for all points of Qi except the last one, we obtain that |S′i| ≥ |Qi| − 1, as claimed.

We have thus proved that there are at least
∑k
i=0(|Qi| − 1) distinct intervals of S′, each

of them being included in some I(Qi). But moreoever, there is at least one interval of S′ that
is not included in any I(Qi). Indeed, there must be an interval of S′ that corresponds to an
edge of E′ that covers the first gap g0. This interval has not been counted in the previous
argument. Thus, it follows that |S′| ≥

∑k
i=0(|Qi| − 1) + 1. J

Next, we will choose additional intervals from S \S′ to discriminate the points in ∪kj=0Qj ,
and add them to S′. The resulting set, S′′, will form a discriminating code of (P, S). Consider
some set Qi = {q1

i , . . . , q
s
i }. We will choose at most s− 1 new intervals so that all points in

Qi are discriminated: call this set S′′i . We start with q1
i , q

2
i , and we select some interval of S

that discriminates q1
i , q

2
i (since (P, S) can be assumed to be twin-free, such an interval exists)

and add it to S′′i . We then proceed by induction: at each step a (2 ≤ a ≤ s− 1), we assume
that the points q1

i , . . . , q
a
i are discriminated, and we consider qa+1

i . There is at most one
point, say qbi , among q1

i , . . . , q
a
i whose code is the same as qa+1

i by S′′i (since by induction
q1
i , . . . , q

a
i all have different codes). We thus find one interval of S that discriminates qa+1

i , qbi
and add it to S′′i . In the end we have |S′′i | ≤ |Qi| − 1.
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After repeating this process for every set Qi, all pairs of points of P are discriminated
by S′ ∪

⋃k
j=0 S

′′
j . Finally, we may have to add one additional interval in order to cover one

point of Q0, that remains uncovered. Let us call S′′ the resulting set: this is a discriminating
code of (P, S). Moreover, we have added at most

∑k
j=0(|Qj | − 1) + 1 additional intervals to

S′, to obtain S′′. By Lemma 8, we thus have |S′′| ≤ |S′|+
∑k
j=0(|Qj | − 1) + 1 ≤ 2|S′|.

Hence, denoting by OPT the optimal solution size for (P, S), and recalling that |S′| ≤
OPT , we obtain that |S′′| ≤ 2|S′| ≤ 2OPT . Moreover, the construction of S′′ from S can
be done in linear time. Thus, we have proved the following:

I Theorem 9. The proposed algorithm produces a 2-factor approximation for Discrete-G-
Min-Disc-Code in 1D, and runs in time O(min(n2,m

√
n)).

2.3 A PTAS for the 1D unit interval case
The following observation (which was also made in the related setting of identifying codes of
unit interval graphs [10, Proposition 5.12]) plays an important role in designing our PTAS.

I Observation 10. In an instance (P, S) of Discrete-G-Min-Disc-Code in 1D, if the
objects in S are intervals of the same length, then discriminating all the pairs of consecutive
points in P is equivalant to discriminating all the pairs of points in P .

For a given ε > 0, we choose dnε4 e points, namely q1, q2, . . . , qdnε4 e ∈ P , called the reference
points, as follows: q1 is the d 2

ε e-th point of P from the left, and for each i = 1, 2, . . . , bnε4 c,
the number of points in P between every consecutive pair (qi, qi+1) is d 4

ε e, including qi and
qi+1 (the number of points to the right of qdnε4 e may be less than d 2

ε e). For each reference
point qi, we choose two intervals I1

i , I
2
i ∈ S such that both I1

i , I
2
i contain (span) qi, and the

left (resp. right) endpoint of I1
i (resp. I2

i ) have the minimum x-coordinate (resp. maximum
x-coordinate) among all intervals in S that span qi. Observe that all the points in P that lie
in the range Gi = [`(I1

i ), r(I2
i )] are covered, where `(I1

i ), r(I2
i ) are the x-coordinates of the

left endpoint of I1
i and the right endpoint of I2

i , respectively. These ranges will be referred to
as group-ranges. Since the endpoints of the intervals are distinct, the span of a group-range
is strictly greater than 1. The span of an interval may be defined as the number of points
that lie inside it.

We now define a block as follows. Observe that the ranges Gi and Gi+1 may or may
not overlap. If several consecutive ranges Gi, Gi+1, . . . , Gk are pairwise overlapping, then
the horizontal range [`(I1

i ), r(Ik)] forms a block. The region between a pair of consecutive
blocks will be referred to as a free region. We use B1, B2, . . . , Bl to name the blocks in order,
and F0, F1, . . . , Fl to name the free regions (from left to right). The points in each block
are covered. Here, the remaining tasks are (i) for each block, choose intervals from S such
that consecutive pairs of points in that block are discriminated, and (ii) for each free region,
choose intervals from S such that all its points are covered, and the pairs of consecutive
points are discriminated. Observe that no interval I ∈ S can contain both a point in Fi and
a point in Fi+1 since Fi and Fi+1 are sepatated by the block Bi+1. The reason is that if
there exists such an interval I, then it will contain the reference point qj ∈ Bi+1 just to the
right of Fi2. This contradicts the choice of I1

j for qj . Thus, the discriminating code for a free
region Fi is disjoint from that of its neighboring free region Fi+1. So, we can process the
free regions independently.

2 the reference point of the leftmost group-range Gj of the block Bi+1.
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Processing of a free region. Let the neighboring group-ranges of a free region Fi be Ga
and Ga+1, respectively. There are at most 4

ε points lying between the reference points of Ga
and Ga+1. Among these, several points of P to the right (resp. left) of the reference point of
Ga (resp. Ga+1) are inside block Bi (resp. Bi+1). Thus, there are at most 4

ε points in Fi.
We collect all the members in IFi ⊆ S that cover at least one point of Fi. Note that, though
we have deleted all the redundant intervals of S, there may be several intervals in S with an
endpoint lying in a gap inside that free region, and their other endpoint lies in distinct gaps
of the neighboring block. There are some blue intervals which are redundant with respect to
the points Fi ∩ P , but are non-redundant with respect to the whole point set P (see Figure
6). However, the number of such intervals is at most 4

ε due to the definition of (I1
i , I

2
i ) of the

right-most group-range of the neighboring block Bi and left-most group-range of Bi+1.

Ga
Ga+1Ni

g-range gap

Figure 6 Demonstration of redundant edges in a free region which are non-redundant in the
problem instance (P, S).

Thus, we have |IFi | = O(1/ε2). We consider all possible subsets of intervals of IFi , and
test each of them for being a discriminating code for the points in Fi. Let Di be all possible
different discriminating codes of the points in Fi, with |Di| = 2O(1/ε2) in the worst case.

Processing of a block. Consider a block Bi; its neighboring free regions are Fi and Fi+1.
Consider two discriminating codes d ∈ Di and d′ ∈ Di+1. As in Section 2.2, we create a
graph Gi = (Vi, Ei) whose nodes Vi correspond to the gaps of Bi which are not discriminated
by the intervals used in Di and Di+1. Each edge e ∈ Ei corresponds to an interval in S that
discriminates pairs of consecutive points corresponding to two different nodes of Vi. Now, we
can discriminate each non-discriminated pair of consecutive points in Bi by computing a
minimum edge-cover of Gi in O(|Vi|2) time [19]. As mentioned earlier, all the points in Bi
are covered. Thus, the discrimination process for the block Bi is over. We will use θ(d, d′) to
denote the size of a minimum edge-cover of Bi using d ∈ Di and d′ ∈ Di+1.

Computing a discriminating code for P . We now create a multipartite directed graph
H = (D,F). Its i-th partite set corresponds to the discriminating codes in Di, and D =
∪li=0Di. Each node d ∈ D has its weight equal to the size of the discriminating code d. A
directed edge (d, d′) ∈ F connects two nodes d and d′ of two adjacent partite sets, say d ∈ Di
and d′ ∈ Di+1, and has its weight equal to θ(d, d′). For every pair of partite sets Di and
Di+1, we connect every pair of nodes (d, d′) d ∈ Di and d′ ∈ Di+1, where i = 0, 1, . . . , l − 1.
Every node of D0 is connected to a node s with weight 0, and every node of Dl is connected
to a node t with weight 0.

I Lemma 11 (?). The shortest weight of an s-t path3 in H is a lower bound on the size of
the optimum discriminating code for (P, S).

3 The weight of a path is equal to the sum of costs of all the vertices and edges on the path.
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Let S′ denote the set of intervals of S in a shortest s-t path in H. The intervals in S′
may not form a discriminating code for P , as the points in a block may not all be covered.
However, the additional intervals {(I1

i , I
2
i ), i = 1, 2, . . . , dnε2 e} ensure the covering of the

points in all blocks Bi, i = 1, 2, . . . , dnε2 e. Thus, SOL = S′ ∪ {(I1
i , I

2
i ), i = 1, 2, . . . , dnε4 e} is

a discriminating code for (P, S). Moreover, the optimum size of the discriminating code,
denoted OPT , satisfies OPT ≥ dn+1

2 e due to the fact that we have (n+ 1) gaps, and each
interval in S covers exactly 2 gaps. This fact, along with Lemma 11 implies:

I Lemma 12 (?). |SOL| ≤ (1 + ε)OPT .

Proof. By Lemma 11, |I ′| ≤ Iopt. The number of extra intervals to cover the blocks is nε
2 .

Again, n2 ≤ EC(P ) ≤ Iopt, where EC(P ) is the size of minimum edge-cover of the graph G
created with the points in P and the intervals in I. Thus, |SOL| ≤ (1 + ε)Iopt. J

The number of possible discriminating codes in a free region is 2O(1/ε2). Thus, we may have
at most 2O(1/ε2) edges between a pair of consecutive sets Di and Di+1. As the computation
of the cost of an edge between the sets Di and Di+1 invokes the edge-cover algorithm of an
undirected graph, it needs O(|Bi|2) time [19]. Thus, the total running time of the algorithm
is A+B, where A is the time of generating the edge costs, and B is the time for computing
a shortest path of H. We have A ≤

∑dnε4 e
i=1 2O(1/ε2) × O(|Bi|2). As the Bi’s are mutually

disjoint, we get A = O(n2 × 2O(1/ε2)). Moreover, B = O(|F|) = O(nε × 2O(1/ε2)) [25].
Moreover, we can easily reduce Continuous-G-Min-Disc-Code to Discrete-G-Min-

Disc-Code by first computing the O(n2) possible non-redundant unit intervals. Thus:

I Theorem 13. Discrete-G-Min-Disc-Code and Continuous-G-Min-Disc-Code in
1D for unit interval objects have a PTAS: for every ε > 0, they admit a (1 + ε)-factor
approximation algorithm with time complexity 2O(1/ε2)n2.

3 The two-dimensional case: axis-parallel unit squares

In [13], it was shown that Continuous-G-Min-Disc-Code for bounded-radius disks is NP-
complete. The same proof technique, a reduction from the NP-complete P3-Partition-Grid
problem [27], can be adapted to show the following.

I Theorem 14 (?). Continuous-G-Min-Disc-Code and Discrete-G-Min-Disc-Code
for axis-parallel unit squares in 2D are NP-complete.

3.1 A (4 + ε)-approximation algorithm for the continuous problem
We formulate our algorithm by extending the ideas for the 1D case in Section 2.2. Here,
our goal is to choose a set Q of points in R2 of minimum cardinality such that every
point of P is covered by at least one axis-parallel unit square centered at Q, and for
every pair of points pi, pj ∈ P (i 6= j), there exists at least one square whose boundary
intersects the interior of the segment pipj exactly once. We define the set of line segments
L(P ) = {pipj for all pi, pj ∈ P, i 6= j}, where pipj is the line segment joining pi and pj . We
will thus use the following problem:

Segment-Stabbing
Input: A set L of segments in 2D.
Output: A minimum-size set S of axis-parallel unit squares in 2D such that each
segment is intersected exactly once by some square of S.
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In fact, Segment-Stabbing for the input L(P ) is equivalent to the Test Cover
problem for P using axis-parallel unit squares as tests. As in the edge-cover formulation
of Discrete-G-Min-Disc-Code in 1D from Section 2.2, here also a feasible solution of
Segment-Stabbing ensures that the two endpoints of each line segment of L(P ) are
discriminated, but one point may remain uncovered. Thus, we have the following:

I Observation 15. For a feasible solution Φ of Segment-Stabbing,
(a) Φ discriminates every point-pair in P and
(b) at most one point is not covered by any square in Φ.

In order to discriminate the two endpoints of a member ` = [a, b] ∈ L(P ), we need to
consider the two cases: λ(`) ≥ 1 and λ(`) < 1, where λ(`) denotes the length of `. In the
former case, if a center is chosen in any one of the unit squares centered at a and b, the
segment ` is stabbed. However, more generally in the second case, to stab `, we need to
choose a center in the region (D(a)\D(b))∪(D(b)\D(a)), where D(q) is the axis parallel unit
square centered at q (see Figure 7). Let us denote the set of all such objects corresponding
to the members in L(P ) as O. We now need to solve the Hitting Set problem, where the
objective is to choose a minimum number of center points in R2, such that each object in
O contains at least one of those chosen points. We solve this problem using a technique
followed in [1] for covering a set of segments using unit squares.

(a) (b)

Figure 7 Object for segment ` = [a, b], where (a) λ(`) ≥ 1 and (b) λ(`) < 1.

The Seg-HIT problem. Consider the arrangement [8] A of the objects in O. Create a set
Q of points by choosing one point in each cell of A. A square centered at a point q inside a
cell A ∈ A will stab all the segments whose corresponding objects have common intersection
A. For each point q ∈ Q, we use an indicator variable xq. Thus, we have an integer linear
programming (ILP) problem, whose objective function is:

Z0 : min
|Q|∑
α=1

xα,

subject to σ1(`) + σ2(`) ≥ 1 for all segments ` = [a, b] ∈ L(P ),

where σ1(`) =
∑

qα∈Q∩(D(a)\D(b))

xα,

and σ2(`) =
∑

qα∈Q∩(D(b)\D(a))

xα,

and xα ∈ {0, 1} for all points qα ∈ Q. (1)
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As the ILP is NP-hard [23], we relax the integrality condition of the variables xq for all
q ∈ Q from Z0, and solve the corresponding LP problem Z0:

Z0 : min
|Q|∑
α=1

xα

subject to σ1(`) + σ2(`) ≥ 1 ∀ ` = [a, b] ∈ L(P ),
and 0 ≤ xα ≤ 1 ∀ qα ∈ Q (2)

in polynomial time.
Observe that for each constraint, at least one of σ1(`) or σ2(`) will be greater than 1

2 .
We choose either (D(a) \D(b)) or (D(b) \D(a)) or both in a set O1 depending on whether
σ1(`) > or = or < σ2(`), and form an ILP Z1 for the hitting set problem with the objects in
O1 as stated above. Observe that, if x is an optimum solution for Z0, then 2x is a feasible
solution of Z1. Denoting by OPTθ and OPT θ as the optimum solutions of the problem Zθ
and Zθ respectively, we have

OPT 1 ≤ 2
|Q|∑
α=1

xα = 2OPT 0 ≤ 2OPT0, (3)

The L-HIT problem. Now, we solve Z1, where each object is either a unit square or an
L-shape object whose length and width of the outer side are 1. Such an object is the union
of two rectangles of type A and B, where the one of type A has height 1 and width ≤ 1, and
the one of type B has width 1 and height ≤ 1 (see Figure 8).

T
y
p
e
A

Type B

Figure 8 L-shaped object which is the union of a type A and a type B object.

While solving Z1, for each constraint, any (or both) of these cases must happen: (a) the
sum of variables whose corresponding points lie in a type A rectangle is ≥ 0.5, (b) the sum
of variables whose corresponding points lie in a type B rectangle is ≥ 0.5. We accumulate all
type A (resp. B) rectangles for which condition (a) (resp. (b)) is satisfied in set A (resp. B).

The ILP formulation ZA2 of the hitting set problem for the rectangles in A can be done
as follows. Consider the arrangement of the rectangles in A. In each cell of the arrangement,
we can choose a point to form a set of points QA considering all the cells in A. Now,

ZA2 : min
∑
q∈QA

xq,

subject to
∑
q∈Aα

xq ≥ 1 ,

for each rectangle Aα ∈ A ,

and xq ∈ {0, 1},∀ q ∈ QA. (4)
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Similarly, we can have an ILP formulation ZB2 for the hitting set problem of the rectangles
in B. The corresponding LP problems are ZA2 and ZB2 respectively. Following the notations
introduced earlier, we have

OPT
A
2 +OPT

B
2 ≤ OPTA2 +OPTB2 ≤ 2OPT 1. (5)

The right-hand inequality follows from the fact that if we multiply the solution of the variables
in OPT 1 by 2, and then round the fractional part of each non-zero xα, we can get a feasible
solution for ZA2 and ZB2 .

The U-HIT problem. We now compute the optimum solution OPTA2 of ZA2 and OPTB2 of
Z
B
2 , where all rectangles in A are of unit height and all rectangles in B are of unit width.

Mustafa and Ray [21] proposed a PTAS for the U-HIT problem that runs in O(mn
1
ε2 ) time,

where n and m are the number of points and the number of unit-height rectangles.
Equations 3 and 5 and the PTAS for U-HIT lead to the following:

I Lemma 16. For a given set of line segments L, the aforesaid algorithm computes a
(4 + ε′)-factor approximation for Segment-Stabbing, for every fixed ε′ > 0.

After solving Segment-Stabbing, by Observation 15, at most one point in P may not
be covered. Thus, we may add at most one extra square to cover that point, and obtain a
solution of size at most (4 + ε′)OPT + 1, which implies:

I Theorem 17. Continuous-G-Min-Disc-Code for axis-parallel unit squares in 2D has
a polynomial-time (4 + ε)-factor approximation algorithm, for every fixed ε > 0.

Proof. It remains only to show that having a solution of size at most (4 + ε′)OPT + 1 gives
a (4 + ε)-approximation, for every fixed ε > 0. To see this, note that OPT ≥ log2(n + 1)
(where n is the number of points), since every point is assigned a distinct nonempty subset
of the solution SOL, and there can be at most 2|SOL| − 1 such subsets. The solution of
size (4 + ε′)OPT + 1 gives an approximation factor of 4 + ε′ + 1

OPT which is thus at most
4 + ε′ + 1

log2(n+1) . Thus, if ε
′ + 1

log2(n+1) ≤ ε, we are done. Otherwise, n ≤ 21/ε and hence we
can solve the problem by brute-force in constant time (since ε is fixed). J

3.2 A (32 + ε)-approximation algorithm for the discrete problem
As for Continuous-G-Min-Disc-Code (Section 3), we reduce Discrete-G-Min-Disc-
Code to a special version of Hitting Set, where a set O of unit height rectangles and a set
Q of points are given. The set Q contains the centers of the squares in S, and the objective
is to find a minimum cardinality subset of Q that hits all the objects in O. Thus, using an
α-factor approximation algorithm for the discrete version of this hitting set problem, we
obtain a 4α-factor approximation algorithm for the Discrete-G-Min-Disc-Code.

I Theorem 18 (?). Discrete-G-Min-Disc-Code for axis-parallel unit squares in 2D has
a polynomial-time (32 + ε)-factor approximation algorithm, for every fixed ε > 0..

4 Concluding remarks and open problems

We have seen that Discrete-G-Min-Disc-Code is NP-complete, even in 1D. This is in
contrast to most covering problems and to Continuous-G-Min-Disc-Code, which are
polynomial-time solvable in 1D [13, 16]. We believe that our simple reduction can be adapted
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to the graph problem Min-ID-Code on interval graphs, proved to be NP-complete in [11], but
via a much more complex reduction. We also proposed a 2-factor approximation algorithm
for the Discrete-G-Min-Disc-Code problem in 1D, and a PTAS for a special case where
each interval in the set S is of unit length. It seems challenging to determine whether
Discrete-G-Min-Disc-Code in 1D becomes polynomial-time for unit intervals. As noted
in [13], this would be related to Min-ID-Code on unit interval graphs, which also remains
unsolved [11]. In fact, it also seems to be unknown whether Continuous-G-Min-Disc-Code
in 1D remains polynomial-time solvable with this restriction.
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