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Abstract
We show that if the edges or vertices of an undirected graph G can be covered by k shortest paths,
then the pathwidth of G is upper-bounded by a function of k. As a corollary, we prove that the
problem Isometric Path Cover with Terminals (which, given a graph G and a set of k pairs of
vertices called terminals, asks whether G can be covered by k shortest paths, each joining a pair of
terminals) is FPT with respect to the number of terminals. The same holds for the similar problem
Strong Geodetic Set with Terminals (which, given a graph G and a set of k terminals, asks
whether there exist

(
k
2

)
shortest paths, each joining a distinct pair of terminals such that these paths

cover G). Moreover, this implies that the related problems Isometric Path Cover and Strong
Geodetic Set (defined similarly but where the set of terminals is not part of the input) are in XP
with respect to parameter k.
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1 Introduction

Path problems such as Hamiltonian Path are among the most fundamental problems in
the field of algorithms. Hamiltonian Path can be generalized as the covering problem
Path Cover [2], where one asks to cover the vertices of an input graph using a prescribed
number of paths. The corresponding packing problem is Disjoint Paths where, given a set
of k pairs of terminal vertices of a graph G, one asks whether there are k vertex-disjoint paths
in G, each joining two paired terminals. Disjoint Paths is a fundamental problem and a
precursor to the field of parameterized complexity due to the celebrated fixed-parameter
tractable algorithm devised by Robertson and Seymour [21] for the parameter “number of
paths”. We recall that in the field of parameterized algorithms and complexity, one studies
parameterized problems, whose input I comes together with a parameter k. A parameterized
problem is said to be FPT (fixed-parameter tractable) if it can be solved in time f(k) · |I|O(1),
for some computable function f . If the problem can be solved in time O(|I|f(k)), it belongs
to class XP ; see, e.g., [7] for more details.
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40:2 On Graphs Coverable by k Shortest Paths

In this paper, we will not consider arbitrary paths, but shortest paths, which are funda-
mental for many applications. In the problem Disjoint Shortest Paths, given a graph
G and k pairs of terminals, one asks whether G contains k vertex-disjoint shortest paths
pairwise connecting the k pairs of terminals. This problem was introduced in [11] and
recently shown to be polynomial-time solvable for every fixed k by an XP algorithm [16].
The problem Isometric Path Cover with Terminals, which we define as follows, is the
covering counterpart of Disjoint Shortest Paths.

Isometric Path Cover with Terminals
Input: A graph G, and k pairs of vertices (s1, t1), . . . , (sk, tk) called terminals.
Question: Does there exist a set of k shortest paths, the ith path being an si-ti shortest path,
such that each vertex of G belongs to at least one of the paths?

The name Isometric Path Cover with Terminals comes from the related Isometric
Path Cover problem where the terminals are not part of the input, which was introduced
in [12] in the context of the Cops and Robbers game on graphs (see also [1]).

Isometric Path Cover
Input: A graph G, and an integer k.
Question: Does there exist a set of k shortest paths, such that each vertex of G belongs to at
least one of the paths?

Closely related variants of Isometric Path Cover with Terminals and Isometric
Path Cover have been studied, in which there are only k terminals, and one asks to find(

k
2
)

shortest paths joining each pair of terminals. The version without terminals has been
called Strong Geodetic Set in the literature; we call the version with terminals Strong
Geodetic Set with Terminals. It was first studied (independently) in [8, 9], see also [15].

Strong Geodetic Set with Terminals
Input: A graph G, and a set of k vertices of G called terminals.
Question: Does there exist a set of

(
k
2

)
shortest paths, each path joining a distinct pair of

terminals, such that each vertex of G belongs to at least one of the paths?

The variant where the terminals are not given in the input was defined in [4] as follows.

Strong Geodetic Set
Input: A graph G, and an integer k.
Question: Does there exist a set of k terminals and a set of

(
k
2

)
shortest paths, each path

joining a distinct pair of terminals, such that each vertex of G belongs to at least one of the
paths?

The complexity of these problems has been studied in the literature. It was shown in [5]
that Isometric Path Cover is NP-complete, even for chordal graphs, a class for which
the authors of [5] also showed that the problem can be approximated within a constant
factor. For general graphs, it was shown in [22] that the problem can be approximated in
polynomial time within a factor of O(log d), where d is the diameter of the input graph.
It was proven to be polynomial-time solvable on block graphs [20]. It is shown in [8] that
Strong Geodetic Set with Terminals is NP-hard. In [9], it is shown that this holds
even for bipartite graphs of maximum degree 4 or diameter 6, however Strong Geodetic
Set with Terminals is polynomial-time solvable on split graphs, graphs of diameter 2,
block graphs, and cactus graphs. We prove here (cf. Proposition 15) that Isometric Path
Cover with Terminals is also NP-complete.
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Finally, Strong Geodetic Set is known to be NP-hard [4], even for bipartite graphs,
chordal graphs, graphs of diameter 2 and cobipartite graphs [9] as well as for subcubic graphs
of arbitrary girth [8]. However it is polynomial-time solvable on outerplanar graphs [19],
cactus graphs, block graph and threshold graphs [9].

All these problems can also be studied in their edge-covering version, where one requires
to cover all edges of the input graph by the corresponding shortest paths. For instance, the
Strong Edge Geodetic Set problem is studied in [18].

Our results

Our main combinatorial theorem is as follows (see Section 2 for the definition of pathwidth).

▶ Theorem 1. Let G be a graph whose edge set can be covered by at most k shortest paths.
Then the pathwidth of G is at most f(k), for function f(k) =

∑k
i=1 2i+1 · k!

(k−i)! .
If G is such that its vertex set can be covered by at most k shortest paths, then the

pathwidth of G is at most (2k − 1) · f(k).

We actually show that in such a graph G, given an arbitrary vertex a and an integer D,
the number of vertices at distance exactly D from a is upper-bounded by a function of k and
it does not depend on the size of the input graph. It follows that a very simple linear-time
algorithm based on a breadth-first search provides a path decomposition whose width is
upper-bounded by the aforementioned function of k. The complexity of the algorithm itself
does not depend on k.

Besides the combinatorial bounds, we employ the celebrated theorem of Courcelle [6],
stating that problems expressible in Monadic Second-Order Logic (MSOL2) can be solved in
linear time for graphs of bounded treewidth (and thus, of bounded pathwidth). More precisely,
we reduce the problem Isometric Path Cover with Terminals to an optimization
problem expressible in MSOL2. The result can also be obtained by dynamic programming
but the algorithm would be tedious and not particularly efficient, therefore we prefer the
general logic-based framework for further extensions. The running time is linear in n, the
number of vertices of the graph, but super-exponential in the parameter k. Together with
Theorem 1, this implies the following.

▶ Theorem 2. Problems Isometric Path Cover with Terminals and Strong Geo-
detic Set with Terminals are FPT when parameterized by the number of terminals.

▶ Corollary 3. Problems Isometric Path Cover and Strong Geodetic Set are in XP
when parameterized by the number of paths/terminals.

Thanks to the flexibility of Monadic Second-Order Logic, our algorithmic results easily
extend to the edge-covering versions of our problems, and to variants where we require
the paths to be edge-disjoint, or vertex-disjoint (as studied in [17]). The second part of
Theorem 2 answers positively a question asked in [15].

After some preliminaries in Section 2, we prove Theorem 1 in Sections 3 and 4. More
specifically, Section 3 provides the upper bound on the pathwidth of graphs whose edges are
coverable by k shortest paths, then the tools are extended to vertex-coverings in the next
section. Algorithmic consequences (Theorem 2) are derived in Section 5, and we conclude
with some open questions.

ISAAC 2022



40:4 On Graphs Coverable by k Shortest Paths

2 Preliminaries and notations

Paths and concatenation operators ⊕ and ⊙

We refer to [10] for usual notations on graphs. In this paper we only consider undirected,
unweighted graphs. For simplicity, we assume that our input graph G = (V, E) is connected,
though all our combinatorial and algorithmic results extend to non-connected graphs. As
usually N(x) denotes the neighbourhood of vertex x.

A path P of graph G = (V, E) is a sequence of distinct vertices (x1, . . . , xl) such that for
each i, 1 ≤ i ≤ l − 1, {xi, xi+1} is an edge of the graph. We also say that P is an x1-xl path.
Note that our paths are simple and they do not use twice the same vertex. We denote by
V (P ) the vertices of path P , and by E(P ) its edges. Given two vertices x, y ∈ V (P ), we
denote by P [x, y] the subpath of P between x and y. Moreover we let |P | denote the length
of path P , that is, the number of its edges. The distance between two vertices a and b in G

is denoted dist(a, b) and corresponds to the length of a shortest a-b path.
Throughout the paper, we will construct paths by concatenation operations. It is

convenient to think of our paths as directed: when we speak of an a-b path, we think of it as
being directed from a to b.

Given two vertex disjoint paths ν = (x1, . . . , xl) and η = (y1, . . . , yt) of G such that
{xl, y1} is an edge of G, we define the concatenation operator ⊕ whose result is ν ⊕ η =
(x1, . . . , xl, y1, . . . , yt). In particular, |ν ⊕ η| = |ν|+ |η|+ 1.

We define similarly the glueing operator ⊙ between two paths ν = (x1, . . . , xl) and
η = (xl, y1, . . . , yt) with V (ν) ∩ V (µ) = {xl} by ν ⊙ η = (x1, . . . , xl, y1, . . . , yt). Note that in
this case |ν ⊙ η| = |ν|+ |η|.

Path decompositions through breadth-first search

A path decomposition of G = (V, E) is a sequence P = (X1, X2, . . . , Xq) of vertex subsets of
G, called bags, such that for every edge {x, y} ∈ E there is at least one bag containing both
endpoints, and for every vertex x ∈ V , the bags containing x form a continuous sub-sequence
of P. The width of P is max{|Xi| − 1 | 1 ≤ i ≤ q}, and the pathwidth pw(G) of G is the
minimum width over all path decompositions of G.

The treewidth tw(G) of graph G is defined similarly (see e.g. [10]), using a so-called tree
decomposition; for our purpose, we only need to know that for any graph G, tw(G) ≤ pw(G),
in particular any path decomposition is also a tree decomposition of the same width. We
also need the following folklore lemma on path decompositions.

▶ Lemma 4. Let G = (V, E) be a graph, a be a vertex of G and K be an upper bound on the
number of vertices of G at distance exactly D from a, for any integer D.

Then, pw(G) ≤ 2K−1. Moreover, a path decomposition of width 2K−1 can be computed
in linear time, by breadth-first search.

Proof. Let ecc(a) be the eccentricity of vertex a (i.e., maxx∈V dist(a, x)). For any D with
0 ≤ D ≤ ecc(a) we denote by Layer(D) the set of vertices at distance exactly D from a,
i.e. the layers of a breadth-first search on G starting at a. Observe that, by taking as bags
the unions Layer(D) ∪ Layer(D + 1) of pairs of consecutive layers, 0 ≤ D < ecc(a), and by
ordering them according to D, we obtain a path decomposition of G. Indeed for each edge
{x, y} both endpoints are in the same layer or in two consecutive layers, thus will appear in
the same bag. For each vertex x, it appears in at most two bags: if d = dist(a, x) then x is in
bags Layer(d− 1)∪Layer(d) and Layer(d)∪Layer(d + 1) (or one bag if d = 0 or d = ecc(a)),
and these bags appear consecutively in the decomposition. Since each layer has at most K

vertices, the width of this decomposition is at most 2K − 1. ◀
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3 Warm-up: edge-covering with k shortest paths

As a warm-up, we start by proving Theorem 1 in the case when graph G = (V, E) is edge-
coverable by k shortest paths. In this case, there is a simple and elegant encoding of shortest
paths leading to the desired result; the case of vertex-covering, which is more technical, will
be studied in the next section.

In this section, G = (V, E) denotes a graph whose edge set is coverable by k shortest paths.
Let us fix such a set of paths µ1, . . . , µk, and call them the base paths of G. All constructions
in this section are built on this particular set of base paths (without explicitly recalling it for
each lemma, in order to ease the notations). We endow each base path µc, 1 ≤ c ≤ k with
an arbitrary direction. E.g., assuming that the vertices of G are numbered from 1 to n, the
direction of path P is from its smallest towards its largest end-vertex. A (directed) subpath
µc[x, y] of µc is given a positive sign + if it follows the direction of µc, otherwise it is given a
negative sign −. For each edge e of G, let colours(e) be the set of all values c ∈ {1 . . . , k}
such that e is an edge of µc.

Good colourings

Let P be an a-b path of G, from vertex a to vertex b. A colouring of P is a function col :
E(P )→ {1, . . . , k} assigning to each edge e of the path one of its colours col(e) ∈ colours(e).
The colouring col of P is said to be good if, for any colour c, the set of edges using this colour
form a connected subpath P [x, y] of P . (Since our paths are simple, this condition entails
that P [x, y] = µc[x, y].) A pair (P, col) formed by a path together with a good colouring is
called well-coloured.

Operator ⊙ defined in Section 2 naturally extends to coloured paths. Given a coloured
path (P, col), we simply denote by (P [x, y], col) its restriction to a subpath P [x, y] of P .
Finally, we define for any path P and any colour 1 ≤ c ≤ k the function monochrc : E(P )→ c.
Hence all edges of the coloured path (P, monochrc) have colour c.

With these notations, any well-coloured a-b path (P, col) with colours (c1, . . . , cl) appearing
in this order can be written as (µc1 [x1, x2], monochrc1) ⊙ (µc2 [x2, x3], monochrc2) ⊙ . . . ⊙
(µcl

[xl, xl+1], monochrcl
) for some vertices a = x1, x2, x3 . . . , xl, xl+1 = b. In full words,

P [xi, xi+1] are the monochromatic subpaths of (P, col), coloured ci.

▶ Lemma 5 (Good colouring lemma). For any pair of vertices a and b of G, there exists a
well-coloured a-b path (P, col) such that P is a shortest a-b path.

We will simply call (P, col) a well-coloured shortest a-b path.

Proof. Among all shortest a-b paths, choose one that admits a colouring with a minimum
number of monochromatic subpaths. Let P be this path, and col the corresponding colouring.
Assume by contradiction that the colouring is not good. Then there exist three edges
e1 = {x1, y1}, e2 = {x2, y2} and e3 = {x3, y3}, appearing in this order, such that col(e1) =
col(e3) ̸= col(e2). Assume w.l.o.g. that the vertices appear in the order x1, y1, x2, y2, x3, y3
from a to b (note that we my have y1 = x2 or y2 = x3). Let c = col(e1) = col(e3). Therefore
y1 and x3 are on the same base path µc. Let P ′ be the path obtained from P by replacing
P [y1, x3] by µc[y1, x3]. First, P ′ is no longer than P , since µc[y1, x3] is a shortest possible
y1-x3 path of graph G (in particular, P ′ has no repeated vertices). Second, in P ′ we can
colour all edges of P ′[y1, x3] with colour c, and keep all other colours unchanged. Hence P ′

has strictly fewer monochromatic subpaths than P – a contradiction. ◀

ISAAC 2022



40:6 On Graphs Coverable by k Shortest Paths

Let (P, col) be a well-coloured a-b path, with colours (c1, . . . , cl) in this order. Recall
that each monochromatic subpath P [xi, xi+1] of P , of colour ci, induces a sign on the
corresponding base path µc (positive if P [xi, xi+1] has the same direction as µc, negat-
ive otherwise). Therefore, we can define the colours-signs word ColoursSignsW(P, col) =
((c1, s1), (c2, s2), . . . , (cl, sl)) on the alphabet {1, . . . , k}×{+,−}, corresponding to the colours
and signs of the monochromatic subpaths of P , according to the ordering in which these
subpaths appear from a to b. Observe that such words have at most k letters on an alphabet
of size 2k. Therefore the number of different words is upper bounded by a function of k:

▶ Lemma 6. The number of possible colours-signs words, over all well-coloured paths of G,
is upper bounded by h(k) =

∑k
l=1 2l k!

(k−l)! .

Proof. We claim that the number of colours-signs words of l letters is upper bounded by
2l k!

(k−l)! . Observe that the colours form a word of length l, on an alphabet of size k, without
repetition. The number of such words is k!

(k−l)! (e.g., by choosing l letters among the k

possible ones, and applying all possible permutations). Since each letter also has a sign in
{+,−}, we multiply this quantity by 2l, and the conclusion follows by summing over all
possible values of l. ◀

The following crucial lemma implies that, given a start vertex a, a distance D and a
colours-signs word ω, there is at most one vertex b at distance D from a, such that the
well-coloured shortest a-b path respects word ω. This will allow to upper bound the number
of vertices at distance D from a.

▶ Lemma 7 (Colours-signs encoding). Consider two vertices b and c at the same distance
from some vertex a of G. Let (P, col) be a well-coloured shortest a-b path and (P ′, col′) be
a well-coloured shortest a-c path. If ColoursSignsW(P, col) = ColoursSignsW(P ′, col′), then
b = c.

Proof. We proceed by induction on the number of letters of the word ColoursSignsW(P, col).
Let us denote it by ω = ((c1, s1), (c2, s2), . . . , (cl, sl)).

Let P [a, x2] (resp. P ′[a, x′
2]) be the maximal subpath of P (resp. P ′) of colour c1 starting

from a. Assume w.l.o.g. that P [a, x2] is at least as long as P ′[a, x′
2]. Since both are subpaths

of µc1 , starting from a and having the same sign s1 w.r.t. µc1 , we actually have that P ′[a, x′
2]

is contained in P [a, x2], in particular x′
2 is between a and x2 in P and in µc1 .

Observe that, if word ω has only one letter, P [a, x2] = P and P ′[a, x′
2] = P ′, thus they

are all of the same length. Since they are of the same sign w.r.t. µc1 , this implies that
x2 = x′

2 = b = c, which proves the base case of our induction.
Assume now that ω has l ≥ 2 letters and that the lemma is true for words of length l− 1.
Consider first the case when P [a, x2] and P ′[a, x′

2] have the same length. Then x2 = x′
2

is also the first vertex of the subpaths of colour c2 of both P and P ′. Then (P [x′
2, b], col)

and (P ′[x′
2, c], col′) are well-coloured shortest paths of the same length, and have the same

colours-signs word ((c2, s2), . . . , (cl, sl)), with l− 1 letters. Hence the property follows by the
induction hypothesis.

We now handle the second and last case, when P [a, x2] is strictly longer than P ′[a, x′
2].

Let x3 be the last vertex of the subpath coloured c2 in (P, col). In particular, x′
2, x2 and

x3 are all vertices of µc2 .
Let us make an easy but crucial observation: on µc2 , vertex x2 is between x′

2 and x3.
To prove this claim, note that in path P , vertices a, x′

2 and x2 appear in this order (as
observed in the beginning of the proof), and by construction x2 appears between a and
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x3. Therefore a, x′
2, x2, x3 appear in this order on P , which is a shortest path. Hence

dist(x′
2, x3) = dist(x′

2, x2) + dist(x2, x3). Since the three vertices x′
2, x2, x3 are all on the

shortest path µc2 , they must appear in this order on it. Consequently, µc2 [x′
2, x3] induces

the same sign s2 on µc2 as P [x2, x3] = µc2 [x2, x3].
In particular, in path (P [x′

2, b], col) = (P [x′
2, x2], monochrc1)⊙ (P [x2, x3], monochrc2)⊙

(P [x3, b], col), we can replace the first subpath P [x′
2, x2] coloured c1 by µc2 [x′

2, x2], col-
oured c2, without changing the total length. We obtain the well-coloured shortest x′

2-b
path (P̃ [x′

2, b], c̃ol) = (µc2 [x′
2, x3], monochrc2) ⊙ (P [x3, b], col). Its colours-signs word is

((c2, s2), . . . , (cl, sl)), the same as for the shortest x′
2-c path (P ′[x′

2, c], col′). Moreover, the
two paths have the same length, |P | − |P [a, x′

2]|, hence by the induction hypothesis we have
b = c, which proves our lemma. ◀

▶ Corollary 8. For any vertex a of G and any integer D, there are at most h(k) =∑k
l=1 2l k!

(k−l)! vertices at distance exactly D from a.

Proof. For any fixed vertex a and fixed integer D, thanks to Lemma 7 the number of vertices
x at distance exactly D from a is upper-bounded by the number of colours-signs words,
which is in turn upper bounded by h(k) by Lemma 6. ◀

In order to complete the proof of the first part of Theorem 1 and show that pw(G) ≤ 2h(k),
we simply apply Lemma 4 with K = h(k).

4 Vertex-covering with k shortest paths

In this section, G = (V, E) denotes a graph whose vertices can be covered by k shortest paths
µ1, . . . , µk. As before we endow each base path µc with a direction, but now colours are
assigned to vertices. We can easily adapt the notions of good colourings of the previous section
to these vertex-colourings. Again, for any pair of vertices a and b, there is a well-coloured
shortest path joining them (Lemma 9), which defines a colours-signs word. But we shall see
that now (unlike in the simpler case of edge-coverings), we may have two distinct vertices
b and c at the same distance D from a, and well-coloured shortest a-b and a-c paths with
the same colours-signs word. More efforts will be needed to recover a (slightly larger) upper
bound on the number of vertices at distance D from a (Corollary 14).

Good colourings

For each vertex v of G, let colours(v) denote the set of indices (colours) c ∈ {1 . . . , k} such
that v is a vertex of µc. Let P be an a-b path of G, from vertex a to vertex b. A colouring
of P is a function col : V (P )→ {1, . . . , k} assigning to each vertex v of P one of its colours
col(v) ∈ colours(v). A coloured path is a pair (P, col). The colouring col of P is said to be
good if, for any colour c, the subgraph induced by the set of vertices using this colour c forms
a connected subpath P [x, y] of P (which implies that P [x, y] = µc[x, y]). A coloured path
(P, col) where col is a good colouring is called well-coloured.

Operators ⊕ and ⊙ naturally extend to (vertex) coloured paths, with the precaution that
(ν, col) ⊙ (η, col′) is defined only when their common vertex x, the last of ν and first of η,
satisfies col(x) = col′(x). Given a coloured path (P, col), we again denote by (P [x, y], col)
its restriction to a subpath P [x, y] of P . For each colour 1 ≤ c ≤ k, let now (P, monochrc)
denote the monochromatic colouring of V (P ) with colour c.

ISAAC 2022
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With these notations, any well-coloured a-b path (P, col) with colours (c1, . . . , cl) is of
the form (µc1 [a1, b1], monochrc1)⊕ (µc2 [a2, b2], monochrc2)⊕ . . .⊕ (µcl

[al, bl], monochrcl
) for

some vertices a = a1, b1, a2, b2, . . . , al, bl = b, as in Figure 2.
Like in the previous section, we have:

▶ Lemma 9. For any pair of vertices a and b of G, there exists a well-coloured shortest a-b
path.

Proof. Among all shortest a-b paths, choose one that admits a colouring with a minimum
number of monochromatic subpaths. Let (P, col) be such a coloured path. Assume for a
contradiction that the colouring col is not good. Then there exist three vertices x, y and z,
appearing in this order in P such that col(x) = col(z) ̸= col(y). Therefore x and z are on
the same base path µc. Let P ′ be the path obtained from P by replacing P [x, z] by µc[x, z].
Notice that P ′ is no longer than P , since µc[x, z] is a shortest x-z path of graph G. Moreover,
in P ′ we can colour all vertices of P ′[x, z] with colour c, and keep all other colours unchanged.
Hence P ′ has strictly fewer monochromatic subpaths than P – a contradiction. ◀

Colours-signs word

Let (P, col) be a well-coloured a-b path; we recall that we see it as being directed from a

to b. As in Section 3, each monochromatic subpath P ′ of P , say of colour c, induces a sign
(+ or −) depending on its direction w.r.t. µc, if P ′ has at least two vertices. If P ′ has a
unique vertex, we assign to it sign +. Therefore, we can again define the colours-signs word
ColoursSignsW(P, col) = ((c1, s1), (c2, s2), . . . , (cl, sl)) on the alphabet {1, . . . , k} × {+,−},
corresponding to the colours and signs of the monochromatic subpaths of P according to the
ordering in which these subpaths appear from a to b.

In the case of edge-covering, we had the elegant statement of Lemma 7, by which, given
a vertex a, a colours-signs word ω and a distance D, there is a unique vertex b (if any
exists) at distance D such that the well-coloured shortest a-b path corresponds to this word.
Unfortunately, this does not extend to vertex-covering: Figure 1 presents two distinct vertices
b and c located at the same distance D from vertex a, together with a well-coloured shortest
a-b path (P, col) and a well-coloured shortest a-c path (P ′, col′). These coloured paths
starting from a have the same colours-signs word and the same length, but this does not
imply that their endpoints are equal.

a

b c

P

P ′

Figure 1 Two well-coloured paths (P, col) and (P ′, col′) with same colours-signs word ω =
((red, −), (blue, +)), same length (5) and same start vertex (a), but different end-vertices (b and c).

Canonical well-coloured paths

In order to obtain a situation somewhat similar to the case of edge-covering, we define
a canonical representation of well-coloured paths (see Figure 2 for an example). Given a
colours-signs word ω = ((c1, s1), (c2, s2), . . . , (cl, sl)) with no repetition of colours, a start
vertex a and a length L, we define a unique well-coloured path CanonPath(ω, a, L) starting
from a, of the prescribed length L and having the colours-signs word ω, as follows:
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1. If l = 1, let b be the vertex at distance L of a on the path µc1 w.r.t. s1. Then
CanonPath(ω, a, L) = (µc1 [a, b], monochrc1).

2. Otherwise, let b1 be the first vertex of µc1 starting from a w.r.t. s1 having a neighbour
in µc2 . Among the vertices of µc2 adjacent to b1, choose a2 to be the one that appears
first in µc2 , according to its direction. We let:

CanonPath(ω, a, L) = (µc1 [a, b1], monochr c1) ⊕
CanonPath(((c2, s2), . . . , (cl, sl)), a2, L− |µc1 [a, b1]| − 1) (1)

Note that the path CanonPath(ω, a, L) might not exist, e.g. if, in the base case of the
construction, a ̸∈ µc1 or the subpath of µc1 starting from a and following sign s1 is shorter
than L or, in the second step, vertex b1 does not exist, or |µc1 [a, b1]| exceeds L.

▶ Observation 10. Given a colours-signs word ω, a vertex a and a length L, if the path
(P, col) = CanonPath(ω, a, L) exists, then it is well-coloured. Moreover, this path is unique
and satisfies (P, col) = CanonPath(ColoursSignsW(P, col), a, |P |).

Proof. Notice first that, by construction, we have |P | = L and ColoursSignsW(P, col) = ω

which implies the last part of the statement. Now since this path is recursively obtained by
the concatenation of monochromatic (simple) subpaths (Equation 1), it is well-coloured. The
uniqueness of path (P, col) comes from the deterministic choices made during the algorithm,
which concludes the proof. ◀

a b1

b

P µc1

µc2

µc3

µc4

b2

b3

a3

a4

a2

Figure 2 Example of a canonical well-coloured a-b path (P, col) with a colours-signs word
ColoursSignsW(P, col) = ((c1, +), (c2, +), (c3, +), (c4, −)).

▶ Definition 11 (canonical well-coloured path). A well-coloured a-b path (P, col) is called
canonical if (P, col) = CanonPath(ColoursSignsW(P, col), a, |P |).

To obtain a result similar to Lemma 7, we provide an algorithm that takes as input
a well-coloured a-b path P , the corresponding good colouring col with l colours, and that
computes a canonical well-coloured a-b path whose length is upper-bounded by |P |+ 2(l− 1)
(see Algorithm 1 and Lemma 12). As before, let ω = ((c1, s1), . . . , (cl, sl)) be the colours-signs
word of (P, col) and for each 1 ≤ i ≤ l, let ai (resp. bi) denote the first (resp. last) vertex
of (P, col) coloured ci. Informally, the algorithm recursively computes a coloured path as
follows: if l = 1, we let Canonize(P, col) = (P, col). Otherwise, we consider b′

1 as the first
vertex of P [a, b1] (hence, of µc1 starting from a following sign s1) having a neighbour in µc2

(line 4). As in the definition of the CanonPath function, we choose the neighbour a′
2 of b′

1 to
be the vertex of µc2 that appears first on this path, according to its direction, among the
neighbours of b′

1 (line 5). We next replace P [b′
1, b2] by (b′

1, a′
2)⊙ µc2 [a′

2, b2] (see line 6 and
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Figure 3), and then re-apply the transformation on the new path starting from a′
2 (line 7).

We note that the colours-signs word of the resulting well-coloured path may be different from
ω, since a sign of ω might be flipped in the construction of the new path in line 6.

Algorithm 1 Function computing the canonical well-coloured path Canonize(P, col).

Input : A well-coloured a-b path (P, col)
Output : A canonical well-coloured a-b path

1 Function Canonize(P, col):
2 if l == 1 then
3 return (P, col);

/* first vertex of µc1 starting from a w.r.t. s1 having a neighbour in µc2 */

4 b′
1 ← first vertex of P [a, b1] having a neighbour in µc2 ;

5 a′
2 ← vertex of V (µc2)∩N(b′

1) that appears first on µc2 according to its direction;
/* P [b′

1, b2] is replaced by (b′
1, a′

2) ⊙ µc2 [a′
2, b2] */

6 (P ′, col′) = (µc2 [a′
2, b2], monochrc2)⊙ (P [b2, b], col);

7 return (P [a, b′
1], monochrc1)⊕ Canonize(P ′, col′);

▶ Lemma 12 (canonization of well-coloured paths). Given a well-coloured a-b path (P, col),
with a colours-signs word of l letters, the result of Canonize(P, col) is a canonical well-coloured
a-b path of length at most |P |+ 2(l − 1).

Proof. Denote (Pc, colc) = Canonize(P, col) and let ωc = ColoursSignsW(Pc, colc) be its
colours-signs word. We first claim that (Pc, colc) is a canonical well-coloured path, i.e. equal
to CanonPath(ωc, a, |Pc|) (Definition 11). In order to prove the claim we proceed by induction
on the number l of colours of (P, col). The property is true if (P, col) has a unique colour,
since in this (base) case, (Pc, colc) = (P, col) (line 3 of Algorithm 1).

Otherwise, by induction, (Pc, colc) is formed by (P [a, b′
1], monochrc1) concatenated with

(P ′′, col′′) = Canonize(P ′, col′), where (P ′, col′) is a well-coloured a′
2-b path with l − 1

different colours. Let ω′′ = ColoursSignsW(P ′′, col′′) be the colours-signs word of P ′′. By
the induction hypothesis, (P ′′, col′′) = CanonPath(ω′′, a′

2, |P ′′|). Moreover, for constructing
path Pc we started from a along µc1 following sign s1 until we reached the first vertex b′

1
adjacent to vertex a′

2 of µc2 , and concatenated it with the canonical a′
2-b path (P ′′, col′′), as

in the definition of the CanonPath function. Therefore, path (Pc, colc) is canonical for the
triple (ωc, a, |Pc|).

a

a′
2 a2 b2

P
b1

P ′

b′
1

Figure 3 The construction of Canonize(P, col).

It remains to show that the length of Pc is at most |P | + 2(l − 1). We proceed again
by induction on l. The property is true if l = 1 since Pc = P . Otherwise, for l ≥ 2, recall
that (Pc, colc) = (P [a, b′

1], monochrc1)⊕ (P ′′, col′′) where (P ′′, col′′) = Canonize(P ′, col′) and
(P ′, col′) = (µc2 [a′

2, b2], monochrc2) ⊙ (P [b2, b], col) is a well-coloured a′
2-b path with l − 1

different colours (by lines 6 and 7 of Algorithm 1). Now we show that:
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|P [a, b′
1]⊕ P ′| ≤ |P |+ 2 (2)

We recall that in the well-coloured path (P, col), b1 denotes the last vertex on P such that
col(b1) = c1 and a2 the first vertex on P such that col(a2) = c2. In particular (see Figure 3),

P [a, b′
1]⊕ P ′ = P [a, b′

1]⊕ µc2 [a′
2, b2]⊙ P [b2, b]

while P can be described by

P = P [a, b′
1]⊙ µc1 [b′

1, b1]⊕ µc2 [a2, b2]⊙ P [b2, b]

Therefore, in order to prove Inequality 2, we need to show that

|µc2 [a′
2, b2]| ≤ |µc1 [b′

1, b1]|+ |µc2 [a2, b2]|+ 2 (3)

Observe that |µc2 [a′
2, a2]| ≤ |µc1 [b′

1, b1]| + 2, otherwise µc2 [a′
2, a2] would not be a shortest

a′
2-a2 path since the a′

2-a2 path (a′
2)⊕ µc1 [b′

1, b1]⊕ (a2) would be of length |µc1 [b′
1, b1]|+ 2,

thus shorter. Next, observe that |µc2 [a′
2, b2]| ≤ |µc2 [a′

2, a2]|+ |µc2 [a2, b2]| no matter in which
order the vertices a′

2, a2 and b2 appear on µc2 . These observations prove Inequality 3, which
proves Inequality 2.

Inequality 2 entails that |P ′| ≤ |P | + 1 − |P [a, b′
1]|. By the induction hypothesis on

(P ′′, col′′), since (P ′, col′) uses l − 1 colours, we have that |P ′′| ≤ |P ′|+ 2(l − 2). Thus

|P ′′| ≤ |P |+ 2l − 3− |P [a, b′
1]|.

Now since (Pc, colc) = (P [a, b′
1], monochrc1)⊕ (P ′′, col′′) we have that |Pc| = |P [a, b′

1]|+ 1 +
|P ′′|. Plugging this into the previous inequality we have |Pc| ≤ |P [a, b′

1]|+ 1 + |P |+ 2l− 3−
|P [a, b′

1]|, which completes the proof of our lemma. ◀

▶ Corollary 13 (canonical representation). Given two vertices a and b, there exists a canonical
well-coloured a-b path (P, col) such that |P | ≤ dist(a, b) + 2(k − 1).

Proof. Let (Ps, cols) be a shortest well-coloured a-b path, which exists by Lemma 9. By
Lemma 12, (P, col) = Canonize(Ps, cols) is the required canonical well-coloured a-b path, of
length |P | ≤ |Ps|+ 2(k − 1) = dist(a, b) + 2(k − 1). ◀

In particular, Lemma 12 implies the following.

▶ Corollary 14. Let G be a graph whose vertices are covered by k shortest paths. For any
vertex a of G and any fixed distance D, there are at most g(k) vertices at distance D from a,
where:

g(k) = (2k − 1) ·
[

k∑
i=1

2i · k!
(k − i)!

]
Proof. For any fixed vertex a and fixed length L, the number of vertices that can be
reached from a through a canonical well-coloured path of length L is upper bounded by
h(k) =

∑k
i=1 2i · k!

(k−i)! , the number of colours-signs words, by Lemma 6. Moreover for
each vertex b, by Corollary 13, there exists a canonical well-coloured a-b path P such that
|P | ≤ dist(a, b) + 2(k − 1). Therefore the number of vertices at a fixed distance D from a in
G is at most (2k − 1) · h(k). Indeed, vertex b is uniquely identified by a, the colours-signs
word of the well-coloured path P , and the quantity |P | − dist(a, b). The latter has 2k − 1
possible values, from 0 to 2(k − 1), which completes the proof. ◀
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In order to complete the proof of Theorem 1 (in the case where the k paths cover all
vertices of the graph) and show that the pathwidth of G is at most 2 ·g(k), we apply Lemma 4
for K = g(k), and the conclusion follows.

5 Algorithmic consequences

Problem Strong Geodetic Set with Terminals is known to be NP-complete by [8]. By
a simple reduction, so is Isometric Path Cover with Terminals.

▶ Proposition 15. Isometric Path Cover with Terminals is NP-Complete.

Proof. We provide a straightforward reduction from Strong Geodetic Set with Termin-
als. Let (G = (V, E), k) be an instance of Strong Geodetic Set with Terminals with
terminals v1, . . . vk. We build an instance of Isometric Path Cover with Terminals
by considering all

(
k
2
)

possible pairs of terminals i.e. (G = (V, E),
⋃

1≤i<j≤k{(vi, vj)}). By
definition, (G, k) is a Yes-instance of Strong Geodetic Set with Terminals, i.e. there
exists a set of

(
k
2
)

shortest paths covering V (G) if and only if (G, k′) is a Yes-instance of Iso-
metric Path Cover with Terminals, i.e. a set of k′ shortest vi-vj paths, 1 ≤ i < j ≤ k

covering V (G). ◀

We now prove Theorem 2 and Corollary 3. Recall that, for simplicity, we assume that our
input graph is connected, but all results easily extend to disconnected graphs. We first show
that problem Isometric Path Cover with Terminals is FPT when parameterized by k,
the number of pairs of terminals. As a first consequence, so is problem Strong Geodetic
Set with Terminals, a special case of Isometric Path Cover with Terminals with(

k
2
)

pairs of terminals. (Both problems are NP-complete, by [8] and Appendix 15.)
Corollary 3 follows immediately, since for both Isometric Path Cover and Strong

Geodetic Set it suffices to try all possible sets of terminals and use the FPT algorithms
for the versions with terminals.

Let us focus on Isometric Path Cover with Terminals, with parameter k, input
G and the k pairs of terminals (s1, t1), . . . , (sk, tk). We can assume that the treewidth of
the input graph is upper bounded by a function of k, as stated in Theorem 1, and that
we have in the input a tree decomposition of such width. Indeed recall that Theorem 1
does not only provide a combinatorial bound on the pathwidth of YES-instances, but also a
simple, BFS-algorithm for computing the suitable path decompositions (which is also, as
stated in Section 2, a tree decomposition of the same width). If the algorithm fails to find
a path decomposition of small width, we can directly conclude that our input graph is a
NO-instance.

Therefore, we can use the classical Monadic Second-Order Logic of graphs (MSOL2)
tools on bounded treewidth graphs. MSOL2 includes the logical connectives ∨, ∧, ¬, ⇔,
⇒, variables for vertices, edges, sets of vertices, and sets of edges, the quantifiers ∀ and ∃
that can be applied to these variables, and five binary relations: adj(u, v), where u and v

are vertex variables and the interpretation is that u and v are adjacent; inc(v, e), where v is
a vertex variable and e is an edge variable and the interpretation is that v is incident to e;
v ∈ V ′, where v is a vertex variable and V ′ is a vertex set variable; the similar e ∈ E′ on
edge variable e and edge set variable E′, and eventually equality of two variables of the same
nature.

By a celebrated theorem of Courcelle [6], any problem expressible in MSOL2 can be
solved in time f(tw) · n time on bounded treewidth graphs, if a tree decomposition of the
input graph is also given. Function f depends on the formula (hence, on the problem).
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Courcelle’s theorem extends in several ways to optimization problems, and slightly larger
classes of formulae, e.g., allowing to identify a fixed number of terminal vertices, as we shall
detail later. Here we will refer to [3], one of the (alternative) proofs of Courcelle’s theorem,
with some extensions.

As noted for example in [3], MSOL2 allows to express properties as Connected(V ′, E′)
where V ′ is a vertex set variable and E′ is an edge set variable and the property is true if
and only if (V ′, E′) is a connected subgraph of G. Also let Cover(V1, . . . , Vk) express the
fact that vertex subsets V1, . . . , Vk cover all vertices of the graph, by simply stating that
∀x(x ∈ V1 ∨ x ∈ V2 ∨ . . . x ∈ Vk).

This allows us to express Isometric Path Cover with Terminals as an optimization
MSOL2 problem, called an EMS-problem in [3].

Let φ(E1, E2, . . . , Ek) be the formula on edge sets E1, . . . , Ek expressing the property that
there exist k connected subgraphs (V1, E1), . . . , (Vk, Ek) of G such that the sets V1, . . . , Vk

cover all vertices of G, and graph (Vi, Ei) contains terminals si, ti, for all 1 ≤ i ≤ k. More
formally:

φ(E1, E2, . . . , Ek) = ∃ V1, V2, . . . Vk [(s1 ∈ V1) ∧ (t1 ∈ V1) ∧ · · · ∧ (sk ∈ Vk) ∧ (tk ∈ Vk)
∧ Cover(V1, . . . , Vk) ∧ Connected(V1, E1) ∧ · · · ∧ Connected(Vk, Ek)]

Consider now the optimization version of this problem, where the goal is to find edge
sets E1, E2, . . . , Ek satisfying φ(E1, E2, . . . , Ek) and minimizing |E1|+ |E2|+ · · ·+ |Ek|. Let
OptCover denote this optimum. By Theorem 5.6 in [3], this problem can be solved in linear
time on bounded treewidth graphs. More precisely, Arnborg et al. [3] call such problems
“EMS linear extremum problems”, in the sense that they correspond to linear optimization
functions over the sizes of set variables, when these variables satisfy an MSOL2 formula
over labelled graphs with a fixed number of labels (here we consider each terminal vertex
labeled with a different label). In contemporary terms, the problem is FPT parameterized
by treewidth plus the number of terminals, and the running time is linear in n.

We now conclude by observing that our input is a YES-instance of Isometric Path
Cover with Terminals if and only if OptCover = dist(s1, t1)+dist(s2, t2)+ . . . dist(sk, tk).
Indeed if there exist the required shortest si-ti paths P1, . . . , Pk covering the vertex set of the
whole graph, then their edge sets E1, . . . , Ek provide a solution for our optimization problem
whose objective is the sum of the lengths of the paths. Conversely, for any of the k connected
subgraphs (Vi, Ei) of G such that si, ti ∈ Vi, we have |Ei| ≥ dist(si, ti). Therefore by simply
checking if OptCover corresponds to the sum of the distances between pairs of terminals, we
decide whether the input satisfies Isometric Path Cover with Terminals. Altogether,
this problem is FPT parameterized by k, which concludes the proof of Theorem 2.

As mentioned in the introduction, the same techniques extend to variants where the
covering paths are required to be edge-disjoint or vertex-disjoint, by simply adding disjointness
conditions in the MSOL2 formula φ.

6 Conclusion

We have shown that graphs that can be covered by k shortest paths have their pathwidth
upper-bounded by a function of k. Our bound is super-exponential, 2Θ(k log k). The first
natural open question is whether this upper bound can be improved to something smaller,
perhaps even polynomial in k? Such an improvement cannot rely on path decompositions
based on the layers of an arbitrary BFS, since we have examples (see Figure 4) where the
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µ1

µ2

µ3

µ4

a

2k−1

2k−22k−2

2k−1

2k−3
2k−2

Figure 4 A graph that can be edge-covered with k shortest paths and with 2k vertices at distance
2k − 1 from a. Therefore, a path decomposition obtained by a BFS from vertex a has width
exponential in k. Nevertheless, one can easily prove that this graph has pathwidth at most k.

same layer contains 2k vertices. Nevertheless, we leave as an open question whether graphs
whose vertices (or edges) can be covered by k shortest paths have treewidth at most a
polynomial in k.

Observe that the approach does not generalize to coverings with few induced paths, since
grids have arbitrarily large treewidth but are edge-coverable by four induced paths.

On the algorithmic side, we have proved that problems Isometric Path Cover with
Terminals and Strong Geodetic Set with Terminals are FPT parameterized by
the number of terminals. This directly entails that problems Isometric Path Cover
and Strong Geodetic Set are in XP with respect to the same parameter, by simply
enumerating all possible pairs (respectively, sets) of terminals. An exciting open question
is whether these two problems are FPT. By Theorem 1, this is equivalent to asking if the
problems are FPT when parameterized by the solution size (i.e., number of paths/terminals)
+ pathwidth. (Indeed, if k is the number of terminals, Theorem 1 ensures that either
the pathwidth pw of the input graph is upper bounded by a function f(k), or we can
directly reject the input for being a NO-instance. Therefore, if one of the problems is FPT
parameterized by k + pw, we obtain an FPT algorithm parameterized by k as follows. The
algorithm checks that pw ≤ f(k) as in Theorem 1, by a simple breadth-first search from an
arbitrary vertex. If the assertion is false, the algorithm rejects. Otherwise it simply remains
to apply the algorithm parameterized by k + pw on parameter k + f(k).) Nevertheless,
the answer to the question whether these problems are FPT for parameter k + pw seems
non-trivial. At least, while many optimization problems are FPT when parameterized by
treewidth/pathwidth, several problems including constraints on distances remain W [1]-hard
even when parameterized by such structural parameters, plus solution size. We can cite
recent hardness results for d-Scattered Set [13], whose goal is to find a large set of vertices
at pairwise distance at least d or, even closer to our problems, Geodetic set [14], where
one aims to find a small set of terminals of the input graph such that the set of all shortest
paths between every pair of terminals covers the graph.
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