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Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France

{antoine.dailly,florent.foucaud,anni.hakanen}@uca.fr
2 Department of Mathematics and Statistics, University of Turku,

20014 Turku, Finland

Abstract. In the Metric Dimension problem, one asks for a
minimum-size set R of vertices such that for any pair of vertices of the
graph, there is a vertex from R whose two distances to the vertices of the
pair are distinct. This problem has mainly been studied on undirected
graphs and has gained a lot of attention in the recent years. We focus
on directed graphs, and show how to solve the problem in linear-time on
digraphs whose underlying undirected graph (ignoring multiple edges)
is a tree. This (nontrivially) extends a previous algorithm for oriented
trees. We then extend the method to unicyclic digraphs (understood
as the digraphs whose underlying undirected multigraph has a unique
cycle). We also give a fixed-parameter-tractable algorithm for digraphs
when parameterized by the directed modular-width, extending a known
result for undirected graphs. Finally, we show that Metric Dimension

is NP-hard even on planar triangle-free acyclic digraphs of maximum
degree 6.

1 Introduction

The metric dimension of a (di)graph G is the smallest size of a set of vertices
that distinguishes all vertices of G by their vectors of distances from the vertices
of the set. This concept was introduced in the 1970s by Harary and Melter [14]
and by Slater [30] independently. Due to its interesting nature and numerous
applications (such as robot navigation [18], detection in sensor networks [30]
or image processing [22], to name a few), it has enjoyed a lot of attention. It
also has been studied in the more general setting of metric spaces [3], and is
generally part of the rich area of identification problems of graphs and other
discrete structures [20].

More formally, let us denote by dist(x, y) the distance from x to y in a
digraph. Here, the distance dist(x, y) is taken as the length of a shortest directed
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path from x to y; if no such path exists, dist(x, y) is infinite, and we say that y is
not reachable from x. We say that a set S is a resolving set of a digraph G if for
any pair of distinct vertices v, w from G, there is a vertex x in S with dist(x, v) �=
dist(x,w). Furthermore, we require that every vertex of G is reachable from at
least one vertex of S. The metric dimension of G is the smallest size of a resolving
set of G, and a minimum-size resolving set of G is called a metric basis of G.1

We denote by Metric Dimension the computational version of the problem:
given a (di)graph G, determine its metric dimension.

For undirected graphs, Metric Dimension has been extensively studied,
and its non-local nature makes it highly nontrivial from an algorithmic point
of view. On the hardness side, Metric Dimension was shown to be NP-hard
for planar graphs of bounded degree [7], split, bipartite and line graphs [9], unit
disk graphs [17], interval and permutation graphs of diameter 2 [11], and graphs
of pathwidth 24 [19]. On the positive side, it can easily be solved in linear time
on trees [4,14,18,30]. More involved polynomial-time algorithms exist for uni-
cyclic graphs [29] and, more generally, graphs of bounded cyclomatic number [9];
outerplanar graphs [7]; cographs [9]; chain graphs [10]; cactus-block graphs [16];
bipartite distance-hereditary graphs [24]. There are fixed parameter tractable
(FPT) algorithms for the undirected graph parameters max leaf number [8],
tree-depth [13], modular-width [2] and distance to cluster [12], but FPT algo-
rithms are highly unlikely to exist for parameters solution size [15] and feedback
vertex set [12].

Due to the interest for Metric Dimension on undirected graphs, it is natu-
ral to ask what can be said in the context of digraphs. The metric dimension of
digraphs was first studied in [5] under a somewhat restrictive definition; for our
definitions, we follow the recent paper [1], in which the algorithmic aspects of
Metric Dimension on digraphs have been addressed. We call oriented graph
a digraph without directed 2-cycles. A directed acyclic digraph (DAG for short)
has no directed cycles at all. The underlying multigraph of a digraph is the one
obtained by ignoring the arc orientations; its underlying graph is obtained from
it by ignoring multiple edges. In a digraph, a strongly connected component is a
subgraph where every vertex is reachable from all other vertices. Note that for
the Metric Dimension problem, undirected graphs can be seen as a special
type of digraphs where each arc has a symmetric arc.

The NP-hardness of Metric Dimension was proven for oriented graphs
in [27] and, more recently, for bipartite DAGs of maximum degree 8 and maxi-
mum distance 4 [1] (the maximum distance being the length of a longest directed
path without shortcuts). A linear-time algorithm for Metric Dimension on ori-
ented trees was given in [1].

1 The definition that we use has been called strong metric dimension in [1], as opposed
to weak metric dimension, where one single vertex may be unreachable from any
resolving set vertex. The former definition seems more natural to us. However, the
term strong metric dimension is already used for a different concept, see [25]. Thus,
to prevent confusion, we avoid the prefix strong in this paper.
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Our Results. We generalize the linear-time algorithm for Metric Dimension on
oriented trees from [1] to all digraphs whose underlying graph is a tree. In other
words, here we allow 2-cycles. This makes a significant difference with oriented
trees, and as a result our algorithm is nontrivial. We then extend the used meth-
ods to solve Metric Dimension in linear time for unicyclic digraphs (digraphs
with a unique cycle). Then, we prove that Metric Dimension can be solved
in time f(t)nO(1) for digraphs of order n and modular-width t (a parameter
recently introduced for digraphs in [31]). This extends the same result for undi-
rected graphs from [2], and is the first FPT algorithm for Metric Dimension

on digraphs. Finally, we complement the hardness result from [1] by showing that
Metric Dimension is NP-hard even for planar triangle-free DAGs of maximum
degree 6 and maximum distance 4. For results marked with (∗), we omit the full
proof due to space constraints; those can be found in [6].

2 Digraphs Whose Underlying Graph is a Tree

For the sake of convenience, we call di-tree a digraph whose underlying graph is
a tree. Trees are often the first non-trivial class to study for a graph problem.
Metric Dimension is no exception to this, having been studied in the first
papers for the undirected [4,14,18,30] and the oriented [1] cases. In the undi-
rected case, a minimum-size resolving set can be found by taking, for each vertex
of degree at least 3 spanning k legs, the endpoint of k − 1 of its legs (a leg is
an induced path spanning from a vertex of degree at least 3, having its inner
vertices of degree 2, and ending in a leaf). In the case of oriented trees, taking all
the sources (a source is a vertex with no in-neighbour) and k−1 vertices in each
set of k in-twins yields a metric basis (two vertices are in-twins if they have the
same in-neighbourhood). Our algorithm, being on di-trees (which include both
undirected trees and oriented trees), will reuse those strategies, but we will need
to refine them in order to obtain a metric basis. The first refinement is of the
notion of in-twins:

Definition 1. A strongly connected component E of a di-tree is an escalator if
it satisfies the following conditions:

1. its underlying graph is a path with vertices e1, . . . , ek (k ≥ 2);
2. there is a unique vertex y �∈ E such that the arc −→ye1 (resp. −→yek) exists;
3. there can be any number (possibly, zero) of vertices z �∈ E such that the arc

−→ekz (resp. −→e1z) exists; for every i ∈ {1, . . . , k − 1} (resp. i ∈ {2, . . . , k}), no
arc −→eiz with z �∈ E exists.

Definition 2. In a di-tree, a set of vertices A = {a1, . . . , ak} is a set of almost-
in-twins if there is a vertex x such that:

1. for every i ∈ {1, . . . , k}, the arc −→xai exists and the arc −→aix does not exist;
2. for every i ∈ {1, . . . , k}, either ai is a trivial strongly connected component

and N−(ai) = {x}, or ai is the endpoint of an escalator and N−(ai) = {x, y}
where y is its neighbour in the escalator.
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Note that regular in-twins are also almost-in-twins. The second refinement
is the following (for a given vertex x in a strongly connected component with C
as an underlying graph, we call dC(x) the degree of x in C):

Definition 3. Given the underlying graph C of a strongly connected component
of a di-tree and a set D of vertices, we call a set S of vertices inducing a path
of order at least 2 in C a special leg if it verifies the four following properties:

1. S has a unique vertex v such that v ∈ D or dC(v) ≥ 3;
2. S has a unique vertex w such that dC(w) = 1, furthermore w �∈ D: w is called

the endpoint of S;
3. all of the other vertices x of S verify dC(x) = 2 and x �∈ D;
4. at least one of the vertices y ∈ S \ {w} has an out-arc −→yz with z /∈ C.

Note that several special legs can span from the same vertex, from which
regular legs can also span. Algorithm 1, illustrated in Fig. 1, computes a metric
basis of a di-tree.

Explanation of Algorithm 1. The algorithm will compute a metric basis B
of a di-tree T in linear-time. The first thing we do is to add every source in T
to B (line 1). Then, for every set of almost-in-twins, we add all of them but one
to B (lines 2–3). Those two first steps, depicted in Fig. 1a, are the ones used to
compute the metric basis of an orientation of a tree [1], and as such they are still
necessary for managing the non-strongly connected components of the di-tree.
Note that we are specifically managing sets of almost-in-twins, which include sets
of in-twins, since it is necessary to resolve the specific case of escalators. The
rest of the algorithm consists in managing the strongly connected components.

For each strongly connected component having C as an underlying graph,
we first identify each vertex x of C that has an in-arc coming from outside

C. Indeed, since x is the “last” vertex of a path coming from outside C, there
are vertices of B “behind” this in-arc (or they can themselves be a vertex in
B), which we will call Bx. However, the vertices in Bx can be “projected” on
x since, T being a di-tree, x is on every shortest path from the vertices of B
“behind”the in-arc to the vertices of C. Hence, we will mark x as a dummy

vertex (lines 5–7, depicted in Figure 1b): we will consider that it is in B for the
rest of this step, and acts as a representative of the set Bx with respect to C.

We then have to manage some specific cases whenever C is a path (lines 8–
17). Indeed, the last two steps of the algorithm do not always work under some
conditions. Those specific conditions are highlighted in the proof.

The last two steps are then applied. First, we have to consider the special

legs defined in Definition 3. The idea behind those special legs is the following:
for every out-arc −→yz with y in the special leg and z outside of C, any vertex in
the metric basis “before” the start of the special leg will not distinguish z and
the next neighbour of y in the special leg. Hence, we have to add at least one
vertex to B for each special leg, and we choose the endpoint of the special leg
(lines 18–19, depicted in Fig. 1c). Finally, we apply the well-known algorithm for
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Algorithm 1: An algorithm computing the metric basis of a di-tree.

Input : A di-tree T .
Output: A metric basis B of T .

1 B ← Every source of T

2 foreach set I of almost-in-twins do

3 Add |I| − 1 vertices of I to B

4 foreach strongly connected component with C as an underlying graph do

5 D ← ∅
6 foreach arc −→uv with v ∈ C and u �∈ C do

7 Add v to D

8 if C is a path with endpoints x and y then

9 if there is no vertex in C ∩ D then

10 if there is no out-arc from C to outside of C then

11 Add x to B

12 else if there is an out-arc from x (resp. y) to outside of C and no
other out-arc from C to outside of C then

13 Add y (resp. x) to B

14 else

15 Add x and y to B

16 else if there is exactly one vertex w in C ∩ D, w is neither x nor y, and
there is no out-arc from w to outside of C then

17 Add x to B

18 foreach special leg L of C do

19 Add the endpoint of L to B

20 foreach vertex of degree ≥ 3 in C from which span k ≥ 2 legs of C that do
not have a vertex in B or in D do

21 Add the endpoint of k − 1 such legs to B

22 return B

computing the metric basis of a tree to the remaining parts of C (lines 20–21,
depicted in Fig. 1d). The special legs and the legs containing a dummy vertex,
being already resolved, are not considered in this part.

Theorem 4 (∗). Algorithm 1 computes a metric basis of a di-tree in linear
time.

3 Orientations of Unicyclic Graphs

A unicyclic graph U is constituted of a cycle C with vertices c1, . . . , cn, and
each vertex ci is the root of a tree Ti (we can have Ti be simply the isolated ci

itself). The metric dimension of an undirected unicyclic graph has been studied
in [26,28,29]. In [26], Poisson and Zhang proved bounds for the metric dimension
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Fig. 1. Illustration of Algorithm 1. For the sake of simplicity, there are only two strongly
connected components, for which we only represent the underlying graph with bolded
edges, so every bolded edge is a 2-cycle. One of the two strongly connected components
is a simple path that does not require any action. Vertices in the metric basis are colored
in red. (Color figure online)

of a unicyclic graph in terms of the metric dimension of a tree we obtain by
removing one edge from the cycle. Sedlar and Škrekovski showed more recently
that the metric dimension of a unicyclic graph is one of two values in [28], and
then the exact value of the metric dimension based on the structure of the graph
in [29]. In this section, we will show that one can compute a metric basis of an
orientation of a unicyclic graph in linear time. The algorithm mostly consists in
using sources and in-twins, with a few specific edge cases to consider.

In this section, an induced directed path
−→
P is the orientation of an induced

path with only one source and one sink which are its two endpoints. It is said
to be spanning from u if u is its source endpoint, and its length is its number of
edges. We also need the following definition:
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Definition 5. Let
−→
U be the orientation of a unicyclic graph. Given an orienta-

tion of a cycle
−→
C of even length n = 2k with two sources, if its sources are ci

and ci+2, its sinks are ci+1 and ci+1+k, and there are, in
−→
C \ {ci, ci+2}, neither

in-twins nor in-arcs coming from outside of
−→
C , we call an induced directed path

−→
P an concerning path if it verifies the three following properties:

1.
−→
P spans from ci+1;

2.
−→
P has length k − 2;

3.
−→
P has no in-arc coming from outside of

−→
P ∪

−→
C ;

Furthermore, if, for every vertex in
−→
P belonging to a nonempty set I of in-twins,

every vertex in I belongs to a concerning path, then, we call
−→
P an unfixable path.

A path that is a concerning path, but not an unfixable path, will be called a
fixable path.

Finally, a vertex might belong both to an unfixable path and to a fixable path;
in this case, the fixable path takes precedence ( i.e., we will consider that the
vertex belongs to the fixable path).

Algorithm 2: An algorithm computing the metric basis of an orientation
of a unicyclic graph.

Input : An orientation
−→
U of a unicyclic graph U .

Output: A metric basis B of
−→
U .

1 Add to B every source of
−→
U

2 Apply the special cases in Algorithm 3

3 foreach set I of in-twins in
−→
U that are not already in B do

4 if all the vertices of I are in concerning paths then

5 Add |I| − 1 vertices of I to B, prioritizing vertices in unfixable paths
6 else

7 Add |I| − 1 vertices of I to B, prioritizing vertices in the cycle
−→
C or in

concerning paths, if there are any

8 return B

Explanation of Algorithm 2. The algorithm will compute a metric basis B of

an orientation
−→
U of a unicyclic graph U in linear-time. The first thing we do is

to add every source in
−→
U to B (line 1). We will also manage the sets of in-twins

in
−→
U (lines 3–7), which we need to do after taking care of some special cases that

might influence the choice of in-twins. When we have the choice, we prioritize
taking in-twins that are in the cycle to guarantee reachability of vertices in the
cycle. Note that those two sets (along with the right priority) are enough in most
cases.
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Algorithm 3: Special cases of Algorithm 2.

1 if the cycle
−→
C has no sink, there is no in-arc coming from outside of C, and no

vertex of C is in a set of in-twin then

2 Add c1 to B

3 if the cycle
−→
C has no sink, there is exactly one in-arc −→uci with u �∈

−→
C , no vertex

cj with j �= i is an in-twin or has in-arc coming from outside of
−→
C , and u has

an out-neighbour v with N−(v) = {u} then

4 Add ci to B

5 if the cycle
−→
C has exactly one source ci then

6 if the one sink is either ci−1 or ci+1, and no vertex cj with j �= i is an

in-twin or has an in-arc coming from outside of
−→
C then

7 Add ci−1 to B

8 else if the one sink is ci+k with k > 1, |
−→
C | ≥ 2k, ci+k−1 (resp. ci+k+1) has

an out-neighbour v such that N−(v) = {ci+k−1} (resp. N−(v) = {ci+k+1}),
no vertex in {ci−1, ci−2, . . . , ci+k} (resp. {ci+1, ci+2, . . . , ci+k}) has an
in-arc, and no vertex in {ci−2, ci−3, . . . , ci+k+1} (resp.
{ci+2, ci+3, . . . , ci+k−1}) is an in-twin then

9 Add ci−1 (resp. ci+1) to B

10 else if the one sink is ci+k with k > 1, |
−→
C | = 2k, ci+k−1 has an

out-neighbour v− such that N−(v−) = {ci+k−1}, ci+k+1 has an

out-neighbour v+ such that N−(v+) = {ci+k+1}, no vertex in
−→
C except ci

has an in-arc, no vertex in
−→
C \ {ci, ci−1, ci+1} is an in-twin, and ci−1 and

ci+1 are not in a set I of in-twins verifying |I| ≥ 3 then

11 Add ci+k to B

12 if the cycle
−→
C has exactly two sources ci and ci+2, |

−→
C | = 2k with k > 2, the two

sinks are ci+1 and ci+1+k, no vertex from
−→
C except ci and ci+2 is an in-twin or

has an in-arc coming from outside of
−→
C , there is at least one unfixable path, and

there is no fixable path then

13 Add ci+1 to B

We then have to manage six specific cases (line 2). Those special cases

are handled in Algorithm 3. The first two special cases occur when the cycle
has no sink. First, if the cycle has no sink, no in-twin, and no arc coming from
outside, then, we have to add one vertex of the cycle to B in order to maintain
reachability (lines 1–2). Then, if the cycle has no sink, only one in-arc −→uci is
coming from outside of it, and there is a vertex v with N−(v) = {u}, then, we
have to add either ci or v to B in order to resolve them (lines 3–4).

The next three special cases occur when the cycle has one sink. First, if there
is only one sink in the cycle, it is an out-neighbour of the source, and no vertex
from the cycle apart from the source is an in-twin or has an in-arc coming from
outside of the cycle, then we need to add one of the out-neighbours of the source
in the cycle to B in order to resolve them (lines 6–7).
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Then, there are two specific cases when the cycle has one sink, both based
on the same principle. Both happen when the source is ci, the sink is ci+k, it
has no in-arc, and the cycle contains at least 2k vertices. In the fourth special
case (lines 8–9), the vertex ci+k−1 has an out-neighbour v verifying N−(v) =
{ci+k−1}. We can see that, if no vertex in the other path from ci to ci+k (the
path going through ci−1, ci−2, . . . , ci+k+1) is in B, then, v and ci+k will not be
resolved. Those vertices can be added to B if they have an in-arc or if they are
an in-twin (they will have priority). However, note that ci−1 might be an in-twin
of ci+1, in which case it should be added to B, resolving the conflict. Hence, if
none of ci−1, ci−2, . . . , ci+k+1 has an in-arc or is an in-twin, then, we can add
ci−1 to B in order to resolve v and ci+k. Note that, in this case, in comparison
to just the sources and the resolution of sets of in-twins, we add one more vertex
to B if ci−1 is the only in-twin of ci+1. The same reasoning can be made with
the symmetric case.

The fifth special case (lines 10–11) occurs when the cycle contains exactly 2k
vertices and both ci+k−1 and ci+k+1 have an out-neighbour (respectively v− and
v+) with in-degree 1: the pairs of vertices (v−, ci+k) and (v+, ci+k) might not
be resolved. We can see that any in-arc or in-twin along a path from ci to ci+k

will resolve ci+k and the v pendant on the other path (thus either fully resolving
those two pairs, or bringing us back to the previous special case), except if ci−1

and ci+1 are the only in-twins in the cycle and if they do not have another in-
twin. Hence, if no vertex from the cycle except ci has an in-arc, no vertex from
the cycle except ci, ci−1 and ci+1 is an in-twin, and ci−1 and ci+1 do not have
another in-twin, then, we need to add at least one more vertex to B in order to
resolve the two pairs of vertices, and adding ci+k does exactly that.

Finally, the sixth special case is more complex (lines 12–13 and consideration

in the choice of in-twins). Assume that the cycle
−→
C is of even length n, has

neither in-twin nor in-arc coming from outside (except the sources), and that

there are two sinks in the
−→
C : one at distance 1 from the sources, and the other

at the opposite end of
−→
C . Now, if the first sink has spanning concerning paths,

then, the second cycle and the endpoints of those concerning paths might not

be resolved, since they are at the same distance (n
2 − 1) of both sources of

−→
C .

Thus, we need to apply a strategy in order to resolve those vertices while trying
to not add a supplementary vertex to B. This is done by considering the two
kinds of concerning paths, and having a priority in the selection of in-twins.

All the other cases of the cycle are already resolved through the sources and
in-twins steps.

Theorem 6 (∗). Algorithm 2 computes a metric basis of an orientation of a
unicyclic graph in linear time.

4 Modular Width

In a digraph G, a set X ⊆ V (G) is a module if every vertex not in X ’sees’ all
vertices of X in the same way. More precisely, for each v ∈ V (G) \ X one of the
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following holds: (i) (v, x), (x, v) ∈ E(G) for all x ∈ X, (ii) (v, x), (x, v) /∈ E(G) for
all x ∈ X, (iii) (v, x) ∈ E(G) and (x, v) /∈ E(G) for all x ∈ X, (iv) (v, x) /∈ E(G)
and (x, v) ∈ E(G) for all x ∈ X. The singleton sets, ∅, and V (G) are trivially
modules of G. We call the singleton sets the trivial modules of G.

The graph G[X] where X is a module of G is called a factor of G. A family
X = {X1, . . . , Xs} is a factorization of G if X is a partition of V (G), and each
Xi is a module of G. If X and Y are two non-intersecting modules, then the
relationship between x ∈ X and y ∈ Y is one of (i)-(iv) and always the same no
matter which vertices x and y are exactly. Thus, given a factorization X , we can
identify each module with a vertex, and connect them to each other according to
the arcs between the modules. More formally, we define the quotient G/X with
respect to the factorization X as the graph with the vertex set X = {X1, . . . , Xs}
and (Xi, Xj) ∈ E(G/X ) if and only if (xi, xj) ∈ E(G) where xi ∈ Xi and xj ∈
Xj . A quotient depicts the connections of the different modules of a factorization
to each other while omitting the internal structure of the factors. Each factor
itself can be factorized further (as long as it is nontrivial, i.e. not a single vertex).
By factorizing the graph G and its factors until no further factorization can be
done, we obtain a modular decomposition of G. The width of a decomposition is
the maximum number of sets in a factorization (or equivalently, the maximum
number of vertices in a quotient) in the decomposition. The modular width of G
is defined as the minimum width over all possible modular decompositions of G,
and we denote it by mw(G). An optimal modular decomposition of a digraph can
be computed in linear time [21]. Metric Dimension for undirected graphs was
shown to be fixed parameter tractable when parameterized by modular width
by Belmonte et al. [2]. We will generalize their algorithm to directed graphs.

The following result lists several useful observations.

Proposition 7 (∗). Let X = {X1, . . . , Xs} be a factorization of G, and let
W ⊆ V (G) be a resolving set of G.

(i) For all x, y ∈ Xi and z ∈ Xj, i �= j, we have distG(x, z) = distG(y, z) and
distG(z, x) = distG(z, y).

(ii) For all x ∈ Xi and y ∈ Xj, i �= j, we have distG(x, y) = distG/X (Xi, Xj).
(iii) For all x, y ∈ V (G) we have either distG(x, y) ≤ mw(G) or distG(x, y) = ∞.
(iv) The set {Xi ∈ X |W ∩ Xi �= ∅} is a resolving set of the quotient G/X .
(v) For all distinct x, y ∈ Xi, where Xi ∈ X is nontrivial, we have distG(w, x) �=

distG(w, y) for some w ∈ W ∩ Xi.
(vi) Let w1, w2 ∈ Xi. If distG(w1, x) �= distG(w2, x), then x ∈ Xi and

distG(w1, x) �= distG(w1, y) or distG(w2, x) �= distG(w2, y) for each y /∈ Xi.

The basic idea of our algorithm (and that of [2]) is to compute metric bases
that satisfy certain conditions for the factors and combine these local solutions
into a global solution. We know that nontrivial modules must contain elements
of a resolving set, as modules must be resolved locally (Proposition 7 (i)). While
combining the local solutions of nontrivial modules, we need to make sure that a
vertex x ∈ Xi, where Xi is nontrivial, is resolved from all y /∈ Xi. If x and y are
resolved as described in Proposition 7 (vi), then we need to do nothing special.
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However, if x ∈ Xi is such that distG(w, x) = d for all w ∈ Wi and a fixed
d ∈ {1, . . . ,mw(G),∞}, there might exist a vertex y /∈ Xi such that Wi does not
resolve x and y. We call such a vertex x d-constant (with respect to Wi). We
need to keep track of d-constant vertices and make sure they are resolved when
we combine the local solutions. There are at most mw(G)+1 d-constant vertices
in each factor due to Proposition 7 (iii). We need to also make sure vertices in
different modules that contain no elements of the solution set are resolved. To do
this, we might need to include some vertices from the trivial modules in addition
to the vertices we have included from the nontrivial modules.

In the algorithm presented in [2], the problems described above are dealt
with by computing values w(H, p, q) for every factor H, where w(H, p, q) is the
minimum cardinality of a resolving set of H (with respect to the distance in G)
where some vertex is 1-constant iff p = true and some vertex is 2-constant iff
q = true (for undirected graphs these are the only two relevant cases). The same
values are then computed for the larger graph by combining different solutions
of the factors and taking their minimum. Our generalization of this algorithm is
along the same lines as the original, however, we have more boolean values to
keep track of. One difference to the techniques of the original algorithm is that
we do not use the auxiliary graphs Belmonte et al. use. These auxiliary graphs
were needed to simulate the distances of the vertices of a factor in G as opposed
to only within the factor. In our approach, we simply use the distances in G.

Theorem 8 (∗). The metric dimension of a digraph G with mw(G) ≤ t can be

computed in time O(t52t2n + n3 + m) where n = |V (G)| and m = |E(G)|.

Proof (sketch). Let us consider one level of an optimal modular decomposition of
G. Let H be a factor somewhere in the decomposition, and let X = {X1, . . . , Xs}
be the factorization of H according to the modular decomposition. For the graph
H (and its nontrivial factors H[Xi]) we denote by w(H,p) the minimum cardi-
nality of a set W ⊆ V (H) such that

(i) W resolves V (H) in G,
(ii) p = (p1, . . . , pmw(G), p∞) where pd = true if and only if H contains a d-

constant vertex with respect to W .

If such a set does not exist, then w(H,p) = ∞. In order to compute the
values w(H,p), we next introduce the auxiliary values ω(p, I, P ). The values
w(H[Xi],p) are assumed to be known for all p and nontrivial modules Xi. Let
the factorization X be labeled so that the modules Xi are trivial for i ∈ {1, . . . , h}

and nontrivial for i ∈ {h+1, . . . , s}. Let I ⊆ {1, . . . , h} and P =
(

ph+1, . . .ps
)T

.
We define ω(p, I, P ) = |I| +

∑s
i=h+1 w(H[Xi],p

i) if the conditions (a)–(d)
hold. In what follows, a representative of a module Xi is denoted by xi.

(a) The set Z = {Xi ∈ X | i ∈ I ∪ {h + 1, . . . , s}} resolves the quotient H/X
with respect to the distances in G.

(b) For d ∈ {1, . . . ,mw(G),∞} and i ∈ {h + 1, . . . , s}, if pi
d = true, then for

each trivial module Xj = {xj} where j /∈ I we have distG(xi, xj) �= d or
there exists Xk ∈ Z \ {Xi} such that distG(xk, xi) �= distG(xk, xj).
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(c) For d1, d2 ∈ {1, . . . ,mw(G),∞} and distinct i, j ∈ {h + 1, . . . , s}, if pi
d1

=

pj
d2

= true, then distG(xi, xj) �= d1, or distG(xj , xi) �= d2, or there exists
Xk ∈ Z \ {Xi, Xj} such that distG(xk, xi) �= distG(xk, xj).

(d) For all d ∈ {1, . . . ,mw(G),∞}, we have pd = true (in p) if and only if for
some i ∈ {1, . . . , h} \ I we have distG(xj , xi) = d for all Xj ∈ Z, or for
some i ∈ {h + 1, . . . , s} we have pi

d = true and distG(xj , xi) = d for all
Xj ∈ Z \ {Xi}.

If these conditions cannot be met, then we set ω(p, I, P ) = ∞.
When we know all the values ω(p, I, P ), we can easily calculate w(H,p) since

w(H,p) = minI,P ω(p, I, P ) (proof omitted due to lack of space).
To conclude the proof, we note that w(G,p) is the minimum cardinality of a

resolving set that gives some vertices the specific distance combinations accord-
ing to p. Thus, the metric dimension of G is min w(G,p) where the minimum is
taken over all p such that p∞ = false. �

5 NP-Hardness for Restricted DAGs

We now complement the hardness result from [1], which was for bipartite DAGs
of maximum degree 8 and maximum distance 4.

Theorem 9 (∗). Metric Dimension is NP-complete, even on planar triangle-
free DAGs of maximum degree 6 and maximum distance 4.

Proof (sketch). We reduce from Vertex Cover on 2-connected planar cubic
graphs, which is known to be NP-complete [23, Theorem 4.1].

Given a 2-connected planar cubic graph G, we construct a DAG G′ as follows.
First of all, note that by Petersen’s theorem, G contains a perfect matching
M ⊂ E(G), that can be constructed in polynomial time. A planar embedding
of G can also be constructed in polynomial time, so we fix one. We let V (G′) =
V (G)

⋃

e=uv∈E(G){ae, be, ce, d
u
e , dv

e}
⋃

e=uv∈M{fe, ge, he}. For every edge e = uv

of G, we add the arcs {
−−→
aebe,

−−→
bece,

−−→
ced

u
e ,

−−→
ced

v
e ,

−−→
udu

e ,
−→
vdv

e}. For every edge e = uv of
the perfect matching M of G, assuming the neighbours of u (in the clockwise
cyclic order with respect to the planar embedding of G) are v, x, y and those of
v are u, s, t, we arbitrarily fix one side of the edge uv to place the vertices fe, ge

and he (say, on the side that is close to the edges ux and vt). We add the arcs

{
−−→
fege,

−−→gece,
−−→
gehe,

−−→
heu,

−→
hev,−−−→cecuy,−−−→cecvs,

−−−→
hecux,

−−−→
hecvt}.

Using the embedding of G, G′ can also be drawn in a planar way, it has
maximum degree 6 (the vertices of type ce are of degree 6), has no triangles, and
no shortest directed path of length 4.

We claim that G has a vertex cover of size at most k if and only if G′ has
metric dimension at most k + |E(G)|+ |M | (proof omitted due to lack of space).

�
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6 Conclusion

Metric Dimension can be solved in polynomial time on outerplanar graphs,
using an involved algorithm [7]. Can one generalize our algorithms for trees
and unicyclic graphs to solve Metric Dimension for directed (or at least,
oriented) outerplanar graphs in polynomial time? Extending our algorithm to
cactus graphs already seems nontrivial.

Is Metric Dimension NP-hard on planar bipartite subcubic DAGs?
Also, it would be interesting to see which hardness results known for Metric

Dimension of undirected graphs also hold for DAGs, or for oriented graphs.
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