O

Check for
updates

Monitoring Edge-Geodetic Sets in Graphs

Florent Foucaud'®)®, Krishna Narayanan?@®,

and Lekshmi Ramasubramony Sulochana?

! Université Clermont-Auvergne, CNRS, Mines de Saint—Etienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
florent.foucaud@uca.fr
2 PSG College of Technology, Coimbatore, India

rs.amcs@psgtech.ac.in

Abstract. We introduce a new graph-theoretic concept in the area of
network monitoring. In this area, one wishes to monitor the vertices
and/or the edges of a network (viewed as a graph) in order to detect and
prevent failures. Inspired by two notions studied in the literature (edge-
geodetic sets and distance-edge-monitoring sets), we define the notion of
a monitoring edge-geodetic set (MEG-set for short) of a graph G as an
edge-geodetic set S € V(G) of G (that is, every edge of G lies on some
shortest path between two vertices of S) with the additional property
that for every edge e of GG, there is a vertex pair x,y of S such that e lies
on all shortest paths between x and y. The motivation is that, if some
edge e is removed from the network (for example if it ceases to function),
the monitoring probes = and y will detect the failure since the distance
between them will increase.

We explore the notion of MEG-sets by deriving the minimum size of
a MEG-set for some basic graph classes (trees, cycles, unicyclic graphs,
complete graphs, grids, hypercubes, ...) and we prove an upper bound
using the feedback edge set of the graph.

1 Introduction

We introduce a new graph-theoretic concept, that is motivated by the problem of
network monitoring, called monitoring edge-geodetic sets. In the area of network
monitoring, one wishes to detect or repair faults in a network; in many applica-
tions, the monitoring process involves distance probes [1-3,8]. Our networks are
modeled by finite, undirected simple connected graphs, whose vertices represent
systems and whose edges represent the connections between them. We wish to
monitor a network such that when a connection (an edge) fails, we can detect
the said failure by means of certain probes. To do this, we select a small subset
of vertices (representing the probes) of the network such that all connections are
covered by the shortest paths between pairs of vertices in the network. Moreover,
any two probes are able to detect the current distance that separates them. The

Research financed by the French government IDEX-ISITE initiative 16-IDEX-0001
(CAP 20-25) and by the ANR project GRALMECO (ANR-21-CE48-0004).
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

A. Bagchi and R. Muthu (Eds.): CALDAM 2023, LNCS 13947, pp. 245256, 2023.
https://doi.org/10.1007/978-3-031-25211-2_19

246 F. Foucaud et al.

goal is that, when an edge of the network fails, some pair of probes detects a
change in their distance value, and therefore the failure can be detected. Our
inspiration comes from two areas: the concept of geodetic sets in graphs and its
variants [9], and the concept of distance edge-monitoring sets [7,8].

We now proceed with some necessary definitions. A geodesic is a shortest path
between two vertices u,v of a graph G [14]. The length of a geodesic between
two vertices u,v in G is the distance dg(u,v) between them. For an edge e of
G, we denote by G — e the graph obtained by deleting e from G. An edge e in a
graph G is a bridge if G — e has more connected components than G. A vertex
of a graph is said to be a leaf if its neighborhood contains exactly one vertex.
The open neighborhood of a vertex v € V(G) is Ng(v) = {u e V|w € E(G)}
and its closed neighborhood is the set Ng[v] = Ng(v) u {v}.

Monitoring Edge-Geodetic Sets. We now formally define of our main concept.

Definition 1. Two vertices x,y monitor an edge e in graph G if e belongs to all
shortest paths between x and y. A set S of vertices of G is called a monitoring
edge-geodetic set of G (MEG-set for short) if, for every edge e of G, there is a
pair x,y of vertices of S that monitors e.

We denote by meg(G) the size of a smallest MEG-set of G. We note that
V(G) is always an MEG-set of GG, thus meg(G) is always well-defined.

Related Notions. A set S of vertices of a graph G is a geodetic set if every vertex
of G lies on some shortest path between two vertices of S [9]. An edge-geodetic
set of G is a set S € V(G) such that every edge of G is contained in a geodesic
joining some pair of vertices in S [13]. A strong edge-geodetic set of G is a set
S of vertices of G such that for each pair u,v of vertices of S, one can select
a shortest u — v path, in a way that the union of all these ('g |) paths contains
E(G) [12]. It follows from these definitions that any strong edge-geodetic set is
an edge-geodetic set, and any edge-geodetic set is a geodetic set (if the graph
has no isolated vertices). In fact, every MEG-set is a strong edge-geodetic set.
Indeed, given an MEG-set S, one can choose any shortest path between each
pair of vertices of S, and the set of these paths covers E(G). Indeed, every edge
of GG is contained in all shortest paths between some pair of S. Hence, MEG-sets
can be seen as an especially strong form of strong edge-geodetic sets.

A set S of vertices of a graph G is a distance-edge monitoring set if, for every
edge e, there is a vertex x of S and a vertex y of GG such that e lies on all shortest
paths between x and y [7,8]. Thus, it follows immediately that any MEG-set of
a graph G is also a distance-edge monitoring set of G.

Our Results. We start by presenting some basic lemmas about the concept of
MEG-sets in Sect. 2, that are helpful for understanding this concept. We then
study in Sect. 3 the optimal value of meg(G) when G is a tree, cycle, unicyclic
graph, complete (multipartite) graph, hypercubes and grids. In Sect. 4, we show
that meg(G) is bounded above by a linear function of the feedback edge set

Monitoring Edge-Geodetic Sets in Graphs 247

number of G (the smallest number of edges of G needed to cover all cycles of
G, also called cyclomatic number) and the number of leaves of G. This implies
that meg(G) is bounded above by a function of the maz leaf number of G' (the
maximum number of leaves in a spanning tree of). These two parameters are
popular in structural graph theory and in the design of algorithms. We refer
to Fig. 1 for the relations between parameter meg and other graph parameters.
Finally, we conclude in Sect. 5.

Max Leaf Number

Vertex Cover Number Feedbﬁ%l;nEbglge Set meg \

Feedback Vertex Set Distance Edge-Monitoring Strong Edge-Geodetic
Number Number éget Number
e Edge-Geodetic
Arboricity S Number

)

Geodetic Set
Number

Fig. 1. Relations between the parameter meg and other structural parameters in graphs
(with no isolated vertices). For the relationships of distance edge-monitoring sets, see [7,
8]. Arcs between parameters indicate that the value of the bottom parameter is upper-
bounded by a function of the top parameter.

2 Preliminary Lemmas

We now give some useful lemmas about the basic properties of MEG-sets.
A vertex is simplicial if its neighborhood forms a clique. In particular, a leaf
is simplicial.

Lemma 2. In a graph G with at least one edge, any simplicial vertex belongs to
any edge-geodetic set and thus, to any MEG-set of G.

Proof. Let us consider by contradiction an MEG-set of G that does not contain
said simplicial vertex v. Any shortest path passing through its neighbors will not
pass through v, because all the neighbors are adjacent, hence leaving the edges
incident to v uncovered, a contradiction. O

Two distinct vertices u and v of a graph G are open twins if N(u) = N(v)
and closed twins if N[u] = N[v]. Further, v and v are twins in G if they are
open twins or closed twins in G.

248 F. Foucaud et al.

Lemma 3. If two vertices are twins of degree at least 1 in a graph G, then they
must belong to any MEG-set of G.

Proof. For any pair u, v of open twins in G, for any shortest path passing through
u, there is another one passing through v. Thus, if u,v were not part of the
MEG-set, then the edges incident to u and v would remain unmonitored, a
contradiction.

If u,v are closed twins, if some shortest path contains the edge uwv, then it
must be of length 1 and consist of the edge uv itself (otherwise there would be
a shortcut). Thus, to monitor uv, both u,v must belong to any MEG-set. O

The next two lemmas concern cut-vertices and subgraphs, and will be useful
in some of our proofs.

Lemma 4. Let G be a graph with a cut-verter v and Cy,Cs,...,Cy be the k
components obtained when removing v from G. If S1,S5s2,...,Sk are MEG-sets
of the induced subgraphs G[C1 v {v}],G[Cy U {v}],...,G[Cy U {v}], then S =
(81U S, ..., uSk) \ {v} is an MEG-set of G.

Proof. Consider any edge e of GG, say in 1. Then, there are two vertices x,y of
S, such that e belongs to all shortest paths between x and y in G; = G[Cy U {v}].
Assume first that v ¢ {z,y}. All shortest paths between z and y in G also exist
in G;. Thus, e is monitored by {z,y} < S in G. Assume next that v € {z,y}:
without loss of generality, v = x. At least one edge exists in G[Cy U {v}], which
implies that S5 \ {v} is nonempty, say, it contains z. Then, e is monitored by y
and z, since z € S. Thus, S monitors all edges of G, as claimed. O

3 Basic Graph Classes and Bounds

In this section, we study MEG-sets for some standard graph classes.

3.1 Trees

Theorem 5. For any tree T with at least one edge, the only optimal MEG-set
of T' consists of the set of leaves of T'.

Proof. The fact that all leaves must be part of any MEG-set follows from
Lemma 2, as they are simplicial. For the other side, let L be the set of leaves of
T. Let e = xy be an edge of T' and consider two leaves of T', [, and [, such that
l; is closer to x than to y and that [, is closer to y than to z. We note that e
belongs to the unique (shortest) path between [, and [,, thus e is monitored by
L. Hence, L is an MEG-set of T O

Corollary 6. For any path graph P,, where n > 2, we have meg(P,) = 2.

This provides a lower bound which is tight for path graphs, which have order n
and exactly 2 leaves.

Corollary 7. For any tree T of order n > 3, we have 2 < meg(T) < n — 1.

The upper bound is tight for star graphs, which have order n and n—1 leaves.

Monitoring Edge-Geodetic Sets in Graphs 249

3.2 Cycle Graphs

Theorem 8. Given an n-cycle graph C,, for n =3 and n > 5, meg(C,,) = 3.
Moreover, meg(Cy) = 4.

Proof. Let us first prove that we need at least three vertices to monitor any cycle.
By contradiction, let us assume that two vertices suffice. For any arbitrary vertex
pair in the cycle graph, there are two paths joining them, but there is either one
single shortest path or two equidistant shortest paths between them. Thus, the
edges on at least one of the two paths between the pair will not be monitored
by it. Hence, we need at least three vertices in any MEG-set of C), (n > 3).

We now prove the upper bound. Let n > 5 or n = 3, with the vertices of C,,
from vy to v,,_1. Consider the set S = {Uo,UL%J, UL%nJ}. We show that S is an
MEG-set of C,,.

Consider every edge of C), between a vertex pair v, and v, in S, then we
note that they lie on every (unique) shortest path between these vertices, which
has a length at least one for n < 5 and at least 2 otherwise, and at most [%W
Thus, meg(C,,) = 3 when n > 5 or n = 3.

In the case of Cy, the above construction does not work. Consider a set of
three vertices, say vg, v1, vo without loss of generality due to the symmetries
of C4. Notice that the edge vgvs is unmonitored by this set. Thus, we have
meg(Cy) = 4. O

3.3 Unicyclic Graphs

A wunicyclic graph is a connected graph containing exactly one cycle [10]. We
now determine the optimal size of an MEG-set of such graphs.

Theorem 9. Let G be a unicyclic graph where the only cycle C' has length k
and whose set of leaves is L(G), |L(G)| = 1. Let V} be the set of vertices of C

with degree at least 3. Let p(G) = 1 if G[V(C)\ V"] contains a path whose length
is at least {%J, and p(G) = 0 otherwise.
Then, if k € {3,4},
meg(G) =1+ k— |V

Otherwise (k > 5), then

3, if V| =0
meg(G) = ¢ 1 +2, if [V =1
L+p(G), if [V >1

Proof. Let GG be a unicyclic graph where the only cycle C' has length k£ and
whose set of leaves is L(G). By Lemma 2, all leaves are part of any MEG-set of
G. This implies that meg(G) is at least I. If [V5| = 0 (i.e. I = 0), we are done
by Theorem 8, so let us assume |V | > 0 and thus, [> 0.

250 F. Foucaud et al.

Similarly as in the proof of Lemma 4, for every vertex v of V7, we know that
at least one leaf will exist in the tree component T, formed if we remove the
neighbors of v in C from G. Informally speaking, towards the rest of the graph,
this leaf simulates the fact that v is in the solution set.

If k € {3,4}, we consider S = L(G) and we add to S all vertices of C that
are of degree 2 in G. One can easily check that this is an MEG-set. Moreover,
one can see that adding these degree 2 vertices is necessary by using similar
arguments as in the proof of Theorem 8 on cycles.

Next, we assume that £ > 5. Let vg, ..., vr_1 be the vertices of C.

When |V7| = 1, without loss of generality, consider the vertex in V. to be
vg. Then, the vertices {U%J ,’UL%J} on the cycle are sufficient to monitor the
graph, in the same way as in Theorem 8. Moreover, by the same arguments as
in the proof of Theorem 8, one can see that if at most one vertex on C' is chosen
in the MEG-set, some edge will not be monitored.

If |[V.f| > 1 and p(G) = 0, the [leaves are sufficient to monitor G. Indeed,
consider an edge e. If e is not on C, let v be the vertex of V7 closest to e, and
let w # v be the vertex of V7 closest to v (it exists because |V.F| > 1). Consider
a leaf f of G such that e lies on some path from v to f. Since p(G) = 0, the path
from w to f is a unique shortest path, and thus, e is monitored by f and some
leaf whose closest vertex on C' is w.

If e is an edge of C, e lies on a path between two vertices v, w of V7. Since
p(G) = 0, this path is a shortest path, and e is monitored by two leaves, each of
which has v and w as its closest vertex of C|, respectively.

Finally, consider the case where p(G) = 1 and |V*| > 1. Since p(G) = 1,
G[V(C) \ V] contains a path P whose length is at least EJ and thus, the
edges of P are not monitored by the set of leaves of G, which implies that
meg(G) > | + 1. To show that meg(G) < [+ 1, we select as an MEG-set, the
set of leaves together with the middle vertex of P (if P has even length) or one
of the middle vertices of P (if P has odd length). One can see that this is an
MEG-set by similar arguments as in the previous case. O

3.4 Complete Graphs

The following follows immediately from Lemma 2, since every vertex of a com-
plete graph is simplicial.

Theorem 10. For any n > 2, we have meg(K,) = n.

3.5 Complete Multipartite Graphs

The complete k-partite graph K, p, ... p,. consists of k£ disjoint sets of vertices of
sizes p1,p2, ..., Pk, with an edge between any two vertices from distinct sets.

Theorem 11. We have meg(Kp, py....p.) = |V(Kpy ps,...pn)|, with the excep-
tional case of a bipartite graph K; , with an independent set of size 1 (a star
graph), for which meg(K; ,) = p.

Monitoring Edge-Geodetic Sets in Graphs 251

Proof. In a complete k-partite graph, all vertices in a given partite set are twins.
Therefore, by Lemma 3, all vertices of ant partite set of size at least 2 need to
be a part of any MEG-set.

If we have several partite sets of size 1, then the vertices from these sets are
closed twins, and again by Lemma 3 they all belong to any MEG-set.

Thus, we are done, unless there is a unique partite set of size 1, whose vertex
we call v. If there are at least three partite sets, then note that v is never part of
a unique shortest path, and thus the edges incident with v cannot be monitored
if v is not part of the MEG-set.

On the other hand, if the graph is bipartite, it is a star K; ,. Here, we know
by Theorem 5 that meg(G) = p, as claimed. O

3.6 Hypercubes

The hypercube of dimension n, denoted by @),,, is the undirected graph consisting
of k = 2™ vertices labeled from 0 to 2" —1 and such that there is an edge between
any two vertices if and only if the binary representations of their labels differ by
exactly one bit [15]. The Hamming distance H(A, B) between two vertices A, B
of a hypercube is the number of bits where the two binary representations of its
vertices differ.

We next show that not only C4 has the whole vertex set as its only MEG-set
(Theorem 8), but that this also holds for all hypercubes.

Theorem 12. For a hypercube graph Q, with n > 2, we have meg(Q,) = 2".

Proof. Assume by contradiction that there is an MEG-set M of size at most
2" — 1. Let v € V(G) be a vertex that is not in M. It is known that for every
vertex pair {v,,v} with H(v;,v) < n, there are H(v,,v) vertex-disjoint paths
of length H(v,,v) between them [15]. Thus, there is no vertex pair in M with a
unique shortest path going through the edges incident with v, and M is not an
MEG-set, a contradiction. a

3.7 Grid Graphs

The graph GUH is the Cartesian product of graphs G and H and with vertex
set V(GOH) = V(G) x V(H), and for which {(x,u), (y,v)} is an edge if z =y
and {u,v} € E(H) or {z,y} € E(G) and u = v. The grid graph G(m,n) is the
Cartesian product P,,0P,, with vertex set {(i,7) | 1 <i<m,1<j <n}.

Theorem 13. For any m,n > 2, we have meg(G(m,n)) = 2(m +n — 2).

Proof. We claim that the set S = {(i,j) € V(G(m,n)) i€ {1,m} and 1 < j <
norje{l,n}and 1 <i < m} of 2(m + n — 2) vertices of G(m,n) that form
the boundary vertices of the grid, form the only optimal MEG-set.

For the necessity side, let us assume that some vertex v = (i,5) of S is
not part of the MEG-set. If v is a corner vertex (without loss of generality say
v = (1,1), the two edges incident with v are not monitored, as for any shortest

252 F. Foucaud et al.

path going through them, there is another one going through vertex (2,2). If v is
not a corner vertex (without loss of generality say v = (1,7) with2 < j <n—1),
then the edge e between v = (1,7) and (2,) is not monitored, indeed for any
shortest path containing e, there is another one avoiding it, either going through
vertex (2,7 — 1) or through (2,5 + 1).

To see that S is an MEG-set, first see that each boundary edge is monitored
by its endpoints. Next, consider an edge e that is not a boundary edge, without
loss of generality, e is between (i, j) and (i + 1, 7). Then, it is monitored by (1, 7)
and (m,), whose unique shortest path goes through e. O

4 Relation to Feedback Edge Set Number

A feedback edge set of a graph G is a set of edges which when removed from G
leaves a forest. The smallest size of such a feedback edge set of G is denoted by
fes(G) and is sometimes called the cyclomatic number of G.

We next introduce the following terminology from [6]. A vertex is a core
vertex if it has degree at least 3. A path with all internal vertices of degree 2 and
whose end-vertices are core vertices is called a core path. Do note that we allow
the two end-vertices to be equal, but that every other vertex must be distinct. A
core path that is a cycle (that is, both end-vertices are equal) is a core cycle. For
the sake of distinction, a core path that is not a core cycle is called a proper core
path. We say that a (non-empty) path from a core vertex u to a leaf v is a leg of
w if all internal vertices of the path have degree 2 (u is not considered to be a
part of the leg). The base graph of a graph G is the graph of minimum degree 2
obtained from G by iteratively removing vertices of degree 1. A hanging tree is a
connected subtree of G which is the union of some legs removed from G during
the process of creating the base graph GG, of G. Thus, G can be decomposed into
its base graph and a set of maximal hanging trees. The root of such a maximal
hanging tree T is the vertex common to T and Gj.

See Fig. 2 for a graph whose core vertices are in red. It has two hanging trees,
four core cycles, three proper core paths of length 4, and six proper core paths
of length 1.

Based on the aforementioned, we have the following lemma.

Lemma 14 ([6,11]). Let G be a graph with fes(G) = k > 2. The base graph of
G has at most 2k - 2 core vertices, that are joined by at most 3k - 3 edge-disjoint
core paths. Equivalently, G can be obtained from a multigraph H of order at most
2k — 2 and size at most 3k — 3 by subdividing its edges an arbitrary number of
times and iteratively adding degree 1 vertices.

Lemma 15. Let S be an MEG-set of the base graph Gy of G and L(G) be the
set of leaves in G. Then, S v L(G) is an MEG-set of G.

Proof. Let GGy, be a base graph of G. Consider all vertices that are roots of max-
imal hanging trees on Gy. By Theorem 5, the optimal MEG-set of each tree

Monitoring Edge-Geodetic Sets in Graphs 253

Fig. 2. Example of a graph G with its core vertices in red. (Color figure online)

consists of all leaves. We repeatedly apply Lemma 4 to GG, where for each appli-
cation of Lemma 4, the cut-vertex is the root of a hanging tree in consideration.
U

Lemma 2, Theorem 5 and Lemma 15 together imply that if fes(G) = 0, then
meg(G) < fes(G) + |L(G)|. Moreover, if fes(G) = 1, then meg(G) < fes(G) +
|L(G)| + 3, where |L(G)| is the number of leaves of G. We next give a similar
bound when fes(G) > 2.

Fig. 3. Example of a graph GG and its base graph G; with four core cycles.

Theorem 16. If fes(G) > 2, then meg(G) < 9fes(G) + |L(G)| — 8 where |L(G))|
s the number of leaves of G.

Proof. Let k = fes(G). We show how to construct a MEG-set M of G}, of order
at most 9k —8 and, by applying Lemma 15 to G, of order 9k — 8+ |L(G)| for G. If
an edge e is part of a maximal hanging tree, then by Lemma 2 and Lemma 4, it
is monitored by the leaves of G on the maximal hanging tree. M is constructed
as follows.

254 F. Foucaud et al.

— We let all core vertices of GGy, be part of M.

— One or two internal vertices from each proper core path belongs to M, only
if the length is at least 2, as explained below.

— Two or three internal vertices from each core cycle, as explained below.

Consider a proper core path P, with core vertex endpoints ¢ and ¢/, and the
median vertex z; in the case of an odd-length path and z1, x5 in the case of an
even-length path, with d edges (on P) between the endpoints and the respective
medians in P. Then, we choose the single median vertex x; or the two median
vertices x1, o from each of the core paths into M.

For each core cycle, in addition to the core vertex of that cycle, we add three
vertices that are as equidistant as possible on the cycle, to be part of M (as in
Theorem 8).

Let e be any edge of G. We now show that our construction M monitors any
such edge in Gy. If e lies on a core cycle, assume an origin core vertex of vyg.
Then, based on Lemma 4 and Theorem 8, we deduce that in the worst case, four
vertices together suffice to monitor the edges.

If the edge e lies on a proper core path P, then we have the following cases.
Let ¢ and ¢ be the core vertex endpoints of P, and the median vertex 7 in the
case of an odd-length path and x;, x5 in the case of an even-length path and d
edges of P between the end points and the respective medians in P. Without loss
of generality, let us say that e lies on the path P such that its closest core vertex
is ¢ and closest median x; in the event of an even-length path. Suppose first that
d is even. Given that the distance between ¢ and x; is d in P, the length of any
other path between them must be at least d + 2. Therefore, ¢ and x; monitor e.
We can similarly argue that if the closest core vertex to e was ¢’ and the closest
median vertex was o, then ¢’ and xo monitor e. If e lay in between the median
vertices x1 and xo, then we know that those vertices would monitor e because
they are adjacent. If the path was of odd length, then depending on which of the
core vertices ¢ and ¢ was closest to e, the distance between the median and the
core vertices would be d in P and the length of any other path between them at
least d + 1, ensuring that the median vertex x; would monitor the edge apart
from the core vertices. This justifies our construction of M for G,.

By Lemma 14, the number of core vertices of G}, is at most 2k — 2, and there
are at most 3k — 3 core paths.

If we have core cycles in our graph, then we must note that there can be at
most k such cycles in the graph. Indeed, if there were k + 1 core cycles in the
graph, since they are all edge-disjoint, we need at least £+ 1 edges to be removed
from G to obtain a forest, a contradiction to the fact that fes(G) = k.

Let n. be the number of core cycles and n, be the number of proper core
paths. We have | M| = 3n. + 2n, + 2k — 2. Since n. < k and n. +n, < 3k —3 by
Lemma 14, we get [M| < 3k +2(2k — 3) + 2k — 2 = 9k — 8. 0

Recall that the maz leaf number of G, denoted mln(G), is the maximum
number of leaves in a spanning tree of G. It can be seen as a refinement of the
feedback edge set number of G [4,5]. We get the following corollary.

Monitoring Edge-Geodetic Sets in Graphs 255

Corollary 17. For any graph G, we have meg(G) < 10mIn(G), where mln(G)
1s the mazx leaf number of G.

Proof. 1t is known that fes(G) < mln(G) [4], and clearly, |L(G)| < mln(G), thus
the bound follows from Theorem 16. O

Proposition 18. For any integer k > 2, there exists a graph G with fes(G) = k
and meg(G) = 3k +|L(G)|.

Proof. Consider G and its base graph G} in Fig. 3. We know that the leaves must
be part of any MEG-set by Lemma 2. The MEG-set for GG, consists of all the
vertices in each of the core cycles (each a C4) in Gj, except the common core
vertex. It is easy to check that no smaller set can work. The size of the optimal
MEG-set in this example is 3k + |L(G)| and therefore, this is an instance where
this proposition holds. a

5 Conclusion

Inspired by a network monitoring application, we have defined the new concept
of MEG-sets of a graph, which is a common refinement of the popular concept
of a geodetic set and its variants, and of the previously studied distance-edge-
monitoring sets.

We have studied the concept on basic graph classes. It is interesting to note
that there are many graph classes which require the entire vertex set in any
MEG-set: complete graphs, complete multipartite graphs, and hypercubes. It
could thus be a difficult, but interesting, question, to characterize all such graphs.

Our upper bound using the feedback edge set number is probably not tight.
What is a tight bound on this regard?

Finally, it remains to investigate computational aspects of the problem.

Acknowledgements. Florent Foucaud thanks Ralf Klasing and Tomasz Radzik for
initial discussions which inspired the present study.

References

1. Bampas, E., Bil6, D., Drovandi, G., Gual4, L., Klasing, R., Proietti, G.: Network
verification via routing table queries. J. Comput. Syst. Sci. 81(1), 234-248 (2015)

2. Beerliova, Z., et al.: Network discovery and verification. IEEE J. Sel. Areas Com-
mun. 24(12), 2168-2181 (2006)

3. Bejerano, Y., Rastogi, R.: Robust monitoring of link delays and faults in IP net-
works. IEEE/ACM Trans. Networking 14(5), 1092-1103 (2006)

4. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algo-
rithms Appl. 19(1), 313-323 (2015)

5. Fellows, M.R., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh,
S.: The complexity ecology of parameters: an illustration using bounded max leaf
number. Theory Comput. Syst. 45(4), 822-848 (2009)

256

10.
11.

12.

13.

14.

15.

F. Foucaud et al.

Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130-1171 (2015)

Foucaud, F., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a graph
using distances. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016,
pp. 28-40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_3
Foucaud, F., Kao, S., Klasing, R., Miller, M., Ryan, J.: Monitoring the edges of a
graph using distances. Discret. Appl. Math. 319, 424-438 (2022)

. Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math.

Comput. Model. 17, 89-95 (1993)

Harary, F.: Graph Theory. Addison-Wesley, Reading (1994)

Kellerhals, L., Koana, T.: Parameterized complexity of geodetic set. In: Proceed-
ings of the 15th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol.
180, pp. 20:1-20:14 (2020)

Manuel, P., Klavzar, S., Xavier, A., Arokiaraj, A., Thomas, E.: Strong edge geode-
tic problem in networks. Open Math. 15(1), 1225-1235 (2017)

Santhakumaran, A.P., John, J.: Edge geodetic number of a graph. J. Discret. Math.
Sci. Cryptogr. 10, 415-432 (2007)

Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica. Addison-Wesley, Reading (1990)

Saad, Y., Schultz, M.: Topological properties of hypercubes. IEEE Trans. Comput.
37(7), 867-872 (1988)

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Stable Approximation Schemes
	 Graph Modification Problems with Forbidden Minors
	 Contents

	Algorithms and Optimization
	Efficient Reductions and Algorithms for Subset Product
	1 Introduction
	1.1 Our Contributions
	1.2 Prior Works and Limitation of the Obvious Attempts

	2 Preliminaries
	3 Time-Efficient Algorithm for
	3.1 Proof of Theorem 1

	4 An Efficient Reduction from to
	4.1 Polynomial Time Algorithm for Computing Pseudo-Prime-Factors

	5 Conclusion
	References

	Optimal Length Cutting Plane Refutations of Integer Programs
	1 Introduction
	2 Statement of Problems
	3 Motivation and Related Work
	4 Optimal Length Read-Once Refutations
	5 Optimal Length Tree-Like and Dag-Like Refutations
	6 Conclusion
	References

	Fault-Tolerant Dispersion of Mobile Robots
	1 Introduction
	1.1 Our Results

	2 Related Work
	3 Model
	4 Crash-Fault Dispersion for Rooted Configuration
	4.1 Algorithm

	5 Crash-Fault Dispersion for Arbitrary Configurations
	6 Conclusion and Future Work
	References

	Resource Management in Device-to-Device Communications
	1 Introduction
	2 System Model
	3 Related Work
	4 Branch-n-Cut
	4.1 Cover Cuts

	5 Approximation Algorithm
	5.1 Algorithm
	5.2 Structure
	5.3 Proof of Theorem 1
	5.4 Density Ordered Greedy for KS

	6 Experiments and Results
	6.1 Instance Generation
	6.2 Methodology
	6.3 Results

	7 Conclusion and Future Work
	References

	Computational Geometry
	Algorithms for k-Dispersion for Points in Convex Position in the Plane
	1 Introduction
	1.1 Literature Survey

	2 Preliminaries
	3 An Exact Fixed-Parameter Algorithm
	3.1 Decision Algorithm
	3.2 The Optimization Scheme

	4 An Exact Polynomial Time Algorithm
	5 Concluding Remarks
	References

	Arbitrary-Oriented Color Spanning Region for Line Segments
	1 Introduction
	2 Preliminaries and Notations
	2.1 A Single Color Spanning Strip of Arbitrary Orientation
	2.2 Two Congruent Strips of Arbitrary Orientation
	2.3 Two Congruent Strips of Arbitrary Orientation Whose Union is Color Spanning
	2.4 Color Spanning Rectangle (CSR) of Arbitrary Orientation

	References

	Game Theory
	Rectilinear Voronoi Games with a Simple Rectilinear Obstacle in Plane
	1 Introduction
	2 Preliminaries
	3 Bounds for Rectilinear Voronoi Games with Polygonal Obstacles
	3.1 Unrestricted
	3.2 Simple Polygon Obstacle
	3.3 Convex Polygon Obstacle
	3.4 Orthogonal Simple Polygon Obstacle
	3.5 Orthogonal Convex Polygon Obstacle

	4 Bounds for Linf Metric in Plane
	References

	Diverse Fair Allocations: Complexity and Algorithms
	1 Introduction
	2 Preliminaries
	3 Bounds on the Number of Disjoint and Distinct Allocations
	4 Computing Disjoint and Distinct Allocations
	5 Symmetric Allocations
	6 Conclusion and Future Directions
	7 Appendix
	References

	Graph Coloring
	New Bounds and Constructions for Neighbor-Locating Colorings of Graphs
	1 Introduction
	2 Gaps Among (G), L(G) and NL(G)
	3 Bounds and Constructions for Sparse Graphs
	3.1 Bounds
	3.2 Tightness

	References

	5-List Coloring Toroidal 6-Regular Triangulations in Linear Time
	1 Introduction
	1.1 Motivation
	1.2 Our Work
	1.3 Related Work

	2 Proof of Theorem 1
	2.1 Reductions for the Proof of Case (1)
	2.2 Proof of Case (1)
	2.3 Proofs of Cases (2) to (4)
	2.4 Proof of Non-3-Choosability of the Graphs in Cases (1) to (4)

	References

	On Locally Identifying Coloring of Graphs
	1 Introduction
	2 Preliminaries
	3 Graphs with lid(G) = |V(G)|
	4 Block Graphs
	5 Biconvex Bipartite Graphs
	6 Cartesian Product
	6.1 Cartesian Product of a Cycle and a Path
	6.2 Cartesian Product of Two Cycles

	7 Lexicographic Product
	8 Conclusion
	References

	On Structural Parameterizations of Star Coloring*-4pt
	1 Introduction
	2 Preliminaries
	3 Neighborhood Diversity
	4 Twin Cover
	5 Clique-Width
	6 Conclusion
	References

	Perfectness of G-generalized Join of Graphs
	1 Introduction
	2 When a G-generalized Join of Complete and Totally Disconnected Graphs is Perfect
	3 Perfect Zero-Divisor Graph of a Ring
	3.1 Perfect Ideal Based Zero-Divisor Graph of Rings
	3.2 Zero-Divisor Graph of Rings, Reduced Semigroups and Posets

	References

	On Coupon Coloring of Cayley Graphs
	1 Introduction
	2 Preliminaries
	3 Coupon Coloring Number of CAY(R)
	4 Coupon Coloring Number of Rn
	References

	Coloring of a Superclass of 2K2-free graphs
	1 Introduction
	2 Preliminaries
	3 {butterfly,hammer}-free graphs
	3.1 {butterfly, hammer, P4+Kp}-free graphs
	3.2 {butterfly, hammer, C4+Kp}-free graphs
	3.3 {butterfly,hammer,(K1K2)+Kp}-free graphs
	3.4 {butterfly,hammer,2K1+Kp}-free graphs

	4 Conclusion
	References

	The Weak (2,2)-Labelling Problem for Graphs with Forbidden Induced Structures
	1 Introduction
	2 Preliminaries
	3 Graphs with No Induced Pair of Independent Edges
	4 From 2K2-free Graphs to K1,3-free Graphs, and Beyond
	References

	Graph Connectivity
	Short Cycles Dictate Dichotomy Status of the Steiner Tree Problem on Bisplit Graphs
	1 Introduction
	2 STREE in Bisplit Graphs
	2.1 Chordal Bisplit Graphs
	2.2 Chordal Bipartite Bisplit Graphs

	3 Complexity of STREE on Bisplit Graphs with Diameter as the Parameter
	4 Parameterized Complexity Results
	4.1 Parameterized Intractability
	4.2 FPT Algorithm for Bisplit Graph

	5 Structural Results on Bisplit Graphs
	References

	Some Insights on Dynamic Maintenance of Gomory-Hu Tree in Cactus Graphs and General Graphs
	1 Introduction
	1.1 Related Work and Motivation

	2 Preliminary
	3 Gomory-Hu Trees of Blocks of a Graph
	4 Gomory-Hu Tree of a Cactus Graph
	4.1 Dynamically Maintaining a Gomory-Hu Tree
	4.2 Incremental Algorithm for Gomory-Hu Tree
	4.3 Decremental Algorithm for Gomory-Hu Tree

	5 Gomory-Hu Tree Sensitivity Data Structure
	6 Conclusion and Future Works
	References

	Monitoring Edge-Geodetic Sets in Graphs
	1 Introduction
	2 Preliminary Lemmas
	3 Basic Graph Classes and Bounds
	3.1 Trees
	3.2 Cycle Graphs
	3.3 Unicyclic Graphs
	3.4 Complete Graphs
	3.5 Complete Multipartite Graphs
	3.6 Hypercubes
	3.7 Grid Graphs

	4 Relation to Feedback Edge Set Number
	5 Conclusion
	References

	Cyclability, Connectivity and Circumference
	1 Introduction
	2 Preliminaries
	3 Proofs of the Results
	4 Concluding Remarks
	References

	Graph Domination
	On Three Domination-Based Identification Problems in Block Graphs
	1 Introduction
	2 Upper Bounds
	2.1 Identifying Codes
	2.2 Locating-Dominating Codes
	2.3 Open Locating-Dominating Codes

	3 Lower Bounds
	4 Conclusion
	References

	Computational Aspects of Double Dominating Sequences in Graphs
	1 Introduction
	2 Preliminaries
	3 NP-Completeness
	3.1 Bipartite Graphs
	3.2 Co-bipartite Graphs

	4 Algorithm for Chain Graphs
	5 Conclusion
	References

	Relation Between Broadcast Domination and Multipacking Numbers on Chordal Graphs
	1 Introduction
	2 An Inequality Linking Broadcast Domination and Multipacking Numbers of Chordal Graphs
	3 Unboundedness of the Gap Between Broadcast Domination and Multipacking Numbers of Chordal Graphs
	3.1 Proof of Theorem 4

	4 Conclusion
	References

	Cops and Robber on Oriented Graphs with Respect to Push Operation
	1 Introduction
	2 Preliminaries
	2.1 Preliminary Results

	3 Cop-Win Classes Under Strong Push
	3.1 Complete Multipartite Graphs
	3.2 Subcubic Graphs
	3.3 Interval Graphs

	4 Conclusion
	References

	Mind the Gap: Edge Facility Location Problems in Theory and Practice
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Edge Center Selection Problems
	3 Hardness and Tractability Results
	4 Approximation Algorithms
	4.1 Parametric Pruning
	4.2 Greedy Selection

	5 Practical Computation
	6 Experiments
	6.1 Results for Small Edge Budgets
	6.2 Results for Large Edge Budgets

	7 Conclusions and Future Work
	References

	Complexity Results on Cosecure Domination in Graphs
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Preliminary Results

	3 NP-completeness Result for Split Graphs
	4 Algorithm for Cographs
	5 Approximation Results
	5.1 Upper Bound on Approximation Ratio
	5.2 Lower Bound on Approximation Ratio
	5.3 APX-hardness

	6 Conclusion
	References

	Graph Matching
	Latin Hexahedra and Related Combinatorial Structures
	1 Intoroduction
	2 Latin Hexahedra
	3 Latin Three-Axis Design and Latin Four-Axis Design
	3.1 1-Factorizations
	3.2 Construction of a Latin Regular Hexahedron Using Latin Three-Axis Designs

	References

	Algorithms and Complexity of Strongly Stable Non-crossing Matchings
	1 Introduction
	2 Preliminaries
	3 Strongly Stable Non-crossing Matchings
	4 Semi-strongly Stable Non-crossing Matchings
	4.1 (2,n)-SMI
	4.2 (1,n)-SMI

	5 Conclusion
	A Illustration of Construction of Instance in the Proof of Theorem 2
	References

	Minimum Maximal Acyclic Matching in Proper Interval Graphs
	1 Introduction
	2 Algorithm for Proper Interval Graphs
	3 Conclusion
	References

	Graph Partition and Graph Covering
	Transitivity on Subclasses of Chordal Graphs
	1 Introduction
	2 Notation and Definition
	3 Transitivity in Split Graphs
	4 Transitivity in the Complement of Bipartite Chain Graphs
	5 Nordhaus-Gaddum Type Bounds for Transitivity
	6 Transitively Critical Graphs
	7 Conclusion
	References

	Maximum Subgraph Problem for 3-Regular Knödel graphs and its Wirelength
	1 Introduction
	2 Preliminaries
	3 The Knödel graphs
	4 Results
	4.1 Maximum Subgraph Problem
	4.2 Minimum Linear Arrangement
	4.3 Wirelength of Embedding W3,2n, n4 into 1-rooted Complete Binary Tree T1n

	5 Implementation
	6 Concluding Remarks
	References

	Graph Covering Using Bounded Size Subgraphs
	1 Introduction
	2 Related Work
	3 Results
	3.1 Constant Factor Approximation Algorithm for BCFC
	3.2 Constant Factor Approximation Algorithm for BSWC

	4 Conclusion and Future Work
	References

	Axiomatic Characterization of the Toll Walk Function of Some Graph Classes
	1 Introduction
	2 Preliminaries
	2.1 Transit Functions and Axioms
	2.2 Toll Walks
	2.3 Characterizations by Forbidden Induced Subgraphs

	3 Axioms on the Toll Walk Function
	4 A Characterization of the Toll Walk Function of Subclasses of AT-Free Graphs
	5 A New Characterization of Interval Graphs with a Help of the Toll Walk Function
	References

	Structural Parameterization of Alliance Problems
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 FPT Algorithms
	2.1 Alliances Parameterized by Distance to Clique
	2.2 Alliances Parameterized by Twin Cover and the Number of Cliques Outside the Twin Cover
	2.3 Alliances Parameterized by Twin Cover and the Size of the Largest Clique Outside the Twin Cover

	3 Conclusion
	References

	Author Index

