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Abstract. A monitoring edge-geodetic set, or simply an MEG-set, of a
graph G is a vertex subset M ⊆ V (G) such that given any edge e of G,
e lies on every shortest u-v path of G, for some u, v ∈ M . The moni-
toring edge-geodetic number of G, denoted by meg(G), is the minimum
cardinality of such an MEG-set. This notion provides a graph theoretic
model of the network monitoring problem.

In this article, we compare meg(G) with some other graph theoretic
parameters stemming from the network monitoring problem and provide
examples of graphs having prescribed values for each of these parameters.
We also characterize graphs G that have V (G) as their minimum MEG-
set, which settles an open problem due to Foucaud et al. (CALDAM
2023). We also provide a general upper bound for meg(G) for sparse
graphs in terms of their girth, and later refine the upper bound using
the chromatic number of G. We examine the change in meg(G) with
respect to two fundamental graph operations: clique-sum and subdivi-
sions. In both cases, we provide a lower and an upper bound of the possi-
ble amount of changes and provide (almost) tight examples. Finally, we
prove that the decision version of the problem of finding meg(G) is NP-
complete even for the family of 3-degenerate, 2 apex graphs, improving
the existing result by Haslegrave (Discrete Applied Mathematics 2023).
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1 Introduction

In the field of network monitoring, the networking components are monitored
for faults and evaluated to maintain and optimize their availability. In order
to detect failures, one of the popular methods for such monitoring processes
involves setting up distance probes [2–4,13]. At any given time, a distance probe
can measure the distance to any other probe in the network. If there is any failure
in the connection, then the probes should be able to detect it as there would be a
change in the distances between the components. Such networks can be modeled
by graphs whose vertices represent the components and the edges represent the
connections between them. We select a subset of vertices of the graph and call
them probes. This concept of probes that can measure distances in graphs has
many real-life applications, for example, it is useful in the fundamental task
of routing [10,15], or using path-oriented tools to monitor IP networks [4], or
problems concerning network verification [2,3,5]. Based on the requirements of
the networks, there have been various related parameters that were defined on
graphs in order to study the problem and come up with an effective solution.
To name a few, we may mention the geodetic number [8,9,12,16], the edge-
geodetic number [1,25], the strong edge-geodetic number [18,22], the distance-
edge monitoring number [13], and the monitoring edge-geodetic number [14,17].
The focus of this article is on studying the monitoring edge-geodetic number of
a graph. We deal with simple graphs, unless otherwise stated.

Note: We have omitted some proofs due to space constraints.

1.1 Preliminaries

Given a graph G, a monitoring edge-geodetic set of G, or simply, an MEG-set of
a graph G is a vertex subset M ⊆ V (G) that satisfies the following: given any
edge e in G, there exists u, v ∈ M such that e lies on all shortest paths between
u and v. In such a scenario, we say that the vertices u, v monitor the edge e.
The monitoring edge-geodetic number, denoted by meg(G), is the smallest size
of an MEG-set of G.

There are some other related parameters whose definitions are relevant in
our context. For convenience, we list them below.

– A geodetic set of a graph G is a vertex subset S ⊆ V (G) such that every vertex
of G lies on some shortest path between two vertices u, v ∈ S. The geodetic

number, denoted by g(G), is the minimum |S|, where S is a geodetic set of
G. The concept was introduced by Harary et al. in 1993 [16] and received
considerable attention since then, both from the structural side [8,9,12] and
from the algorithmic side [6,20].

– An edge-geodetic set of a graph G is a vertex subset S ⊆ V (G) such that every
edge of G lies on some shortest path between two vertices u, v ∈ S. The edge-

geodetic number, denoted by eg(G), is the minimum |S|, where S is an edge-
geodetic set of G. This was introduced in 2003 by Atici et al. [1] and further
studied from the structural angle [25] as well as algorithmic angle [7,11].
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– A strong edge-geodetic set of a graph G is a vertex subset S ⊆ V (G) and
an assignment of a particular shortest u-v path Puv to each pair of distinct
vertices u, v ∈ S such that every edge of G lies on Puv for some u, v ∈ S. The
strong edge-geodetic number, denoted by seg(G), is the minimum |S|, where
S is a geodetic set of G. This concept was introduced in 2017 by Manuel et
al. [22]. See [18] for some structural studies, and [11] for some algorithmic
results.

1.2 Motivation of Our Results and Organization of the Paper

– In Sect. 2, we explore the relation between the parameters geodetic num-
ber, edge-geodetic number, strong edge-geodetic number, and monitoring
edge-geodetic number. As one may have noticed, the above-mentioned graph
parameters are closely related and have a natural relation of inclusion. In
this section, we construct examples of graphs having prescribed values of the
above-mentioned parameters.

– In Sect. 3 we answer an open question posed by Foucaud, Krishna and Rama-
subramony Sulochana [14] on characterizing graphs whose minimum MEG-set
is the entire vertex set. We provide such a characterization by proving a nec-
essary and sufficient condition of when a vertex v is part of every MEG-set of
graph G. Additionally, we also prove a sufficient condition of when a vertex
is never part of any minimum MEG-set of the graph.

– In Sect. 4, we provide upper bounds on meg(G), where G is a sparse graph.
Our upper bound is a function of the order of G, and its girth. A refinement
of the upper bound is provided using the chromatic number of G.

– In Sect. 5, we explore the effect of two fundamental graph operations, namely,
the clique-sum and the subdivision on meg(G). We show that meg(G) is both
lower and upper bounded by functions related to the operations and that the
bounds are (almost) tight.

– In Sect. 6, we answer another open question that was posed in [14] regarding
the computational complexity of finding meg(G). The general question was
recently settled by Haslegrave [17], and we give an alternative proof. In fact,
our result is stronger, as we show that the decision version of the problem of
finding meg(G) is NP-complete even for the restricted class of 3-degenerate,
2-apex graphs.

– In Sect. 7, we share our concluding remarks which also contain suggestions
for future works in this direction.

2 Relation Between Network Monitoring Parameters

From the definitions, notice that any strong edge-geodetic set is also an edge-
geodetic set, and any edge-geodetic set is also a geodetic set (if the graph has no
isolated vertices). Moreover, every MEG-set M of a graph is indeed a strong edge-
geodetic set, as every edge of G is contained in all the shortest paths between
some pair of vertices in M . Thus, one can observe the following relations [14],

g(G) ≤ eg(G) ≤ seg(G) ≤ meg(G).
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Example 1. Notice that, for any complete graph Kn on n ≥ 2 vertices, the values
of all the parameters are equal to n. That is, equality holds in all the inequalities
of the above chain of inequalities.

On the other hand, Fig. 1 gives an example of a graph where all the inequali-
ties of the above chain of inequalities are strict. To be specific, in this particular
example, the values of the parameters increase exactly by one in each step. ⊓⊔
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Fig. 1. A graph G with 2 = g(G) < 3 = eg(G) < 4 = seg(G) < 5 = meg(G). Note
that, a minimum geodetic set of G is {v3, v5}, a minimum edge-geodetic set of G is
{v1, v2, v4}, a minimum strong edge-geodetic set of G is {v1, v2, v3, v4}, and a minimum
MEG-set of G is {v1, v2, v3, v4, v5}.

It is natural to ask the question, given four positive integers a, b, c, d satisfying
2 ≤ a ≤ b ≤ c ≤ d, is there a graph Ga,b,c,d such that we have g(Ga,b,c,d) = a,
eg(Ga,b,c,d) = b, seg(Ga,b,c,d) = c, and meg(Ga,b,c,d) = d? We provide a positive
answer to this question except for some specific cases. The rest of the section
deals with the construction of such graphs.

Theorem 1. For any positive integers 4 ≤ a ≤ b ≤ c ≤ d satisfying d �= c + 1,
there exists a connected graph Ga,b,c,d with g(G) = a, eg(G) = b, seg(G) = c and

meg(G) = d.

Proof. We begin the proof by describing the construction of Ga,b,c,d.

Construction of Ga,b,c,d: In the first phase of the construction, we start with
a K2,2+b−a, where the partite set of size two has the vertices x1 and y, and
the partite set of size (2 + b − a) has the vertices z1, z2 and w1, w2, · · · , wb−a.
Moreover, we add some edges in such a way that the set

W = {w1, w2, · · · , wb−a}

becomes a clique. We also add the edge z2w1.
In the second phase of the construction, we add (c − b + 1) parallel edges

between the vertices z1 and z2. After that we subdivide (once) each of the above-
mentioned parallel edges and name the degree two vertices created due to the
subdivisions as v1, v2, · · · , vc−b+1. The set of these vertices created by the sub-
divisions is given by

V = {v1, v2, · · · , vc−b+1}.
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Fig. 2. The structure of Ga,b,c,d.

In the third phase of the construction, we add (a − 3) pendant neighbors
u1, u2, · · · , ua−3 to y, and one pendant neighbor ua−2 to z1. Moreover, we attach
a long path x1x2 · · · xrua−1 with the vertex x1, where ua−1 is a pendant vertex
and r = 3⌊d−c

2 ⌋+1. Next we will add a false twin x′
3i to the vertices of the form

x3i for i ∈ {1, 2, · · · , ⌊d−c
2 ⌋}. Additionally, if (d − c) is odd, then we will add

another twin x′′
3 to the vertex x3. For convenience,

U = {u1, u2, · · · , ua−1}

will denote the set of all pendents and

X = {x3i, x
′
3i|i = 1, 2, · · · , ⌊

d − c

2
⌋} ∪ {x′′

3}.

Note that, x′′
3 exists in X if and only if (d − c) is odd. This completes the

description of the construction of the graph Ga,b,c,d (see Fig. 2 for a pictorial
reference).

As U is the set of all pendants, we know that it will be part of any geodetic
set, edge-geodetic set, strong edge-geodetic set, and monitoring edge-geodetic
set [14]. However, the vertices of U cannot cover the vertices of V using shortest
paths between the vertices of U . Therefore, we need at least one more vertex to
form a geodetic set. As U ∪ {z2} is a geodetic set of G, we can infer that

g(Ga,b,c,d) = (a − 1) + 1 = a.

Next, observe that the vertices of U are not able to cover any edge of the
clique W using shortest paths between the vertices of U . Moreover, the only way
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to monitor those edges is by taking W in our edge-geodetic set. Observe that
U ∪ W is still not an edge-geodetic set as they are not able to cover the edge
z2w1 by any shortest path between the vertices of U ∪ W . On the other hand,
U ∪ W ∪ {z2} is an edge-geodetic set. Therefore,

eg(Ga,b,c,d) = (a − 1) + 1 + (b − a) = b.

We know that the vertices of U is in any strong edge-geodetic set. Moreover,
note that, the vertices of W must be in any strong edge-geodetic set to cover
the edges of the clique W . Now, let us see how we can cover the edges of the
(c − b + 1) 2-paths between z1, z2, having the vertices of V as their internal
vertex. First of all, if we do not take z2 in our strong edge-geodetic set, we have
to take all vertices of V . Second of all, if we take z2 in our strong edge-geodetic
set, then we have to take either (at least) all but one vertices of V , or all but
two vertices of V along with z1 in the strong edge-geodetic set. That means, we
need to take at least (c − b + 1) additional vertices in the strong edge-geodetic
set. Moreover, the set U ∪ W ∪ V is indeed a strong edge-geodetic set. Thus,

seg(Ga,b,c,d) = (a − 1) + (b − a) + (c − b + 1) = c.

Finally for any MEG-set, we have to take the vertices of U (as they are
pendants), the vertices of W (to monitor the edges of the clique W ), the vertices
of X (as they are twins [14]). However, even with these vertices, we cannot
monitor the edges of the (c − b + 1) 2-paths between z1, z2, having the vertices
of V as their internal vertex. To do so, we have to take all vertices of V in our
MEG-set. However, the set U ∪ W ∪ V ∪ X is an MEG-set. Hence,

meg(Ga,b,c,d) = (a − 1) + (b − a) + (c − b + 1) + 2⌊
d − c

2
⌋ + ǫ = d,

where ǫ = 0 (resp., 1) if (d−c) is (even (resp., odd), and d �= c+1. This completes
the proof. ⊓⊔

3 Conditions for a Vertex Being in All or No Optimal

MEG-sets

In their introductory paper on monitoring edge-geodetic sets, Foucaud, Krishna
and Ramasubramony Sulochana [14] asked to characterize the graphs G having
meg(G) = |V (G)|. We provide a definitive answer to their question, and to
this end, we give a necessary and sufficient condition for a vertex to be in any
MEG-set of a graph.

Theorem 2. Let G be a graph. A vertex v ∈ V (G) is in every MEG-set of G if

and only if there exists u ∈ N(v) such that any induced 2-path uvx is part of a

4-cycle.
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Proof. For the necessary condition, let us assume that a vertex v ∈ V (G) is in
every MEG-set of G. We have to prove that there exists u ∈ N(v), such that
any induced 2-path uvx is part of a 4-cycle. We prove it by contradiction.

Suppose for every u ∈ N(v), there exists an induced 2-path uvx such that
uvx is not part of a 4-cycle. As uvx is an induced 2-path, observe that u and
x are not adjacent, also as uvx is not part of a 4-cycle, we get, d(u, x) = 2 and
the only shortest path between u and x is via v. This implies if we take u and x

in our MEG-set S, then xv and uv are monitored. Hence, all the neighbors of v

can monitor all the edges incident to v. Therefore, in particular, V (G) \ {v} is a
MEG-set of G. This is a contradiction to the fact that v is in every MEG-set of
G. Thus, the necessary condition for a vertex v to be part of every MEG-set of
G is proved according to the statement.

For the sufficient condition, let us assume that for some vertex v of G, there
exists u ∈ N(v) such that any induced 2-path uvx is part of a 4-cycle. We need to
prove that v is in every MEG-set. Thus, it is enough to show that S = V (G)\{v}
is not an MEG-set of G. Therefore, we would like to find an edge which is not
monitored by the vertices of S.

We first observe that if there does not exist any induced 2-path of the form
uvx, then v must be a simplicial vertex, and thus we know that [14] v belongs
to every MEG-set of G. On the other hand, if there exists an induced 2-path of
the form uvx, then there are at least two shortest paths between u and x. In
particular, u and x cannot monitor the edge uv. As x is arbitrary, the vertices
of S are not able to monitor the edge uv which implies that v has to be part of
every MEG-set. This concludes the proof. ⊓⊔

Corollary 1. Let G be a graph. meg(G) = n if and only if for every v ∈ V (G),
there exists u ∈ N(v) such that any induced 2-path uvx is part of a 4-cycle.

Proof. The proof directly follows from Theorem 2. ⊓⊔

Observe that the condition for meg(G) = n can be verified in polynomial
time due to Corollary 1.

Corollary 2. If G �= K2 is a connected graph of order n and girth g ≥ 5, then

meg(G) ≤ n − 1.

Proof. Notice that, if a vertex v of G satisfies the condition of Theorem 2, then
either v has to be part of a 4-cycle, or v has to be simplicial. As G has girth
g ≥ 5, the only way for v to satisfy the condition is by being a pendant vertex.
If all vertices of G are pendant vertices, then G = K2, which is not possible.
Thus, not every vertex of G can satisfy the condition of Theorem 2. Hence,
meg(G) ≤ n − 1. ⊓⊔

We also give a sufficient condition for when a vertex is never part of any
minimum MEG-set of a graph. This is a useful tool to eliminate such vertices
while finding a minimum MEG-set of a given graph.
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Proposition 1. Let G be a graph with a path v0v1 · · · vk−1vk whose internal

vertices have degree two, v0 has degree at least two, and vk has degree one. Then

the vertices v0, v1, · · · , vk−1 are never part of any minimum MEG-set.

Proof. Firstly, vk is part of any MEG-set of G as it is a simplicial vertex [14].
Let P be a shortest path with one of its end points being vi, for some i ∈
{0, 1, · · · , k − 1}, while the other end point is w (say). Moreover, assume that
vj is not a vertex of the path P , for any value of j ∈ {i + 1, i + 2, · · · , k − 1}.
Observe that, the path P ′ obtained by augmenting the path vi+1vi+2 · · · vk to P

is also a shortest path between w and vk. Thus, in a minimum MEG-set of G,
the inclusion of any of the vertices v0, v1, · · · , vk−1 is redundant. ⊓⊔

Corollary 3. Let G �= K2 be connected graph. Let v be a vertex of G having a

pendant neighbor u. Then v is never part of any minimum MEG-set of G.

Proof. The proof follows directly from Proposition 1 as a special case where
v = v0 and u = vk. ⊓⊔

Remark 1. Due to Proposition 1, for a connected graph G �= K2, every vertex
of degree one must be part of any MEG-set, and its neighbor must not be a part
of any MEG-set. Therefore, if meg(G) = |V (G)|, then G must have minimum
degree at least 2.

4 Sparse Graphs

Due to Proposition 1, it makes sense to study connected graphs with minimum
degree 2 only. In Corollary 2 we noted that meg(G), if G has girth 5 or more,
cannot be equal to the order of G. Therefore, it is natural to wonder whether
meg(G) will become even smaller (with respect to the order of G) if G becomes
sparser. One way to consider sparse graphs is to study graphs having high girth.

Theorem 3. Let G be a connected graph having minimum degree at least 2. If

G has n vertices and girth g, then meg(G) ≤ 4n
g+1 .

Proof. Let G be a connected graph having minimum degree at least 2, having
n vertices, and girth g. We construct a vertex subset M of G recursively, and
claim that M is an MEG-set of G. To begin with, we initialize M by picking
an arbitrary vertex of G. Next, we add an arbitrary vertex to M that is at a
distance at least g−3

4 from each vertex of M . We repeat this process until every

vertex of V (G) \ M are at a distance strictly less than g−3
4 from some vertex of

M .
Next, we will show that M is indeed an MEG-set of G. Let uv be an arbitrary

edge of G. Assume without loss of generality that there exists u′ ∈ M such that
d(u, u′) ≤ g−3

4 and d(v, u′) > d(u, u′). Denote v′ the vertex of M closest to v that
is not u′. Let P1 be a shortest path connecting u′ and u, and P2 be a shortest
path connecting v and v′. Let P be the path obtained by augmenting the path
P1, the edge uv, and the path P2. Note that the length of P is at most g−1

2 ,
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otherwise, there would be a vertex of P at distance more than g−3
4 of any vertex

of M . Moreover, if there exists any other (vertex disjoint) path P ′ connecting
u and v of length g−1

2 or less, then it will contradict the fact that G has girth
g. That means, P is a shortest path between u′ and v′, and u′, v′ monitors the
edge uv. This implies that M is an MEG-set of G.

Now we are left with counting the cardinality of M . As G is a connected graph
with minimum degree at least 2, each vertex v of M is part of a cycle. Thus, v

has at least 2 × g−3
8 = g−3

4 vertices at distance at most g−3
8 . Let us denote the

set of these vertices by Sv. Observe that the vertices of Sv do not belong to M

as they are too close (within a distance of g−3
8 to v ∈ M . Furthermore, notice

that, for two vertices u, v ∈ M , we must have Su ∩ Sv = ∅, as u and v are at
distance at least g−3

4 . Therefore, we must have

n = |V (G)| ≥ |M | + |M |

(
g − 3

4

)
=⇒ |M | ≤

4n

g + 1
.

This completes the proof. ⊓⊔

Remark 2. As girth can be considered as a measure of the sparseness of a graph,
the above result shows that meg(G) has a stricter upper bound as the sparseness
(in terms of the girth) of G increases. However, the idea used in the proof is quite
general and it may be possible to provide a better bound using the same idea
for specific families of graphs having more structural information.

The following theorem proves that meg(G) of a sparse graph G is upper
bounded by a function of its chromatic number χ(G).

Theorem 4. Let G be a connected graph with girth at least 5 having mini-

mum degree at least 2. If G has n vertices, and chromatic number χ(G), then

meg(G) ≤ n
(

χ(G)−1
χ(G)

)
.

Using Theorem 4, we provide a corollary for graphs that have pendant ver-
tices.

Corollary 4. Let G be a graph with girth at least 5, and ℓ pendant vertices. If G

has n vertices, and chromatic number χ(G), then meg(G) ≤ n
(

χ(G)−1
χ(G)

)
+ ℓ

χ(G) .

5 Effects of Clique-Sum and Subdivisions

Let G1 and G2 be two graphs having cliques C1 and C2 of size k, respectively. A
k-clique-sum of G1 and G2, denoted by G1 ⊕k G2, is a graph obtained by gluing
the vertices of C1 to the vertices C2 (each vertex of C1 is glued to exactly one
vertex of C2), and then deleting one or more edges of the glued clique.

This particular operation between two graphs is a fundamental operation in
graph theory and is an important notion in the context of the illustrious graph
structure theorem [19,23]. We investigate the changes in meg(G) with respect
to the clique-sum operation.
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Theorem 5. Let G1 ⊕k G2 be a k-clique-sum of the graphs G1 and G2 for some

k ≥ 2. Then we have,

meg(G1) + meg(G2) − 2k ≤ meg(G1 ⊕k G2) ≤ meg(G1) + meg(G2).

Moreover, both the lower and the upper bounds are tight.

Let G be a graph. We obtain the graph Sℓ
G by subdividing each edge of G

exactly ℓ times. The graph operation subdivision is also a fundamental graph
operation, integral in the theory of topological minors, which can be used for the
specification of a graph. Moreover, subdivision can be considered as the inverse
operation to edge contraction, which is another fundamental notion that plays
an instrumental role in the famous graph minor theorem [21,24]. The following
result proves a relation between meg(G) and meg(Sℓ

G).

Theorem 6. For any graph G and for all ℓ ≥ 2, we have

1 ≤
meg(G)

meg(Sℓ
G)

≤ 2.

Moreover, the lower bound is tight, and the upper bound is asymptotically tight.

Remark 3. We have observed that meg(Sℓ
G) = k + 1 when G = Pk�P2.

6 Computational Complexity

It is known that, for a fixed integer k, checking whether a graph has an MEG-set
of size at most k can be done in polynomial time [17]. In the same paper, it is
shown that the decision version of the problem is NP-complete, which settled an
open question asked in [14].

Theorem 7 ([17]). The decision problem of determining for a graph G and a

natural number k whether meg(G) ≤ k is NP-complete.

In this section, we will improve this result by showing NP-completeness for
the restricted family of 3-degenerate, 2-apex graphs. Recall that, a graph is k-

degenerate if every subgraph of it has a vertex of degree at most k and a graph
is k-apex if it contains a set of at most k vertices whose removal yields a planar
graph.

In Theorem 7, the reduction was from the Boolean satisfiability problem,
whereas, in our proof, we reduce from the Vertex Cover problem (formally
defined below). A vertex cover of a graph G is a vertex subset S ⊆ V (G) such
that every edge e in G has at least one end point in S. We formally state the
decision version of the problem of finding the vertex cover of a graph in the
following.
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Vertex Cover

Instance: A graph G, an integer k.
Question: Does G have a vertex cover of size at most k?

It is well known that the decision version of the problem is NP-complete. This
problem remains NP-complete even when restricted to the family of sub-cubic
planar graphs with degeneracy 2 [26]. We state this result as a theorem below.

Theorem 8 ([26]). The Vertex Cover problem is NP-complete even for sub-

cubic planar graphs having degeneracy 2.

Next, let us formally present the decision version of the problem of finding
meg(G) ≤ k of a graph G, where both G and k are given as inputs.

MEG-set

Instance: A graph G, an integer k.
Question: Does G have meg(G) ≤ k?

We are now ready to state the main result of this section.

Theorem 9. The MEG-set problem is NP-complete even for 3-degenerate, 2-
apex graphs.

We prove Theorem 9 by giving a reduction from the Vertex Cover prob-
lem, that is, by constructing a graph Ĝ and there by proving the equivalence
of finding meg(Ĝ) and finding τ(G), where τ(G) is the cardinality of a mini-
mum vertex cover of G. Note that, in particular, this improves on the result by
Haslegrave [17] which was for general graphs.

Construction of Ĝ: Given a graph G, we describe the construction of a new
graph Ĝ based on the structure of G in the following. For each edge e = uv ∈
E(G), we add a 5-path uu′e′v′v starting from u and ending at v and add three
pendant vertices u′′, e′′, v′′ for each of the intermediate vertices u′, e′, v′ having
degree 2, respectively. Now, add a common neighbor y for all these u′, v′’s in
the newly added paths. After that, we add a pendant vertex y∗ to the vertex y.
Finally, we add a universal vertex x to all the (original) vertices of the graph

G, and add a pendant vertex x∗ to x. We denote the so-obtained graph by Ĝ.
We refer to Fig. 3 for a pictorial reference demonstrating how one edge of G

transforms in Ĝ.

We now prove some key lemmas that will help us prove Theorem 9.

Lemma 1. The new edges of Ĝ, that is, the edges from the set E(Ĝ) \ E(G),

are monitored by the set of all pendant vertices of Ĝ.

Proof. Let e = uv be an edge of G. Then notice that the pendant vertices of
the type u′′ and v′′ have a unique shortest path of length 4 connecting them,
namely, u′′u′e′v′v′′. This path monitors all the edges on this path, that is, edges
of the form u′′u′, u′e′, e′v′ and v′v′′.
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Fig. 3. A demonstration of the construction of Ĝ.

Moreover, between the pendant vertices of the type u′′ and x∗ (resp., y∗),
there exists a unique shortest path of length 4 (resp., 3), namely, u′′u′uxx∗ (resp.,
u′′u′yy∗), monitoring the edges of the type u′u, ux (resp., u′y), and the edge xx∗

(resp., yy∗).
Finally, observe that the edges of the form e′′e′ are monitored by the vertices

u′′, e′′ via the unique shortest path u′′u′e′e′′ connecting them. ⊓⊔

Lemma 2. Let G be a graph with n vertices and m edges. If τ(G) ≤ k, then

meg(Ĝ) ≤ k + 3m + 2.

Proof. Let S be a vertex cover of G having k vertices. Let Z be the set of all
pendants of Ĝ. We want to show that |Z| = 3m + 2, and S ∪ Z is an MEG-set

of Ĝ.
First observe that, for each edge e = uv of G, there are three pendant vertices

u′′, e′′, v′′. This amounts to 3m pendants in Ĝ. Moreover, counting the pendant
neighbors x∗, y∗ of x, y, respectively, we have 3m + 2 pendant vertices in total,
that is, |Z| = 3m + 2.

By Lemma 1, the pendant vertices are enough to monitor all the edges of
Ĝ, except, maybe, the (original) edges of G. Let us suppose that the vertex u

is in our MEG-set. An immediate consequence of having u and the set Z of all
pendants in an MEG-set is that, between u and the pendant vertex v′′, there is a
unique shortest path uvv′v′′, which monitors the edge uv. That means, a vertex
u and the vertices of Z, monitors all the edges incident to v. Thus, S∪Z monitors
every edge of Ĝ, and hence, meg(Ĝ) ≤ |S ∪ Z| ≤ |S| + |Z| ≤ 3m + k + 2. ⊓⊔

Lemma 3. Let G be a graph and let Z be the set of pendant vertices in Ĝ. If

M is a minimum MEG-set of Ĝ, then S = M \ Z ⊆ V (G), and S is a vertex

cover of G. Moreover, |S| = meg(Ĝ) − (3m + 2).

Proof. Given a minimum MEG-set M of Ĝ, we know that all the pendant vertices
must belong to M , that is, Z ⊆ M . As, from the proof of Lemma 2, we know
that |Z| = 3m + 2, the moreover part of the proof follows assuming the main
portion of the statement is true.

Thus, now it remains to prove that S = M \ Z ⊆ V (G), and S is a vertex
cover of G. By Corollary 3 we know that the neighbors of the pendent vertices
cannot be part of any minimum MEG-set. Therefore, S ⊆ V (G) as any vertex
which does not belong to V (G) is either a pendant or adjacent to a pendant

in Ĝ.
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Next, we are going to prove that S must be a vertex cover. Observe that,
two pendant vertices of Ĝ cannot monitor any edge of G. Moreover, as any two
vertices of G are connected by a 2-path through the vertex x, to monitor an
edge e = uv ∈ E(G) in Ĝ using two vertices from V (G), the only option is to
consider the vertices u and v. On the other hand, from what we had noticed in
the proof of Lemma 2, we know that, any vertex u ∈ V (G), along with the set
Z of pendant vertices can monitor every edge incident to v in G. Hence, S must
contain at least one end point of any edge of G. Thus, S is a vertex cover of G. ⊓⊔

Lemma 4. Let G be a 2-degenerate sub-cubic planar graph. Then Ĝ is a 3-
degenerate, 2-apex graph.

Finally, we are ready to prove the main result of this section.

Proof of the Theorem 9: It is easy to verify (in polynomial time), whether a
given set M is an MEG-set. This can be done by checking the distances between
pairs of vertices in the set, and then checking (and comparing) the distances
after removing an edge; and repeating the same for every edge. Therefore, the
problem is in NP.

However, we have shown using Lemma 2 and Lemma 3 that finding a min-
imum MEG-set for Ĝ is equivalent (up to polynomial reduction) to finding a
minimum vertex cover for G. As, it is well known that the minimum vertex cover
problem is NP-Hard [26] even when restricted to the family of 2-degenerate sub-
cubic planar graphs, using Lemma 4, it follows that the MEG-set problem is
NP-complete even for the class of 3-degenerate, 2-apex graphs. ⊓⊔

7 Concluding Remarks

(1) In Sect. 2, we gave examples of graphs Ga,b,c,d which attains g(Ga,b,c,d) = a,
eg(Ga,b,c,d) = b, seg(Ga,b,c,d) = c, and meg(Ga,b,c,d) = d for “almost” all
2 ≤ a ≤ b ≤ c ≤ d. However, for some of the combinations of a, b, c, d we
still do not know if an example exists or not. One problem to consider is to
decide exactly for which prescribed values of a, b, c, d, such a graph Ga,b,c,d

exists, along with finding an explicit example.
(2) We have proved a sufficient condition for a vertex not to be part of any

minimum MEG-set. An open question is to find a necessary and sufficient
condition for a vertex not to be in any minimum MEG-set.

(3) In Sect. 5, we deal with the effects on meg(G) with respect to some funda-
mental graph operations like clique-sums, and subdivisions. It will be inter-
esting to perform similar studies with respect to other fundamental graph
operations such as vertex deletion, edge deletion, edge contraction, etc.

(4) We have proved that the problem of finding a minimum MEG-set even
for 2-apex graphs is NP-complete. Hence a natural question is to find the
computational complexity of MEG-set for planar graphs. One can ask this
question for other graph families as well.
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