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Abstract. In the Geodetic Set problem, an input is a digraph . G and 
integer . k, and the objective is to decide whether there exists a v ertex
subset . S of size . k such that any vertex in .V (G) \ S lies on a shortest 
path between two vertices in . S. The problem has been studied on undi-
rected and directed graphs from both algorithmic and graph-theoretical 
perspectives. 

We focus on directed graphs and p rove that Geodetic Set admits 
a polynomial-time algorithm on ditrees, t hat is, digraphs with possible
.2-cycles when the underlying undirected graph is a tree (after deleting 
possible parallel edges). This positive result naturally leads us to inves-
tigate cases where the underlying undirected graph is ‘close to a tree’. 

Towards this, we show that Geodetic Set on digraphs without .2-
cycles and whose underlying undirected graph has feedback edge set 
number .fen, can be solved in time .2O(fen) · nO(1), where . n is the num-
ber of vertices. To complement this, we prove that the problem remains 
NP-hard  on  DAGs  (which  do  not  contain .2-cycles) even when the under-
lying undirected graph has constant feedback vertex set number. Our 
last result significantly strengthens the result of Araújo and Arraes [Dis-
crete Applied Mathematics, 2022] that the problem is NP-hard  on  DAGs  
when the underlying undirected graph is either bipartite, cobipartite or
split.
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1 Introduction 

Harary, Loukakos, and Tsuros [25] introduced the concept of a geodetic set , 
defined as a set . S of vertices of an undirected graph .G such that every ver-
tex o f .G lies on some geodesic (shortest path) between two vertices of . S.  Since  
then, the problem of computing a geodetic set has been extensively studied, both 
from the structural and algorithmic perspectives. It has become a central topic 
in geodesic convexity in graphs [18,29], and has found applications in diverse 
settings. We refer the reader to [17] and the references therein for a represen-
tative list of applications. For example, computing a minimum-size geodetic set 
can be seen as a network design problem, where one seeks to determine optimal 
locations of public transportation hubs in a road network [5]. 

Let Geodetic Set be the corresponding algorithmic problem of determin-
ing a smallest possible geodetic set. Harary, Loukakos, and Tsuros [25]  proved  
that the problem is NP-hard. See [16] for the earliest rigorous proof. Later 
works established that the problem remains NP -hard even for restricted g raph
classes [4–6,15,17]. This has motivated the study of algorithms for structured 
graph classes [1,4,6,15–17,28]. To cope with this hardness, the problem has also 
been investigated through the lenses of parameterized complexity [4,20,21,26,30] 
and approximation algorithms [5,12]. More recently, interest in this problem has 
been rejuvenated, as its ‘metric-based nature’ has led to interesting conditional 
lower bounds in parameterized complexity [20,22,30] and enumeration complex-
ity [3], together with related problems of a similar ‘metric-based’ nature. Here, 
we use the term ‘metric-based graph problem’ as an umbrella notion for graph 
problems whose solutions are defined u sing a graph metric, for example, shortest 
distance between two v ertices in the case of Geodetic Set.

While the majority of studies on the Geodetic Set problem focuses on 
undirected graphs, the problem has also been investigated for directed graphs 
(digraphs). Most of the existing work on geodetic sets in digraphs has concen-
trated on non-algorithmic questions like determining the minimum and max-
imum values of these sets, as well as the range of possible values. See [7– 
9,14,19,27]  and  the  book  [29, Chapter 6]. More recently, Araújo and Arraes [2] 
initiated the algorithmic study of the Geodetic Set problem for digraphs. 
Before presenting their results, we formally define the problem addressed in this 
article and compare the results for undirected and directed graphs.
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Geodetic Set 
Input: A directed graph D and  an  integer  k. 
Task: Determine whether there exists a subset S ⊆ V (D) of size k such 

that every v ertex in V (D) lies on some directed shortest path 
betw een two vertices in S.

We define a .2-cycle of .D as a directed cycle of length . 2: a pair of vertices . u, v
such that both arcs .(u, v) and .(v, u) are present in . D. Note that directed graphs 
with .2-cycles inherit the difficulties of designing algorithms for the undirected 
case (since the problem is equivalent on an undirected graph .G and on the 
digraph obtained from .G by replacing each edge by a directed 2-cycle). Hence, 
the presence of .2-cycles plays a critical role when stating results for digraphs.

As noted by Araújo and Arraes [2, Sec. 6], the unique minimum-sized geo detic 
set of an undirected tree . T is equal to the set of its leaves. Define an extremal 
vertex of a digraph as a vertex that has either no incoming or no outgoing
arcs, and denote by .Ext(D) the set of extremal vertices of .D (in  an  oriented  
graph, this set contains all leaves). The authors remark that in oriented trees, 
i.e. digraphs that ha ve no 2-cycles and whose underlying undirected graph is a 
tree, the similar following property holds.

Proposition 1. ([2], Proposition 6.1). Let .D be an oriented tr ee. Then, 
.Ext(D) is a minimum geodetic set of . D. 

Using a non-trivial set of ideas and careful case analysis, the authors of [2] 
generalized this algorithm to digraphs without .2-cycles whose underlying undi-
rected graph is a cactus. (A graph is called a cactus if each block is either an 
edge or a cycle, and hence ev ery tree is a cactus graph.) We note that their case 
analysis holds only when the input digraph does not contain a .2-cycle. A digraph 
whose underlying graph is a tree is called a ditree [11,23]. Note that a ditree, 
contrary to oriented trees, might contain 2-cycles. As our first result, we present 
a p olynomial-time algorithm for ditrees.

Theorem 2. Geodetic Set on ditrees admits a linear-time algorithm. 

This naturally leads us to investigate the problem for cases where the under-
lying undirected graph of the input digraph is ‘close to a tree’. We consider the 
following two definitions of ‘closeness to trees’ for an undirected graph . G:  the  
minimum number of edges (respectively, vertices) that must be deleted from . G
to obtain a forest. The minimum size of a set of such edges (respectively, ver-
tices) is called the feedback edge set number (respectively, feedback vertex set 
number) of the graph, and is denoted by .fen(G) and .fvn(G), respectively . 

Kellerhals and Koana [26] proved that the Geodetic Set problem admits 
an algorithm running in time .2O(fen(G)2) · nO(1) when the input is an undirected 
graph. In the authors’ own words, “It turns out to be quite effortful to obtain fixed-
parameter tractability, requiring the design and analysis of polynomial-time data 
reduction rules and branching before employing the main technical trick: Integer
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Linear Programming (ILP) with a bounded number of variables.” Improving the 
running time of this algorithm has remained a challenging open problem. Note 
that obtaining a fixed-parameter tractable algorithm parameterized by .fen for 
Geodetic Set when the input digraph is allowed to have .2-cycles inherently 
encodes the difficulties encountered by the authors of [26]. As our next result, we 
show that a significantly faster algorithm (that does not need to use any ILP) 
can be obtained when considering the case in which .2-cycles are not allo wed. 

Theorem 3. Geodetic Set on digraphs without .2-cycles whose underlying 
undirected graph has feedback edge set numbe r .fen, admits an algorithm running 
in time .2O(fen) · nO(1),  whe  re  . n is the number of vertices in the input digr aph.

Finally, we turn our attention to the feedback vertex set number and show 
that a fixed-parameter tractable algorithm for this parameter is not p ossible.
Recently, Tale [30]  proved  that  Geodetic Set, restricted to undirected graphs, 
remains NP-hard even when the feedback vertex set fvn of the input graph 
is bounded. This implies that Geodetic Set, restricted to directed graphs
with possible .2-cycles, remains NP-hard even when the underlying undirected 
graph has constant fvn. We prove that a similar result holds even when .2-cycles 
(which help channel the hardness from the undirected case into the directed 
case), are absent. In fact, we prove the result not only for digraphs without .2-
cycles but also for directed acyclic graphs (DAGs), which do not have directed 
cycles of any length. This significantly strengthens the results of Araújo and
Arraes [2], which state that Geodetic Set is NP-hard  on  DAGs  even  whe  n  the  
underlying undirected graph is bipartite, co-bipartite, or a split graph.

Theorem 4. Geodetic Set on DAGs (which do not have .2-cycles) whose 
underlying undirected graph has feedback vertex set number . 12,  is  NP -hard. 

We remark that, although our reduction is inspired by the ideas in [30], it is 
significantly simpler than the one presen ted there.

Outline. Due to space constraints, we omit proofs of the results marked with
.( ) and refer to the upcoming full version of the paper. We s tart with a linear-
time algorithm on ditrees in Sect. 2 proving Theorem 2, followed by describing 
the fixed-parameter tractable algorithm mentioned in Theorem 3 in Sect. 3.  We  
prove Theorem 4 in Sect. 4 and conclude with some open problems in Sect. 5. 

Preliminaries. We present general definitions and results that will be used 
throughout the paper. We refer to the book [10] for terminology and details 
on parameterized complexity .

A directed graph (digraph for short) .D consists of vertex set .V (D) and arc 
set .A(D), where each arc is an ordered pair of vertices. An arc from vertex . v to 
verte x . u is denoted b y . vu,  and . v is its tail and . u is its head. A digraph is called an 
oriented graph if it does not contain a directed 2-cycle. The underlying undirected 
graph (or simply underlying graph) of some digraph .D is the graph obtained by 
removing the orientation of each arc of . D.  An  oriented path of a digraph .D is
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a subgraph of .D whose underlying graph is a path. A directed path (or dipath) 
is an oriented path for which all arcs are oriented in the same direction. A 
digraph is called strongly conne cted if every pair of vertices are connected by 
a directed path. The in-neighborhood of vertex . u is denoted b y .N−(u) and its 
out-neighborhood is denoted b y .N+(u). The in-neighborhood of a subset . S of 
.V (D) is .N−(S) = (∪u∈SN−(u)) \ S, and similarly the out-neighborhood of . S
is defined. A vertex . x is called a source,  i  f .N−(x) = ∅, and it is called a sink if
.N+(x) = ∅. A vertex that is a source or a sink is called extremal. For two vertices
. u and . v, the set of vertices that lie in some shortest path from . u to . v is denoted 
by .I(u, v) and for a subset . S of . V ,  the  geodetic closure of . S, denoted b y .I(S), 
is the set of all vertices which lie in some shortest path between two v ertices of
. S. In other words, .I(S) = ∪u,v∈S I(u, v) ∪ I(v, u) . We also say that a vertex . v
is covered by two vertices . u and . w if .v ∈ I({u, w}). In a directed path .P from 
. u to . v, vertices . u and . v are called the tail and the head of . P , respectively. The 
vertices of .P which are neither the tail nor the head of .P are called its inner 
vertices.  A  directed acyclic graph (DAG for short) is a digraph which does not 
contain a ny directed cycle.

A  vertex  . v is transitive if, for every in-neighbor .u1 and out-neighbo r .u2 of 
. v, either the arc .u1u2 exists, o r .u1 = u2.1 A vertex of a digraph is called a leaf 
if, in the underlying undirected graph, it has degree 1. Note that any leaf of a 
digraph is either a sink, a source, or transitive.

We conclude this section with t he following lemma.

Lemma 5. ([2]). In any digraph . D, every source, sink and tr ansitive vertex o f
.D (in particular, every leaf o f . D) belongs to every geodetic set of . D. 

2 Linear-Time Algorithm for Ditrees 

In this section, we consider the problem of finding the geodetic number of a 
ditree and prove the following theorem.

Theorem 2. Geodetic Set on ditrees admits a linear-time algorithm. 

In the context of digraphs admitting 2-cycles, we say that a vertex o f a
digraph .D is a leaf of .D if it is a leaf of the underlying graph of . D.  Wh  en  
. T is an oriented tree, a minimum-size geodetic set (mgs for sort) may contain 
some non-leaf vertices: as observed in Proposition 1, in this case, an optimal mgs 
always consists of all sources and sinks of the tree. To prove Theorem 2, we reduce 
the problem to finding a mgs in directed trees where the only 2-cycles present 
are adjacent to some leaf of the graph. We argue then that taking all extremal 
vertices of the graph, in addition to the leaves contained in a 2-cycle, yields a 
mgs. Intuitively, the graph obtained behaves almost exactly as an o riented tree,
which enables us to extend Proposition 1 naturally. 

Let . S be a maximal strongly connected component o f . D.  Then  we  ca  ll . S a 
source set if .N−(S) \ S = ∅. Similarly, we call . S a sink set if .N+(S) \ S = ∅.  We  
can state a simple observation about sink and source sets.
1 Note that the latter condition was not present in the definition from [2], since the 

authors only c onsidered digraphs without 2-cycles.
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Observation 1. Let . S be a source set or a sink set. Then, any two adjacent 
vertices of . S form a 2 -cycle. 

We define now a new graph, whose structure is very similar to an orient ed
tree.

Definition 6. Let .T be a ditree. We define the contracted ditree .T c of .T by 
iteratively contracting every 2-cycle of .T that does not contain any leaf vertex 
into a s ingle vertex.

In particular, i n . T c, the only 2-cycles are adjacent to some leaf of t he graph.
.T c is thus an oriented tree to which some leaves a re contained in 2 -cycles.
Lemma 7 shows that in contrast to oriented trees, an mgs in a general ditree 
may contain vertices which are neither sources, sinks nor leaves. Then, Lemma 8 
states that if all source and sink sets are either composed of a unique vertex or 
contain a leaf, then we can easily find a mgs in the considered ditree. In partic-
ular, this can be applied on . T c. Finally, Lemmas 9,10 justify that we can extend 
any mgs of .T c to . T . 

Lemma 7 (. ).  L  et  .T be a ditree and le t . S be a source set or sink set of . T . 
Then, every geodetic set of . T includes at least one vertex fro m . S. 

Lemma 8 (. ).  L  et  . T be ditree for which any source (resp. sink) set of size at 
least . 2 contains a leaf. Le t .S ⊆ V (T ) be the set of all sink (resp. source) vertice s 
and all leaves of . T . The  n,  . S is a geodetic set of . T of minimum s ize. 

Lemma 9. Let . T be a ditree and . S be  a  source  set  or  sink  set  of  size  at  least . 2
that contains no leaves. Suppose .M is an mgs for .T that includes exactly one 
vertex fro m . S. Define .N ⊆ V (T ) as the set obtained from .M by replacing the 
unique vertex o f . S with any other vertex o f . S.  The  n,  .N is also an mgs for . T . 

Proof. Without loss of generality, assume that .S is a source set. Arguments 
are similar for sink sets. Let .u ∈ S ∩ M , we first show that t he lemma holds 
when . u is replaced by one of its neighbours in . S.  L  et  .P1, . . . , Pm be all maximal 
directed paths starting from . u and ending at some vertex of . M .  Choose  a  vertex  
.v ∈ S such that . v is an out-neighbour o f . u.  Since  . S is a source set, . v is also 
an in-neighbour of . u. Because .M is an mgs and . S is a source set, s ome paths 
among .P1, . . . , Pm must contain . v.  l  et .P1, . . . , Pi denote exactly those paths t hat 
contain . v.  Sin  ce  . T is a ditree, each such path necessarily begins with the arc . uv. 
Moreover, as . u is not a leaf, there should also exist paths among .P1, . . . , Pm that
do not contain . v. Assume without loss of generality, that .i < m and . Pi+1, . . . , Pm

are all these paths. 
Now, for each .1 ≤ j ≤ i,  l  et  .Pj be the path obtained from .Pj by deleting the 

vertex . u and the arc . uv.  For  each  . j with .i + 1 ≤ j ≤ m,  l  et  .Pj be the directed 
path obtained from .Pj by prepending the a rc . uv. It follows that the s et .N covers 
exactly the same set of vertices as . M , and hence .N also is an mgs. 

Next, we show that the lemma remains valid if . u is replaced by some vertex 
.w ∈ S that is not a neighbour o f . u.  Sin  ce  . S is a source set, there is a directed
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path from . u to . w all whose internal vertices are i n . S. Moreover, each arc in this 
path is part of a 2-cycle in . T . Therefore, starting from . u, we may successively 
replace the current vertex by its neighbour along the path, until reaching . w.  At  
each step, the resulting set is an mgs and thus, after t he final replacement, the 
set obtained by substituting . u with . w is also an mgs, as required. . 

Lemma 10. Let . T be a ditree and .S = {S1, S2, . . . , St} be the set of all source 
sets and sink sets of . T which do not contain any leaf. L et . L be the set consisting 
of all leaves of .T and .M be a subset o f .V (T ) that contains . L and exactly one 
vertex from each . Si.  The  n,  .M is an mgs for . T . 

Proof. We prove the theorem using induction on the number of vertices of . T .  I  f  
. T has . 2 vertices, then every vertex of . T is a leaf. Using Lemma 5, . L is an mgs 
for . T . By the induction hypothesis, suppose that the theorem is t rue for any 
ditree of size less than . n.  L  et  . T be a ditree with . n vertices. If each source (resp. 
sink) set of . T of size at least . 2 contains a leaf, then each source (resp. sink) set 
which does not contain a leaf is a source (resp. s ink) vertex. So in this case, the 
theorem holds, using Lemma 8. 

Now, without loss of generality, suppose that .St ∈ S is a source set and it 
has at least two vertices. Let .u, v be two vertices in .St which are adjacent and 
.T be a ditree obtained from . T by contracting the edge between . u and . v.  L  et  . w
be the new vertex in .T that replaces two vertices . u and . v of . T . Note that .T is 
a ditree with the same set of leaves a s . T , and with the same set of source (resp. 
sink) sets as . T ,  except  that  .St is replaced b y . St,  whe  re  .St = (St \ {u, v})∪ {w}. 
Hence, by the induction hypothesis, there is an mgs of .T that contains all leaves 
and a vertex from each of the set .S1, S2, . . . , St. 

By Lemma 9, we conclude that a subset of vertices of .T that contains all 
leaves of .T and an arbitrary vertex from each of the set .S1, S2, . . . , St is an mgs . 

Let .P1, . . . , Pr be the set of all maximal directed paths in .T starting from . w. 
Since . w is not a leaf, .r ≥ 2. One can see that the end-vertex of each of these paths 
is either a leaf or belongs to a sink set. Moreover, no two of these paths terminate 
at the same sink set; Otherwise the underlying undirected graph would contain 
a cycle, which is impossible. Since .T has an mgs which contains all leaves and 
exactly one vertex from each source (resp. sink) set whic h does not contain any 
leaf, using Lemma 9, .T has an mgs , .M , which contains . w and the end-vertices 
of each path .P1, . . . , Pr. Define .M = M \ {w} ∪ {u}. We claim that .M is an 
mgs for . T .  Sin  ce  . T and .T have the same set of leaves and the same number of 
sink (resp. source) sets, Lemma 8 implies that every mgs of . T contains at least 
.|M | vertices. Therefore, it remains to show that .M is a geodetic set for . T . 

Since . u and . v are in a same source set, .T contains both arcs .uv and . vu. 
Since .M is an mgs for . T , each vertex o f . T other than . v is covered by a path 
with both ends in . M . Now, it suffices to show that . v is covered by some p ath 
with ends in .M (note that . T is a ditree, so each path is a shortest path between 
its end vertices), Now, we claim that . v belongs to some . Pi, .1 ≤ i ≤ r. If n ot, 
.T \ {v} is connected and this happens only if . v is a leaf, which is not the case, 
a contradiction. .
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Proof. (of Theorem 2). By Lemma 10,  every  mgs of . T contains all leaves and an 
arbitrary vertex of any source (sink) set that does n ot contain any leaf. Since any
leaf in . T is  also  a  leaf  i  n .T c and vice-versa, the algorithm proceeds as follows. 
First, we construct the contracted ditree .T c from . T in linear time by contracting 
every 2-cycle that is not incident with a leaf. Then, we determine all source (resp. 
sink) vertices (and the corresponding source (sink) sets in . T ), and leaves o f . T c, 
which can also be done in linear time by examining the in-degree and out-degree 
of each vertex. Since each step requires only linear time i n the number of vertices 
and edges, the overall complexity is .O(|V (T )| + |E(T )|). . 

3 Algorithm Parameterized by Feedback Edge Set 
Number 

In this section, we present an algorithm solving Geodetic Set parameterized 
by the feedback edge set number of the input graph and prove Theorem 3. 

Theorem 3. Geodetic Set on digraphs without 2-cycles whose underlying 
undirected graph has feedback edge set numb er fen, admits an a lgorithm running
in time .2O(fen) · nO(1), where n is the number of vertices in the input d igraph.

We introduce useful notions from [13]. A core vertex is a vertex of degree at 
least 3. A core path of digraph .D is a path in the underlying graph of .D between 
two core vertices with only degree 2 internal vertices. Note that both endpoints 
are allowed to be the same core vertex: in this case, we call the core path a core 
cycle.  We  call  proper c ore path a core path whose endpoints are two different 
core vertices. A leg of the underlying graph of .D is a (non-empty) path between 
a core vertex and a leaf in said graph. The base graph of some undirected graph
.G is the graph obtained by removing iteratively leaves from .G until no leaf is 
present. We say that the base graph of a digraph .D is the base graph of its 
underlying undirected graph. Note that a vertex of a base graph is either a core 
vertex, or a n inner vertex of some core path. The following observation comes
from [26, Observation 5]. 

Observation 2. The base graph of any undirected graph .G has at most 
.2fen(G) − 2 core vertices and at most .3fen(G) − 3 core p aths. 

We say that the base digraph .Db of .D is the subgraph of .D such that its 
underlying graph is the base graph of . D.  A  hanging tree of the underlying g raph
of .D is the union of some legs removed to form the base graph of .D so that the 
union of those legs forms a connected componen t. The root of a hanging tree
of .D is the vertex of the base graph that was linked to the last removed leg 
of the h anging tree considered. It is easily seen that the underlying undirected
graph of .D can be decomposed into its base graph and a set of maximal hanging 
trees. A hanging ditree of .D is a subgraph of .D such that its underlying graph 
is a hanging tree of . D, and its root is the root of the associated hanging tree. 
Similarly, . D can be decomposed into its base digraph and a collection of maximal 
hanging ditrees. We call an oriented core path any core path of the base graph of
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.D whose edges are oriented based on the orientations i n . D. If an oriented core 
path forms a directed path in . D,  we  call  it  a  core dipath .

First, we will argue that deciding which vertices to take i n a solution in the 
hanging ditrees of .D is not difficult, using the f ollowing observ ation.

Observation 3 (. ).  L  et  . v be a vertex of a hanging ditr ee . T of .D rooted i n . r. 

– If . v has an outgoing ar c, . v can either reach . r or a sink .w ∈ V (T ). 
– If . v has an incoming ar c, . v can be reached by either . r or a sour ce .u ∈ V (T ). 

Claim 1 (. ).  L  et  .D be a digraph with .S0 its set of extremal vertic es. Supp ose
. S is a geodetic set of . D.  The  n,  .S = (S ∩ V (Db)) ∪ S0 is a geodetic set of . D. 

Claim 1 identifies which vertices of hanging ditrees are part of minimum 
geodetic sets, so we next focus on vertices of oriented core paths. We identify 
three different cases, depending on the number of extremal vertices present in 
the considered oriented core path. Note that when there is no extremal vertex 
among the inner vertices of an orien ted core path, it is in fact a core dipath.

Claim 2. Let .D be a digraph and .S0 the set of extremal vertices o f . D. Consider 
an oriented core path . P of . D and denote by .VP its inner vertices. Number them a s
.VP = {v1, . . . , vl} so that two neighbors in .P have consecutive indexes. Supp ose 
that .|S0 ∩ VP | ≥ 2, and denote by .vi (respectively . vj) the vertex with minimum 
index (respectively with maximum index) of .S0 ∩ VP . We have . {vi, . . . , vj} ⊆
I(S0) and there exists an mgs. S of .D so that .VP ∩ S = VP ∩ S0. 
Proof. We argue that for an y .k ∈ [i, j], .vk is covered by two vertices of . S0. 
Indeed, either . vi and .vj are the only two extremal vertices of .VP , and then there 
exists a dipath between the two covering all considered vertices, o r there exist 
other extremal vertices between . vi and . vj .  Consid  er .vm the vertex with minimum 
index among those vertices. If .vi is a sink, then .vm is a source (and vice versa), 
so if .k ∈ [i,m], .vk ∈ I(vi, vm), otherwise one can apply recursively this argument
with vertices .vm and . vj . 

Suppose now that . S is an mgs of . D, and that some vertex .vp belongs t o 
.(VP ∩ S) \ S0.  Sin  ce  .{vi, . . . , vj} ⊆ I(S0),  i  f  .i < p < j, .S \ {vp} is still a geodetic 
set, which is in contradiction with the minimality of . S. Suppose then without loss 
of generality that .p < i.  Sin  ce . S is a geodetic set, the core vertex .v← neighboring 
.v1 is either in . S or covered by a shortest path starting at some vertex .u ∈ S and 
ending at some vertex .w ∈ S. In the former case, vertices .v1, . . . , vi are covered 
by the unique shortest path between .v← and .vi and .vp can be removed from . S
as above. In the latter case, consider .S = (S \ {vp})∪ {v←}. Any shortest path 
for whic h .vp is an endpoint can either be extended to a shortest path with . v←

as an endpoint, or goes through .v←.  Thu  s,  .S is also an mgs of . D.  The  same  
reasoning applies i f .j < p by considering .v→, the core vertex neighboring . vl. . 

Claim 3 (. ). Let .P be an oriented core path of some digraph .D and denote by 
.VP the inner vertices o f . P . Number vertices o f .P such that .VP = {v1, . . . , vl}. 
Suppose that .|VP ∩ S0| = 1 and denote the vertex o f .VP ∩ S0 by . vp. There exists 
an mgs . S of .D such that .|VP ∩ S| ≤ 3 and .VP ∩ S ⊆ {v1, vp, vl}. In p articular, 
.VP ∩ S contains at most two non-extremal vertices.
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Claim 4 (. ). Let . P be a core dipath of some digraph . D. Denote by .VP the inner 
vertices of .P and number them in the order induced by the arcs of the dip ath so
that .VP = {v1, . . . , vl}. There exists an mgs . S of .D such that .VP ∩ S ⊆ {v1}. 

Claims 2, 3, 4 imply an upper bound of two non-extremal vertices that can 
be part of an mgs in any oriented core path of . D. Define .VC as the set of core 
vertices of .D and .VI as the set of inner vertices of oriented core paths that are 
neighbors of vertices of .VC . 

Lemma 11. Let .D be a digraph, with .S0 its set of extremal vertices. Ther e 
exists an mgs . S of .D such that .S ⊆ VC ∪ VI ∪ S0,  and  .|S \ S0| ≤ 8fen(D) − 8. 

Proof. By Claims 2,3,4, we can suppose that vertices of .S belonging to the base 
digraph of .D are in .VC ∪ VI ∪ S0. We can then apply Claim 1 on .S to obtain 
the geodetic set .S = (S ∩ V (Db)) ∪ S0 where .Db is the base digraph of . D.  It  
follows that .S ⊆ VC ∪ VI ∪ S0.  L  et  .P c the set of core paths of .Db. Again b y 
Claims 2,3,4,  we  have  .|VC ∪ VI | ≤ |VC |+ 2|P c|, and by Observation 2, we obtain 
.|S \ S0| ≤ 8fen(D) − 8. . 

We can now describe the algorithm solving Geodetic Set parameterized 
by the feedback edge set number of the underlying undirected graph of the input 
digraph. This algorithm guesses the vertices to add in a solution among vertices
in .VC ∪ VI . The algorithm can be s tated as follo ws:

– For all subsets .S1 of .VC ∪ VI ,  i  f  .S = S0 ∪ S1 is a geodetic set of . D,  ma  rk  . S
– Return the marked set . S of minimum s ize. 

Proof. (of Theorem 3). The correctness of the algorithm is clear from Lemma 11. 
The running time follows, since by Lemma 11,  we  have  .|VC ∪ VI | ≤ 8fen(D)− 8. 
Thus, the algorithm checks .2O(fen(D)) different vertex sets. Each check is 
polynomial-time in . n since Geodetic Set belongs to NP. . 

4 NP-Hardness on Restricted DAGs 

In this section, we sketch the proof of Theorem 4. We present a reduction from the 
classic NP-complete problem 3-Dimensional Matching [24]. In this problem, 
an input is a ground set .U partitioned in three sets .Xα, .Xβ and .Xγ such that 
.|Xα| = |Xβ | = |Xγ | = n and a collection of 3D edges .E ⊆ Xα × Xβ × Xγ .  The  
objective is to decide if there exists a set . S of . n edges of . E so that any elemen t 
of . U is  covered  by  an  edge of . S. 

Reduction. Consider an instance of 3-Dimensional Matching with a ground 
set . U and its partition in three sets .Xα, .Xβ and .Xγ , and an edge set . E.  In  the  
following, the notation . δ will designate any of the letters . α, . β or . γ. Number the 
vertices of .Xδ so that .Xδ = {xδ

1, . . . , x
δ
n} and denote b y .m the cardinality of . E. 

We construct a digraph .D as follows:
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Edge vertices. Add . n sets .M1, . . . ,Mn of .m vertices, each corresponding to 
some edge of . E. Denote b y .ue

i the vertex i n .Mi associated with edge . e.  Add  
also for .1 ≤ i ≤ n a  vertex  .di and an arc from any vertex i n .Mi to . di. 
Ensuring edge vertices are covered. Add three vertices . a, . b and . c and 
connect them as follows: 
– Add arcs from . a to each vertex in . 1≤i≤n Mi. 
– Add arcs from each vertex i n . 1≤i≤n Mi to . b. 
– Add arcs from each vertex i n .{di | 1 ≤ i ≤ n} to . c. 
– Add an arc from . a to . c. 
Element vertices. Add vertices . vδ

i , .wδ
i and .tδi associated with the element 

.xδ
i in .Xδ. Add arcs from .wδ

i to .vδ
i and from .tδi to . vδ

i . 
Encoding adjacency. Add nine vertices . α1, . α2, . α3, . β1, . β2, . β3, . γ1, . γ2, . γ3

and add an outgoing pendant vertex to each of them. For .i ∈ {1, 2, 3}, denote 
by . δi the pendant vertex associated with . δi. Denote b y . e some edge of . E such 
that .e = (xα

i , xβ
j , xγ

k) and call .m any of its associated vertices in . 1≤i≤n Mi. 
Define .λ = m2. We add some paths of d efined length as follows:
– Add a path of length .λ2 − iλ from .m to . α1, a path of length .λ2 from . m

to . α2, and a path of length .λ2 + iλ from .m to . α3; 
– Add a path of length .λ2 − jλ from .m to . β1, a path of length .λ2 from . m

to . β2, and a path of length .λ2 + jλ from .m to . β3

– Add a path of length .λ2 − kλ from .m to . γ1, a path of length .λ2 from . m
to . γ2, and a path of length .λ2 + kλ from .m to . γ3; 

– For an y .δ ∈ {α,β, γ}, add a path of length .λ2 + lλ from .δ1 to .wδ
l , a path 

of length .λ2 from .δ2 to .wδ
l , a path of length .λ2 from .δ2 to .tδl and a path 

of length .λ2 − lλ from .δ3 to .wδ
l . 

Ensuring the edge paths are covered. For each path from an edge vertex 
of . 1≤i≤n Mi to a vertex . δi for .i ∈ {1, 2, 3} a pendant outgoing vertex to the 
vertex right before . δi in said path. 
Shortcutting the vertex . a. Add all arcs from . a to vertices .vδ

i associated 
with elements of . U . 

Figure 1 illustrates the main component of the obtained graph, namely the 
edge vertices and the encoding of adjacencies described above. We argue that 
there exists a solution to 3-Dimensional Matching for the original instance if 
and only if there exists a geodetic set of size .6nm+4n+10 in . D. The proof follows 
from the correctness of the reduction (which is presented in the full version) and 
the fact that deleting vertices . α1, . α2, . α3, . β1, . β2, . β3, . γ1, . γ2, . γ3, . a, . b and . c removes 
any cycle in the underlying graph of . D.
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Fig. 1. A partial representation of the digraph .D constructed during the reduction. 
Dashed arcs represent paths of length greater than one. Red arcs between a vertex and 
a vertex set mean that there exists such an arc for all vertices in the vertex set. Filled
vertices are extremal vertices of . D, that belong to any geodetic set. Arcs adjacent to 
vertices .δi are represented for only one edge vertex and vertices associated with three 
different elements, each of them belonging to a different partition set of . U . Pending 
vertices to .δi and paths from edge vertices to .δi are not represented. (Color figure
online)
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5 Conclusion 

We continued the study of Geodetic Set for digraphs. As directions for fur-
ther research, it would be interesting to extend our algorithm for ditrees to more 
general classes of digraphs. F or instance, what can be said about directed cac-
tus graphs (dicactii)? An algorithm for directed cactus graphs without .2-cycles 
(oriented cactii) was given in [2]. More broadly, one could consider directed 
outerplanar graphs. Note that an algorithm for undirected outerplanar graphs 
appears in [28]. Regarding parameterized complexity, it is natural to ask whether 
a polynomial kernel exists with respect to the feedback edge set number o f the 
underlying undirected graph. This remains open even for undirected graphs [26]. 
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