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Abstract. In the GEODETIC SET problem, an input is a digraph G and
integer k, and the objective is to decide whether there exists a vertex
subset S of size k such that any vertex in V(G) \ S lies on a shortest
path between two vertices in S. The problem has been studied on undi-
rected and directed graphs from both algorithmic and graph-theoretical
perspectives.

We focus on directed graphs and prove that GEODETIC SET admits
a polynomial-time algorithm on ditrees, that is, digraphs with possible
2-cycles when the underlying undirected graph is a tree (after deleting
possible parallel edges). This positive result naturally leads us to inves-
tigate cases where the underlying undirected graph is ‘close to a tree’.

Towards this, we show that GEODETIC SET on digraphs without 2-
cycles and whose underlying undirected graph has feedback edge set
number fen, can be solved in time 29 . M where n is the num-
ber of vertices. To complement this, we prove that the problem remains
NP-hard on DAGs (which do not contain 2-cycles) even when the under-
lying undirected graph has constant feedback vertex set number. Our
last result significantly strengthens the result of Aratjo and Arraes [Dis-
crete Applied Mathematics, 2022| that the problem is NP-hard on DAGs
when the underlying undirected graph is either bipartite, cobipartite or
split.
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1 Introduction

Harary, Loukakos, and Tsuros [25] introduced the concept of a geodetic set,
defined as a set S of vertices of an undirected graph G such that every ver-
tex of G lies on some geodesic (shortest path) between two vertices of S. Since
then, the problem of computing a geodetic set has been extensively studied, both
from the structural and algorithmic perspectives. It has become a central topic
in geodesic converity in graphs [18,29], and has found applications in diverse
settings. We refer the reader to [17] and the references therein for a represen-
tative list of applications. For example, computing a minimum-size geodetic set
can be seen as a network design problem, where one seeks to determine optimal
locations of public transportation hubs in a road network [5].

Let GEODETIC SET be the corresponding algorithmic problem of determin-
ing a smallest possible geodetic set. Harary, Loukakos, and Tsuros [25] proved
that the problem is NP-hard. See [16] for the earliest rigorous proof. Later
works established that the problem remains NP-hard even for restricted graph
classes [4-6,15,17]. This has motivated the study of algorithms for structured
graph classes [1,4,6,15-17,28]. To cope with this hardness, the problem has also
been investigated through the lenses of parameterized complexity [4,20,21,26,30]
and approximation algorithms [5,12]. More recently, interest in this problem has
been rejuvenated, as its ‘metric-based nature’ has led to interesting conditional
lower bounds in parameterized complexity [20,22,30] and enumeration complex-
ity [3], together with related problems of a similar ‘metric-based’ nature. Here,
we use the term ‘metric-based graph problem’ as an umbrella notion for graph
problems whose solutions are defined using a graph metric, for example, shortest
distance between two vertices in the case of GEODETIC SET.

While the majority of studies on the GEODETIC SET problem focuses on
undirected graphs, the problem has also been investigated for directed graphs
(digraphs). Most of the existing work on geodetic sets in digraphs has concen-
trated on non-algorithmic questions like determining the minimum and max-
imum values of these sets, as well as the range of possible values. See [7—
9,14,19,27] and the book [29, Chapter 6]. More recently, Araijo and Arraes [2]
initiated the algorithmic study of the GEODETIC SET problem for digraphs.
Before presenting their results, we formally define the problem addressed in this
article and compare the results for undirected and directed graphs.
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GEODETIC SET

Input: A directed graph D and an integer k.

Task: Determine whether there exists a subset S C V(D) of size k such
that every vertex in V(D) lies on some directed shortest path
between two vertices in §.

We define a 2-cycle of D as a directed cycle of length 2: a pair of vertices u, v
such that both arcs (u,v) and (v,u) are present in D. Note that directed graphs
with 2-cycles inherit the difficulties of designing algorithms for the undirected
case (since the problem is equivalent on an undirected graph G and on the
digraph obtained from G by replacing each edge by a directed 2-cycle). Hence,
the presence of 2-cycles plays a critical role when stating results for digraphs.

Asnoted by Aratjo and Arraes [2, Sec. 6], the unique minimum-sized geodetic
set of an undirected tree T is equal to the set of its leaves. Define an extremal
vertex of a digraph as a vertex that has either no incoming or no outgoing
arcs, and denote by Ext(D) the set of extremal vertices of D (in an oriented
graph, this set contains all leaves). The authors remark that in oriented trees,
i.e. digraphs that have no 2-cycles and whose underlying undirected graph is a
tree, the similar following property holds.

Proposition 1. ([2], Proposition 6.1). Let D be an oriented tree. Then,
Ezt(D) is a minimum geodetic set of D.

Using a non-trivial set of ideas and careful case analysis, the authors of [2]
generalized this algorithm to digraphs without 2-cycles whose underlying undi-
rected graph is a cactus. (A graph is called a cactus if each block is either an
edge or a cycle, and hence every tree is a cactus graph.) We note that their case
analysis holds only when the input digraph does not contain a 2-cycle. A digraph
whose underlying graph is a tree is called a ditree [11,23]. Note that a ditree,
contrary to oriented trees, might contain 2-cycles. As our first result, we present
a polynomial-time algorithm for ditrees.

Theorem 2. GEODETIC SET on ditrees admits a linear-time algorithm.

This naturally leads us to investigate the problem for cases where the under-
lying undirected graph of the input digraph is ‘close to a tree’. We consider the
following two definitions of ‘closeness to trees’ for an undirected graph G: the
minimum number of edges (respectively, vertices) that must be deleted from G
to obtain a forest. The minimum size of a set of such edges (respectively, ver-
tices) is called the feedback edge set number (respectively, feedback vertex set
number) of the graph, and is denoted by fen(G) and fvn(G), respectively.

Kellerhals and Koana [26] proved that the GEODETIC SET problem admits
an algorithm running in time 20(fen(G)?) . ,O(1) when the input is an undirected
graph. In the authors’ own words, “It turns out to be quite effortful to obtain fized-
parameter tractability, requiring the design and analysis of polynomial-time data
reduction rules and branching before employing the main technical trick: Integer
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Linear Programming (ILP) with a bounded number of variables.” Improving the
running time of this algorithm has remained a challenging open problem. Note
that obtaining a fixed-parameter tractable algorithm parameterized by fen for
GEODETIC SET when the input digraph is allowed to have 2-cycles inherently
encodes the difficulties encountered by the authors of [26]. As our next result, we
show that a significantly faster algorithm (that does not need to use any ILP)
can be obtained when considering the case in which 2-cycles are not allowed.

Theorem 3. GEODETIC SET on digraphs without 2-cycles whose underlying
undirected graph has feedback edge set number fen, admits an algorithm running
in time 20 . nOW) “where n is the number of vertices in the input digraph.

Finally, we turn our attention to the feedback vertex set number and show
that a fixed-parameter tractable algorithm for this parameter is not possible.
Recently, Tale [30] proved that GEODETIC SET, restricted to undirected graphs,
remains NP-hard even when the feedback vertex set fvn of the input graph
is bounded. This implies that GEODETIC SET, restricted to directed graphs
with possible 2-cycles, remains NP-hard even when the underlying undirected
graph has constant fvn. We prove that a similar result holds even when 2-cycles
(which help channel the hardness from the undirected case into the directed
case), are absent. In fact, we prove the result not only for digraphs without 2-
cycles but also for directed acyclic graphs (DAGs), which do not have directed
cycles of any length. This significantly strengthens the results of Aratjo and
Arraes [2], which state that GEODETIC SET is NP-hard on DAGs even when the
underlying undirected graph is bipartite, co-bipartite, or a split graph.

Theorem 4. GEODETIC SET on DAGs (which do not have 2-cycles) whose
underlying undirected graph has feedback vertex set number 12, is NP-hard.

We remark that, although our reduction is inspired by the ideas in [30], it is
significantly simpler than the one presented there.

Outline. Due to space constraints, we omit proofs of the results marked with
(%) and refer to the upcoming full version of the paper. We start with a linear-
time algorithm on ditrees in Sect. 2 proving Theorem 2, followed by describing
the fixed-parameter tractable algorithm mentioned in Theorem 3 in Sect. 3. We
prove Theorem 4 in Sect. 4 and conclude with some open problems in Sect. 5.

Preliminaries. We present general definitions and results that will be used
throughout the paper. We refer to the book [10] for terminology and details
on parameterized complexity.

A directed graph (digraph for short) D consists of vertex set V(D) and arc
set A(D), where each arc is an ordered pair of vertices. An arc from vertex v to
vertex u is denoted by vu, and v is its tail and w is its head. A digraph is called an
oriented graph if it does not contain a directed 2-cycle. The underlying undirected
graph (or simply underlying graph) of some digraph D is the graph obtained by
removing the orientation of each arc of D. An oriented path of a digraph D is
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a subgraph of D whose underlying graph is a path. A directed path (or dipath)
is an oriented path for which all arcs are oriented in the same direction. A
digraph is called strongly connected if every pair of vertices are connected by
a directed path. The in-neighborhood of vertex u is denoted by N~ (u) and its
out-neighborhood is denoted by N7 (u). The in-neighborhood of a subset S of
V(D) is N=(S) = (UyesN~(u)) \ S, and similarly the out-neighborhood of S
is defined. A vertex z is called a source, if N~ (z) = 0, and it is called a sink if
N+t (z) = 0. A vertex that is a source or a sink is called extremal. For two vertices
u and v, the set of vertices that lie in some shortest path from u to v is denoted
by I(u,v) and for a subset S of V, the geodetic closure of S, denoted by I(S),
is the set of all vertices which lie in some shortest path between two vertices of
S. In other words, I(S) = Uyves (I(u,v) UI(v,u)). We also say that a vertex v
is covered by two vertices u and w if v € I({u,w}). In a directed path P from
u to v, vertices u and v are called the tail and the head of P, respectively. The
vertices of P which are neither the tail nor the head of P are called its inner
vertices. A directed acyclic graph (DAG for short) is a digraph which does not
contain any directed cycle.

A vertex v is transitive if, for every in-neighbor u; and out-neighbor us of
v, either the arc uuy exists, or u; = us.! A vertex of a digraph is called a leaf
if, in the underlying undirected graph, it has degree 1. Note that any leaf of a
digraph is either a sink, a source, or transitive.

We conclude this section with the following lemma.

Lemma 5. ([2]). In any digraph D, every source, sink and transitive vertex of
D (in particular, every leaf of D) belongs to every geodetic set of D.

2 Linear-Time Algorithm for Ditrees

In this section, we consider the problem of finding the geodetic number of a
ditree and prove the following theorem.

Theorem 2. GEODETIC SET on ditrees admits a linear-time algorithm.

In the context of digraphs admitting 2-cycles, we say that a vertex of a
digraph D is a leaf of D if it is a leaf of the underlying graph of D. When
T is an oriented tree, a minimum-size geodetic set (mgs for sort) may contain
some non-leaf vertices: as observed in Proposition 1, in this case, an optimal mgs
always consists of all sources and sinks of the tree. To prove Theorem 2, we reduce
the problem to finding a mgs in directed trees where the only 2-cycles present
are adjacent to some leaf of the graph. We argue then that taking all extremal
vertices of the graph, in addition to the leaves contained in a 2-cycle, yields a
mgs. Intuitively, the graph obtained behaves almost exactly as an oriented tree,
which enables us to extend Proposition 1 naturally.

Let S be a maximal strongly connected component of D. Then we call S a
source set if N~ (S)\ S = (). Similarly, we call S a sink set if NT(S)\ S = 0. We
can state a simple observation about sink and source sets.

! Note that the latter condition was not present in the definition from [2], since the
authors only considered digraphs without 2-cycles.
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Observation 1. Let S be a source set or a sink set. Then, any two adjacent
vertices of S form a 2-cycle.

We define now a new graph, whose structure is very similar to an oriented
tree.

Definition 6. Let T be a ditree. We define the contracted ditree T° of T by
iteratively contracting every 2-cycle of T' that does not contain any leaf vertex
into a single vertex.

In particular, in 7€, the only 2-cycles are adjacent to some leaf of the graph.
T¢ is thus an oriented tree to which some leaves are contained in 2-cycles.
Lemma 7 shows that in contrast to oriented trees, an mgs in a general ditree
may contain vertices which are neither sources, sinks nor leaves. Then, Lemma 8
states that if all source and sink sets are either composed of a unique vertex or
contain a leaf, then we can easily find a mgs in the considered ditree. In partic-
ular, this can be applied on T°. Finally, Lemmas 9,10 justify that we can extend
any mgs of T¢ to T.

Lemma 7 (x). Let T be a ditree and let S be a source set or sink set of T.
Then, every geodetic set of T includes at least one vertex from S.

Lemma 8 (x). Let T be ditree for which any source (resp. sink) set of size at
least 2 contains a leaf. Let S C V(T') be the set of all sink (resp. source) vertices
and all leaves of T. Then, S is a geodetic set of T of minimum size.

Lemma 9. Let T be a ditree and S be a source set or sink set of size at least 2
that contains no leaves. Suppose M is an mgs for T that includes exactly one
vertex from S. Define N C V(T) as the set obtained from M by replacing the
unique verter of S with any other vertex of S. Then, N is also an mgs for T.

Proof. Without loss of generality, assume that S is a source set. Arguments
are similar for sink sets. Let uw € S N M, we first show that the lemma holds
when u is replaced by one of its neighbours in S. Let Py, ..., P, be all maximal
directed paths starting from u and ending at some vertex of M. Choose a vertex
v € S such that v is an out-neighbour of u. Since S is a source set, v is also
an in-neighbour of u. Because M is an mgs and S is a source set, some paths
among P, ..., Py, must contain v. let P, ..., P; denote exactly those paths that
contain v. Since T is a ditree, each such path necessarily begins with the arc uv.
Moreover, as u is not a leaf, there should also exist paths among P, ..., P, that
do not contain v. Assume without loss of generality, that ¢ < m and P;y1,..., Py
are all these paths.

Now, for each 1 < j <4, let P]{ be the path obtained from P; by deleting the
vertex u and the arc uv. For each j with i 4+ 1 < 57 < m, let Pj( be the directed
path obtained from P; by prepending the arc uv. It follows that the set N covers
exactly the same set of vertices as M, and hence N also is an mgs.

Next, we show that the lemma remains valid if u is replaced by some vertex
w € S that is not a neighbour of u. Since S is a source set, there is a directed
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path from u to w all whose internal vertices are in S. Moreover, each arc in this
path is part of a 2-cycle in T'. Therefore, starting from u, we may successively
replace the current vertex by its neighbour along the path, until reaching w. At
each step, the resulting set is an mgs and thus, after the final replacement, the
set obtained by substituting u with w is also an mgs, as required. a

Lemma 10. Let T be a ditree and S = {51, 5a,...,S5:} be the set of all source
sets and sink sets of T which do not contain any leaf. Let L be the set consisting
of all leaves of T and M be a subset of V(T') that contains L and exactly one
vertex from each S;. Then, M is an mgs for T.

Proof. We prove the theorem using induction on the number of vertices of T'. If
T has 2 vertices, then every vertex of T is a leaf. Using Lemma 5, £ is an mgs
for T. By the induction hypothesis, suppose that the theorem is true for any
ditree of size less than n. Let T be a ditree with n vertices. If each source (resp.
sink) set of T" of size at least 2 contains a leaf, then each source (resp. sink) set
which does not contain a leaf is a source (resp. sink) vertex. So in this case, the
theorem holds, using Lemma 8.

Now, without loss of generality, suppose that S; € S is a source set and it
has at least two vertices. Let u,v be two vertices in Sy which are adjacent and
T’ be a ditree obtained from T by contracting the edge between u and v. Let w
be the new vertex in T that replaces two vertices v and v of T. Note that T” is
a ditree with the same set of leaves as T', and with the same set of source (resp.
sink) sets as T, except that S; is replaced by S, where S} = (S¢ \ {u,v}) U {w}.
Hence, by the induction hypothesis, there is an mgs of 7" that contains all leaves

and a vertex from each of the set Sy, 5s,...,5].
By Lemma 9, we conclude that a subset of vertices of T” that contains all
leaves of 7" and an arbitrary vertex from each of the set S, Sa, ..., S] is an mgs.

Let Py, ..., P! be the set of all maximal directed paths in 7" starting from w.
Since w is not a leaf, » > 2. One can see that the end-vertex of each of these paths
is either a leaf or belongs to a sink set. Moreover, no two of these paths terminate
at the same sink set; Otherwise the underlying undirected graph would contain
a cycle, which is impossible. Since 7" has an mgs which contains all leaves and
exactly one vertex from each source (resp. sink) set which does not contain any
leaf, using Lemma 9, T” has an mgs, M’, which contains w and the end-vertices
of each path Pj,...,P.. Define M = M'\ {w} U{u}. We claim that M is an
mgs for T. Since T and T’ have the same set of leaves and the same number of
sink (resp. source) sets, Lemma 8 implies that every mgs of T contains at least
|M’| vertices. Therefore, it remains to show that M is a geodetic set for T

Since v and v are in a same source set, T' contains both arcs wv and vu.
Since M’ is an mgs for T’, each vertex of T other than v is covered by a path
with both ends in M. Now, it suffices to show that v is covered by some path
with ends in M (note that T is a ditree, so each path is a shortest path between
its end vertices), Now, we claim that v belongs to some P;, 1 < i < r. If not,
T\ {v} is connected and this happens only if v is a leaf, which is not the case,
a contradiction. ad
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Proof. (of Theorem 2). By Lemma 10, every mgs of T' contains all leaves and an
arbitrary vertex of any source (sink) set that does not contain any leaf. Since any
leaf in T is also a leaf in T and vice-versa, the algorithm proceeds as follows.
First, we construct the contracted ditree T from T in linear time by contracting
every 2-cycle that is not incident with a leaf. Then, we determine all source (resp.
sink) vertices (and the corresponding source (sink) sets in T'), and leaves of T,
which can also be done in linear time by examining the in-degree and out-degree
of each vertex. Since each step requires only linear time in the number of vertices
and edges, the overall complexity is O(|V(T)| + |E(T)]). 0

3 Algorithm Parameterized by Feedback Edge Set
Number

In this section, we present an algorithm solving GEODETIC SET parameterized
by the feedback edge set number of the input graph and prove Theorem 3.

Theorem 3. GEODETIC SET on digraphs without 2-cycles whose underlying
undirected graph has feedback edge set number fen, admits an algorithm running
in time 2°0(fen) . nOM) where n is the number of vertices in the input digraph.

We introduce useful notions from [13]. A core vertex is a vertex of degree at
least 3. A core path of digraph D is a path in the underlying graph of D between
two core vertices with only degree 2 internal vertices. Note that both endpoints
are allowed to be the same core vertex: in this case, we call the core path a core
cycle. We call proper core path a core path whose endpoints are two different
core vertices. A leg of the underlying graph of D is a (non-empty) path between
a core vertex and a leaf in said graph. The base graph of some undirected graph
G is the graph obtained by removing iteratively leaves from G until no leaf is
present. We say that the base graph of a digraph D is the base graph of its
underlying undirected graph. Note that a vertex of a base graph is either a core
vertex, or an inner vertex of some core path. The following observation comes
from [26, Observation 5].

Observation 2. The base graph of any wundirected graph G has at most
2fen(G) — 2 core vertices and at most 3fen(G) — 3 core paths.

We say that the base digraph Dy of D is the subgraph of D such that its
underlying graph is the base graph of D. A hanging tree of the underlying graph
of D is the union of some legs removed to form the base graph of D so that the
union of those legs forms a connected component. The root of a hanging tree
of D is the vertex of the base graph that was linked to the last removed leg
of the hanging tree considered. It is easily seen that the underlying undirected
graph of D can be decomposed into its base graph and a set of maximal hanging
trees. A hanging ditree of D is a subgraph of D such that its underlying graph
is a hanging tree of D, and its root is the root of the associated hanging tree.
Similarly, D can be decomposed into its base digraph and a collection of maximal
hanging ditrees. We call an oriented core path any core path of the base graph of
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D whose edges are oriented based on the orientations in D. If an oriented core
path forms a directed path in D, we call it a core dipath.

First, we will argue that deciding which vertices to take in a solution in the
hanging ditrees of D is not difficult, using the following observation.

Observation 3 (x). Let v be a vertex of a hanging ditree T of D rooted in r.

— If v has an outgoing arc, v can either reach r or a sink w € V(T).
— Ifv has an incoming arc, v can be reached by either r or a source u € V(T).

Claim 1 (%). Let D be a digraph with S° its set of extremal vertices. Suppose
S is a geodetic set of D. Then, S’ = (SNV(Dy)) U S is a geodetic set of D.

Claim 1 identifies which vertices of hanging ditrees are part of minimum
geodetic sets, so we next focus on vertices of oriented core paths. We identify
three different cases, depending on the number of extremal vertices present in
the considered oriented core path. Note that when there is no extremal vertex
among the inner vertices of an oriented core path, it is in fact a core dipath.

Claim 2. Let D be a digraph and S° the set of extremal vertices of D. Consider
an oriented core path P of D and denote by Vp its inner vertices. Number them as

Vp = {v1,...,u} so that two neighbors in P have consecutive indexes. Suppose
that |S° N Vp| > 2, and denote by v; (respectively v;) the vertex with minimum
index (respectively with mazimum index) of S° N Vp. We have {v;,...,v;} C

I(S°) and there exists an mgsS of D so that Vp NS = Vp N S°.

Proof. We argue that for any k € [i,]], v is covered by two vertices of S°.
Indeed, either v; and v; are the only two extremal vertices of Vp, and then there
exists a dipath between the two covering all considered vertices, or there exist
other extremal vertices between v; and v;. Consider vy, the vertex with minimum
index among those vertices. If v; is a sink, then v, is a source (and vice versa),
soif k € [i,m], vy, € I(vi,vy,), otherwise one can apply recursively this argument
with vertices vy, and v;.

Suppose now that S is an mgs of D, and that some vertex v, belongs to
(VPN S)\ S°. Since {vj,...,v;} CTI(S%),ifi <p<j, S\ {vp,} is still a geodetic
set, which is in contradiction with the minimality of S. Suppose then without loss
of generality that p < i. Since S is a geodetic set, the core vertex v~ neighboring
v1 is either in S or covered by a shortest path starting at some vertex v € S and
ending at some vertex w € S. In the former case, vertices vy, ..., v; are covered
by the unique shortest path between v~ and v; and v, can be removed from S
as above. In the latter case, consider S" = (S'\ {vp}) U {v"}. Any shortest path
for which v, is an endpoint can either be extended to a shortest path with v*~
as an endpoint, or goes through v~. Thus, S’ is also an mgs of D. The same
reasoning applies if j < p by considering v, the core vertex neighboring v;. O

Claim 3 (%). Let P be an oriented core path of some digraph D and denote by
Vp the inner vertices of P. Number vertices of P such that Vp = {v1,...,v}.
Suppose that |Vp N SO| =1 and denote the vertex of Vp N S° by vp. There exists
an mgs S of D such that |[VpNS| <3 and VP NS C {v1,vp,u1}. In particular,
Ve NS contains at most two non-extremal vertices.
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Claim 4 (%). Let P be a core dipath of some digraph D. Denote by Vp the inner
vertices of P and number them in the order induced by the arcs of the dipath so
that Vp = {wv1,...,v}. There exists an mgs S of D such that Vp NS C {v;}.

Claims 2, 3, 4 imply an upper bound of two non-extremal vertices that can
be part of an mgs in any oriented core path of D. Define V- as the set of core
vertices of D and V; as the set of inner vertices of oriented core paths that are
neighbors of vertices of V.

Lemma 11. Let D be a digraph, with S° its set of extremal vertices. There
exists an mgs S of D such that S C Vo UV US?, and |S\ S°| < 8fen(D) — 8.

Proof. By Claims 2,3,4, we can suppose that vertices of S’ belonging to the base
digraph of D are in Vo U V; U S% We can then apply Claim 1 on S’ to obtain
the geodetic set S = (S’ NV(Dy)) U Sy where D, is the base digraph of D. It
follows that S C Vo U V; U S°. Let P¢ the set of core paths of D;. Again by
Claims 2,3,4, we have |Vo U V| < |Ve| + 2|P€|, and by Observation 2, we obtain
IS\ SY| < 8fen(D) — 8. O

We can now describe the algorithm solving GEODETIC SET parameterized
by the feedback edge set number of the underlying undirected graph of the input
digraph. This algorithm guesses the vertices to add in a solution among vertices
in Vo U V. The algorithm can be stated as follows:

— For all subsets St of Vo U Vp, if § = SO U ST is a geodetic set of D, mark S
— Return the marked set S of minimum size.

Proof. (of Theorem 3). The correctness of the algorithm is clear from Lemma 11.
The running time follows, since by Lemma 11, we have |Vo U Vy| < 8fen(D) — 8.
Thus, the algorithm checks 20(fen(P) different vertex sets. Each check is
polynomial-time in n since GEODETIC SET belongs to NP. a

4 NP-Hardness on Restricted DAGs

In this section, we sketch the proof of Theorem 4. We present a reduction from the
classic NP-complete problem 3-DIMENSIONAL MATCHING [24]. In this problem,
an input is a ground set U partitioned in three sets X*, X? and X" such that
| X = |XP| =|X"| =n and a collection of 3D edges E C X x X” x X7. The
objective is to decide if there exists a set S of n edges of E so that any element
of U is covered by an edge of S.

Reduction. Consider an instance of 3-DIMENSIONAL MATCHING with a ground
set U and its partition in three sets X, X7 and X7, and an edge set E. In the
following, the notation § will designate any of the letters «, 8 or «v. Number the
vertices of X° so that X° = {z{,..., 22} and denote by m the cardinality of E.
We construct a digraph D as follows:
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Edge vertices. Add n sets My, ..., M, of m vertices, each corresponding to
some edge of E. Denote by u$ the vertex in M, associated with edge e. Add
also for 1 < i < n a vertex d; and an arc from any vertex in M; to d;.
Ensuring edge vertices are covered. Add three vertices a, b and ¢ and
connect them as follows:

— Add arcs from a to each vertex in | J; ., ., M;.

— Add arcs from each vertex in (J; ., ,, M; to b.

— Add arcs from each vertex in {d; | 1 <i <n} to c.

— Add an arc from a to c.
Element vertices. Add vertices v, w? and t} associated with the element
2?0 in X°. Add arcs from w? to v{ and from t¢ to v?.

Encoding adjacency. Add nine vertices ai, as, as, B1, B2, B3, 71, V2, V3

and add an outgoing pendant vertex to each of them. For i € {1, 2,3}, denote

by ¢; the pendant vertex associated with d;. Denote by e some edge of E such
B

that e = (2, 2, ;) and call m any of its associated vertices in U, <<, M;.

Define A = m?. We add some paths of defined length as follows:

— Add a path of length A2 — i\ from m to a1, a path of length A2 from m
to aw, and a path of length A% + 4\ from m to as;

— Add a path of length A2 — j\ from m to £, a path of length A2 from m
to B2, and a path of length A% + j\ from m to 33

— Add a path of length A\ — k) from m to 7;, a path of length A2 from m
to 72, and a path of length A2 4+ kX from m to ~s;

— For any 6 € {a, 3,7}, add a path of length A% + [\ from §; to w?, a path
of length A\? from &5 to w?, a path of length A\? from &5 to t? and a path
of length A2 — [\ from §3 to w?.

Ensuring the edge paths are covered. For each path from an edge vertex

of Uy <<, Mi to a vertex ¢; for ¢ € {1,2,3} a pendant outgoing vertex to the

vertex right before §; in said path.

Shortcutting the vertex a. Add all arcs from a to vertices v

with elements of U.

)

%

associated

Figure 1 illustrates the main component of the obtained graph, namely the
edge vertices and the encoding of adjacencies described above. We argue that
there exists a solution to 3-DIMENSIONAL MATCHING for the original instance if
and only if there exists a geodetic set of size 6nm~+4n—+10 in D. The proof follows
from the correctness of the reduction (which is presented in the full version) and
the fact that deleting vertices a1, aso, as, 81, B2, 83, 71, V2, V3, @, b and ¢ removes
any cycle in the underlying graph of D.
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M,

Fig. 1. A partial representation of the digraph D constructed during the reduction.
Dashed arcs represent paths of length greater than one. Red arcs between a vertex and
a vertex set mean that there exists such an arc for all vertices in the vertex set. Filled
vertices are extremal vertices of D, that belong to any geodetic set. Arcs adjacent to
vertices ¢; are represented for only one edge vertex and vertices associated with three
different elements, each of them belonging to a different partition set of U. Pending
vertices to d; and paths from edge vertices to §; are not represented. (Color figure
online)
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Conclusion

We continued the study of GEODETIC SET for digraphs. As directions for fur-
ther research, it would be interesting to extend our algorithm for ditrees to more
general classes of digraphs. For instance, what can be said about directed cac-
tus graphs (dicactii)? An algorithm for directed cactus graphs without 2-cycles
(oriented cactil) was given in [2]. More broadly, one could consider directed
outerplanar graphs. Note that an algorithm for undirected outerplanar graphs
appears in [28]. Regarding parameterized complexity, it is natural to ask whether
a polynomial kernel exists with respect to the feedback edge set number of the
underlying undirected graph. This remains open even for undirected graphs [26].
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