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Abstract An identifying code of a (di)graph G is a dominating subset C of the
vertices of G such that all distinct vertices of G have distinct (in)neighbourhoods
within C . In this paper, we classify all finite digraphs which only admit their whole
vertex set as an identifying code. We also classify all such infinite oriented graphs.
Furthermore, by relating this concept to a well-known theorem of Bondy on set
systems, we classify the extremal cases for this theorem.

Keywords Identifying codes · Dominating sets · Digraphs · Infinite digraphs ·
Induced sets
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1 Introduction

Identifying codes are dominating sets having the property that any two vertices of the
graph have distinct neighbourhoods within the identifying code. As a consequence,
they can be used to uniquely identify or locate the vertices of a graph. Identifying
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codes have been widely studied since the introduction of the concept in [11]. The
theory is applied to problems such as fault-diagnosis in multiprocessor systems [11]
or emergency sensor networks in facilities [14]. The concept of identifying codes is
an extension of previous works on locating-dominating sets, studied in e.g. [8,15].
Identifying codes have first been studied in undirected graphs, but the concept has
naturally been extended to directed and oriented graphs [6,7,16].

In this paper, we study classes of directed graphs which only admit large minimum
identifying codes, extending earlier works on such problems for undirected graphs
(see, e.g. [8–10]). We also relate the problem of identifying codes in directed graphs
to a set theoretic problem first studied by Bondy [4].

Let us now give some notations and definitions. In the following and unless oth-
erwise stated, we will denote by D, a directed graph with vertex set V (D) and arc
set A(D). A directed graph will conveniently be called a digraph. An arc pointing
from vertex u towards vertex v will be denoted −→uv. The arcs −→uv and −→

vu are called
symmetric. A digraph without any symmetric arcs will be called an oriented graph.
For a vertex u of D, we denote by N−(u), the set of outgoing neighbours of u, and by
N+(u), the set of incoming neighbours of u. By d+(u) and d−(u), respectively, we
denote the in-degree and the out-degree of the vertex u. Let B+

1 (u) and B−
1 (u) denote

the incoming and outgoing balls of radius 1 centered at u (they include u). A vertex
of D without any incoming arc is called a source in D. The underlying graph of D
is the graph obtained from D by ignoring the directions of the arcs. We say that D is
connected if its underlying graph is connected.

In a digraph D, a dominating set is a subset C of V (D) such that for all u ∈
V (D), B+

1 (u) ∩ C �= ∅. A separating code of D is a subset C of vertices such that
each pair of vertices u, v of D is separated, that is: B+

1 (u) ∩ C �= B+
1 (v) ∩ C . If C is

both a dominating set and a separating code, it is called an identifying code of D.
Two vertices u and v are called twins in a digraph D if B+

1 (u) = B+
1 (v). It is easy

to observe that a digraph admits a separating code and, therefore, an identifying code,
if and only if it has no pair of twins (C = V (D) is one such code in this case). Such
digraphs are called twin-free. Note that if two vertices u and v are twins, necessarily the
symmetric arcs −→uv and −→

vu must exist. As a consequence, oriented graphs are always
twin-free.

In this paper, we will also consider separating codes in undirected bipartite graphs.
Given a bipartite graph G = (S ∪ T, E) with S and T being two parts, an S-sepa-
rating code of G is a subset C of vertices in T such that N (u) ∩ C �= N (v) ∩ C for
all distinct vertices u and v of S. If moreover, every vertex of S is also dominated by
some vertex of C , then C is called an S-discriminating code of G. When G admits
an S-discriminating code then we say that G is S-identifiable. The concept of S-sep-
arating codes has also been studied under the name of test collection problem, see
e.g. [13]. The concept of S-discriminating codes was introduced in [5]. We note that
to find an identifying code, respectively, a separating code, of a graph or a digraph
one could form its incidence bipartite graph and search for an S-discriminating or an
S-separating code in this incidence bipartite graph.

One of the most natural questions in the study of separating or identifying codes is

to find the smallest such set for a given graph. We denote by
−→
γ S(D) and by

−→
γ ID(D),
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the minimum sizes of a separating code and of an identifying code of D, respectively.

It is observed that
−→
γ S(D) ≤ −→

γ ID(D) ≤ −→
γ S(D) + 1. Determining the value of

−→
γ ID(D)

was proven to be NP-hard in [7], even for strongly connected bipartite oriented graphs
and for bipartite oriented graphs without directed cycles.

The theory of identifying codes is studied mostly for undirected graphs, which can
be viewed as symmetric digraphs. The following is one of the first general bounds:

Theorem 1 [2,10] For any symmetric finite twin-free digraph D having at least one

arc, we have
−→
γ ID(D) ≤ |V (D)| − 1.

Undirected graphs achieving this bound have been characterized in [9]. For the
directed analogue of this classification problem, the class of digraphs satisfying−→
γ ID(D) = |V (D)| is already rich. In this paper we classify all such finite digraphs. This
is done in Sect. 2. A simple corollary of our work is an extension of Theorem 1 which

says that every digraph with at least one symmetric arc satisfies:
−→
γ ID(D) ≤ |V (D)|−1.

In Sect. 3 we classify all infinite oriented graphs in which the whole vertex set is the
only identifying code. In Sect. 4, we discuss the relationship between this result and
the following theorem of A. Bondy on “induced subsets”:

Theorem 2 (Bondy’s theorem [4]) Let A = {A1, A2, . . . , An} be a collection of n
distinct subsets of an n-set X. Then there exists an element x of X such that the sets
A1 − x, A2 − x, . . . , An − x are all distinct.

Here Ai − x could be the empty set. Though, to be distinct, at most one of them
could be empty. In Sect. 4 we classify all the set systems in which for any possible
choice of x in Bondy’s theorem we will have Ai − x = ∅ for some i .

Since its publication in 1972, this theorem has received a lot of attention and various
proofs of different nature have been provided for it, we refer to [1,3,4,12,17] for some
interesting proofs.

2 Finite Extremal Digraphs

In this section, we classify all finite digraphs in which the whole vertex set is the only
identifying code. We begin with the following definitions of operations on digraphs,
illustrated in Fig. 1.

Given two digraphs D1 and D2 on disjoint sets of vertices, we define the dis-
joint union of D1 and D2, denoted D1 ⊕ D2, to be the digraph whose vertex set is
V (D1) ∪ V (D2) and whose arc set is A(D1) ∪ A(D2).

Given a digraph D and a vertex x not in V (D) we define x−→
 (D) to be the digraph
with vertex set V (D)∪ {x} whose arcs are the arcs of D together with each arc −→xv for
every v ∈ V (D).

Definition 3 Let (K1,⊕,−→
 ) be the closure of the one-vertex graph K1 with respect
to the operations ⊕ and −→
 . That is, the class of all graphs that can be built from K1
by repeated applications of ⊕ and −→
 .
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Fig. 1 Illustrations of the two operations

The transitive closure of a digraph D is a digraph obtained from D by adding the
arc −→xy whenever there is a directed path from x to y. A rooted oriented tree is an
oriented tree with a specific vertex v (called the root) such that for every other vertex
u the path connecting u to v is a directed path from v to u. In such a tree, given an
arc −→xy, we say that x is the father of y and that y is a child of x . The vertices with a
directed path to x are called ancestors of x and vertices with a directed path from x
are descendents of x . A rooted oriented forest is a disjoint union of rooted oriented
trees.

By these definitions it is easy to check that:

Observation 4 Every element of (K1,⊕,−→
 ) is the transitive closure of a rooted
oriented forest.

For a digraph D in (K1,⊕,−→
 ) let us denote by
−→
F (D) the rooted oriented forest

whose transitive closure is D.

Proposition 5 For every digraph D in (K1,⊕,−→
 ) we have
−→
γ ID(D) = |V (D)|. Fur-

thermore, if a vertex x is a source in D, then V (D) − x is a separating code of D.

Otherwise, the vertex x and its father in
−→
F (D) are the only ones not being separated

from each other by the set V (D) − x.

Proof Let C be an identifying code of D. Except for its roots, each vertex of the forest−→
F (D) must be in C in order to be separated from its father. But the sources need also
to be in C in order to be dominated. ��

The next proposition is the directed analogue of Proposition 3 in [9], and since the
proof is quite the same we omit it.

Proposition 6 Let D be a finite twin-free digraph, and let S be a subset of vertices of

D such that D − S is twin-free. Then
−→
γ ID(D) ≤ −→

γ ID(D − S) + |S|.
Let D be a twin-free digraph with vertex set {x1, x2, . . . , xn} and let A = {B+

1 (x1),

B+
1 (x2), . . . , B+

1 (xn)}. Then (A, V (D)) form a set system satisfying the conditions
of Bondy’s theorem. Therefore we have:

Proposition 7 Let D be a finite twin-free digraph. Then
−→
γ S (D) ≤ |V (D)| − 1.

The following corollary of the previous proposition will also be needed.
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Proposition 8 In a finite twin-free digraph D,
−→
γ ID(D) = |V (D)| if and only if−→

γ S (D) = |V (D)| − 1 and for every minimum separating code of D, there is a vertex
which is not dominated.

Proof Suppose
−→
γ ID(D) = |V (D)|. By Proposition 7 we know that

−→
γ S(D)≤|V (D)|−1.

On the other hand,
−→
γ ID(D) ≤ −→

γ S(D) + 1 thus
−→
γ S(D) = |V (D)| − 1. Now, if all the

vertices where dominated by some minimum separating code of D, that code would
also be identifying, a contradiction.

Conversely, if
−→
γ S(D) = |V (D)| − 1 and for any minimum separating code of D,

there is a vertex which is not dominated, we are forced to take all the vertices in any
identifying code in order to get the domination property. ��

The following theorem shows that the family of Definition 3 is exactly the class of
finite digraphs in which the whole vertex set is the only identifying code.

Theorem 9 Let D be a finite twin-free digraph. If
−→
γ ID(D) = |V (D)| then D ∈

(K1,⊕,−→
 ).

Proof Assume D is the smallest digraph for which
−→
γ ID(D) = |V (D)| but D /∈

(K1,⊕,−→
 ). We consider two cases:
Case a. Assume that there exists a vertex x of D such that x has no outneighbours.

Then D − x is a twin-free graph. By Proposition 6 we have
−→
γ ID(D − x) = |V (D − x)|

and, therefore, by the minimality of D, D − x ∈ (K1,⊕,−→
 ). Thus
−→
F (D − x) is

well-defined. Since V (D) − x is not an identifying code of D, in V (D) − x either
there is a vertex y which is not separated from x , or x is not dominated.

If x is not dominated, then x is an isolated vertex and, therefore, D is the disjoint
union of two members of (K1,⊕,−→
 ), hence D is also in the family. So there is a
vertex y which is not separated from x . Therefore, N+(x) = N+(y) ∪ {y}. Then D is
the transitive closure of the oriented tree built from

−→
F (D − x) by adding x as a child

of y, a contradiction.
Case b. Every vertex has at least one outneighbour. By Proposition 7 we know

that there exists a vertex x such that D − x is twin-free and as in the previous case−→
F (D − x) is well-defined.

Since every vertex, in particular, every leaf t of
−→
F (D − x) has an outneighbour

in D, we must have −→
t x ∈ A(D). Thus d+(x) ≥ 1 and, therefore, V (D) − x is a

dominating set. But since it is not an identifying code there is a vertex y �= x which
is not separated from x by V (D) − x , i.e., N+(x) = N+(y) ∪ {y}.

We now claim that y is the only leaf of
−→
F (D − x). That is because if t �= y is a leaf

then t ∈ N+(x) so t ∈ N+(y) which is a contradiction. But there has to be at least
one leaf in

−→
F (D − x) thus y is the only leaf in

−→
F (D − x) and, therefore,

−→
F (D − x)

is a path. Now since d−(x) > 0, there is a vertex in N−(x). We have y /∈ N−(x) since
otherwise we would have N+(x) = N+(y).

First, assume that there exists a vertex t ∈ N−(x) such that the father of t in−→
F (D − x) is not in N−(x). We claim that C = V (D) − t is an identifying code.
Indeed, x is the only vertex dominated by all vertices of C . Vertex t and its father are
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separated by x . Finally, each other pair of vertices from V (D) − x is separated by the
one which is a descendant of the other in

−→
F (D − x).

Now, assume that there is no vertex in N−(x) with its father in
−→
F (D − x) not

belonging to N−(x). Let r be the root of
−→
F (D − x). In particular, r ∈ N−(x). We

claim that C = V (D) − r is an identifying code. Indeed, x is the only vertex domi-
nated by all vertices of C . Each pair of vertices from V (D)− x is separated by the one
which is a descendant of the other in

−→
F (D − x). Finally, r is the only vertex which

is dominated only by x . ��
Noticing that digraphs in (K1,⊕,−→
 ) have no symmetric arcs, we have the follow-

ing extension of Theorem 1:

Corollary 10 Let D be a finite twin-free digraph having some symmetric arcs. Then−→
γ ID(D) ≤ |V (D)| − 1.

3 Extremal Infinite Oriented Graphs

In this section, we consider the case of infinite digraphs in which the whole vertex set
is the only identifying code. To avoid set theoretic problems we only consider infinite
graphs on a countable set of vertices. Thus in this section the considered directed or
oriented graphs have a finite or countable set of vertices.

By the characterization of the family of simple infinite graphs needing their whole
vertex set to be identified in [9], we already have a rich family of extremal symmetric
digraphs with respect to identifying codes. The family of all such directed graphs
seems to be too rich to characterize. In this section we provide such characterization
for the class of all oriented graphs. We begin with the following definitions:

A connected (and possibly infinite) oriented graph D is a finite-source transitive
tree ( f st-tree for short) if:

(1) for each vertex x of D, B+
1 (x) induces the transitive closure of a finite directed

path, Px , with x as its end vertex, and
(2) for each pair x, y of vertices, there is a vertex z ∈ V (D) such that Px ∩ Py = Pz .

Note that in an f st-tree D, since each path Px is finite, point (2) of the definition
implies that for any pair x, y of vertices, Px and Py begin with the same vertex. Hence
all paths Px begin with the same vertex, which is the unique source of D.

An oriented graph D is an infinite-source transitive tree (ist-tree for short) if:

(1) for all vertices x of D, B+
1 (x) induces the transitive closure of an infinite path

(we denote it by Px ), and
(2) for any pair x, y of vertices of D, there is a vertex z ∈ V (D) such that Px ∩ Py =

Pz .

Note that an ist-tree has no source vertex but one can imagine infinity as its source.
Finally we say that an oriented graph D is a source transitive tree if it is either

an f st-tree or an ist-tree (see Fig. 2 for examples). For each pair x, y of vertices
of a source transitive tree D, paths Px and Py share the vertices of a path Pz which

123



Graphs and Combinatorics (2013) 29:463–473 469

· · ·

··
·

· · ·

Fig. 2 Underlying trees of source transitive trees

includes the “beginning” of both Px and Py . Hence, all arcs of D can be oriented in
the same direction. Moreover, there cannot be any cycle in the union of all paths Px .
This implies that each source transitive tree D is the transitive closure of a finite or
infinite “rooted” oriented tree (even if an ist-tree has no properly defined root vertex,
one can regard infinity as its root) which we call the underlying tree of D. Notice that
the collection of f st-trees on a finite set of vertices is exactly the set of connected
elements of (K1,⊕,−→
 ).

Proposition 11 The only identifying code of a source transitive tree is its whole set
of vertices.

Proof Let D = (V, A) be a source transitive tree and x be any vertex of D. If x is a
source (it can only happen if D is an f st-tree), then x must be in any identifying code
of D in order to be dominated. If x is not a source, then to separate x from its father
in the underlying tree of D, x itself must be in any identifying code. ��

We are now ready to build the whole family of oriented graphs that need their whole
vertex set to be identified. To this end given any oriented graph H we first build the
family �(H) of extremal oriented graphs as follows:

For each vertex x of H if x is a source of H , then we assign an f st-tree Tx to x .
If x is not a source, then we assign an ist-tree Tx to x . The choice of Tx is free but each
Tx has its distinct set of vertices. For each arc −→xy of H we also associate a subset V−→xy
of V (Tx ) (the choice of V−→xy is also free). We now build a member of �(H) by taking
∪V (Tx ) as the vertex set, arcs of Tx are also arcs of the new graph and, furthermore,
for any z ∈ V−→xy and any t ∈ V (Ty), we add an arc −→

zt .

Proposition 12 Given an oriented graph H, any digraph D in �(H) can only be
identified by its whole vertex set.

Proof The sources of D are exactly the sources of the f st-trees Tx for source-vertices
x of H and need to be in any identifying code in order to be dominated. If a vertex u
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of D is not a source, then it is in an f st or ist-tree Tx and there is, like in the proof of
Proposition 11, a vertex v of Tx such that B+

1 (u)∩V (Tx ) = (B+
1 (v)∩V (Tx ))∪{u} (v

simply is the father of u in the underlying tree of Tx ). By our construction, any incoming
neighbour of u not in Tx is also an incoming neighbour of v so B+

1 (u) = B+
1 (v)∪ {u}

and u must be in any identifying code of D. ��
Theorem 13 Let D be an infinite twin-free oriented graph. Then a proper subset of
V (D) identifies all pairs of vertices of D unless G ∈ �(H) for some finite or infinite
oriented graph H.

Proof Let D be an infinite oriented graph that needs its whole vertex set to be identi-
fied. Let x be a vertex of D. The set V (D)−{x} is not an identifying code. Either x is
not dominated and so, x is a source or there is a pair of vertices, say u and v, such that
B+

1 (v) = B+
1 (u) ∪ {x}. If x �= v, we must have −→uv ∈ A and −→

vu ∈ A. Since D has no
symmetric arc, this is not possible so, necessarily, x = v, B+

1 (x) = B+
1 (u) ∪ {x} and

u is the only vertex such that B+
1 (x) = B+

1 (u) ∪ {x}. So for any vertex x of D which
is not a source there is a unique vertex we call x−1 such that B+

1 (x) = B+
1 (x−1)∪{x}.

We may repeat this argument on x−i to get x−i−1 for i = 1, 2, . . . as long as x−i is not
a source. This will result in a well defined set {. . . , x−i , . . . , x0 = x} which induces
a transitive closure of a finite or infinite path, which we denote by Px (if x is a source
itself, then Px = {x}).

Assume that for two vertices x and y, Px ∩ Py �= ∅. Then let xi be the first (in the
order defined by the path Px ) vertex of Px in Px ∩ Py . We have Px ∩ Py = Pxi .

We now define an equivalence relation on the vertices of D : x ≡ y if and only if
Px ∩ Py �= ∅. This gives us the equivalence class of x : Tx = {y ∈ V (D)|x ≡ y}.
The set of vertices of Tx induces either an f st-tree or an ist-tree in D. Furthermore,
if u /∈ Tx , then −→uv is an arc of D for either every v ∈ V (Tx ) or no v ∈ V (Tx ). In
fact, if there is an arc −→uy in D for y ∈ Tx , then if z ∈ Tx we have Py ∩ Pz = Pyi .
But B+

1 (y) = B+
1 (t) ∪ {y, y−1, . . . , yi+1} so u ∈ B+

1 (t). Now, B+
1 (t) ⊂ B+

1 (z) so
u ∈ B+

1 (z) and −→uz is also an arc of D.
We construct a graph H as follows: the vertices of H are the equivalence classes Tx

and there is an arc
−−→
Tx Ty if there is an arc −→uv of D such that u ∈ V (Tx ) and v ∈ V (Ty).

It is now clear that D ∈ �(H). ��
We conclude this section by the following remarks:

– This proof also works for the classification of finite oriented graphs with
−→
γ ID(D) =

|V (D)|. But the characterization of Theorem 9 is for all digraphs, thus it is a stronger
statement.

– The oriented graphs for which the only separating set is their whole vertex set are
graphs in �(H) as long as H has no source vertex.

4 An Application to Bondy’s Theorem

In this section, unless specifically mentioned, a set system is a pair (A, X) with X
being any set of size n and A being a collection of n distinct subsets of X . When
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applying Bondy’s theorem to a set system (A, X) where all subsets in A are distinct
and nonempty, it is a natural request to be able to choose an element x of X such that no
subset Ai − x is the empty set. This is not always possible, just consider the set system
A consisting of all singletons of X . Such set systems will be called extremal. More
precisely, an extremal set system is a set system (A, X) in which elements of A are
all distinct and nonempty, and where for any element x of X either there is an element
Ai ∈ A with Ai − x = ∅ or there is a pair Ai , A j ∈ A such that Ai − x = A j − x .
In this section we characterize all such extremal cases.

We would like to mention that almost any proof of Bondy’s theorem (e.g., see
[1,3,4,12]) works for an extension of this theorem in which we are allowed to have
more elements in X than A. We then look for a subset X ′ ⊂ X of size |X | − |A| + 1
such that all the induced sets Ai − X ′ are distinct. The following proposition is now
an easy consequence of this general version of Bondy’s theorem.

Proposition 14 Let (A, X) be a set system with |X | > |A| where all the subsets in
A are distinct and nonempty. There is a subset X ′ of X of size |X | − |A| such that all
the subsets A ∩ (X − X ′) for A ∈ A are nonempty and distinct.

Proof Let X0 be the subset of size |X |−|A|+1 found by extended version of Bondy’s
theorem, i.e., all the subsets A ∩ (X − X0) are distinct. Thus there is at most one sub-
set A0 such that A0 ∩ (X − X0) is empty. Let x0 ∈ X0 be an element of A0. Then
X ′ = X0 − {x0} satisfies the proposition. ��

To achieve our goal of characterizing the extremal set systems, we will need a few
more definitions. Given a set system (A, X) we define its incidence bipartite graph
B(A, X) to be the bipartite graph with A ∪ X as its vertex set where A and X form
the two parts and in which vertex Ai ∈ A is adjacent to vertex x j ∈ X if and only if
x j ∈ Ai . Bondy’s theorem can now be restated as follows:

Theorem 15 Let G = (S ∪ T, E) be an S-identifiable bipartite graph with |S| = |T |.
Then there exists an S-separating code C ⊆ T of size at most |S| − 1.

As in the case of set systems one can also define the incidence bipartite graph of a
digraph. To this end given a digraph D on a vertex set {x1, x2, . . . , xn} we define B(D)

to be the bipartite graph on S = {x1, x2, . . . , xn} and T = {x ′
1, x ′

2, . . . , x ′
n} with xi

being adjacent to x ′
j if either −−→xi x j ∈ A(D) or i = j . The latter condition of adjacency

implies that for a bipartite graph to be the incidence bipartite graph of some digraph it
must admit a perfect matching. Below we prove that this is also a sufficient condition.

Lemma 16 A bipartite graph G = (S ∪ T, E) is the incidence bipartite graph of
some digraph D if and only if |S| = |T | and G admits a perfect matching ϕ : S → T .

Proof It follows from the definition of the incidence bipartite graph of a digraph that
G must have both parts of the same size and admits a perfect matching which matches
the two copies of each vertex.

Now, given a bipartite graph G with parts S and T of equal size together with a
perfect matching ϕ, one can construct a digraph D with vertex set S in the following
way. For each pair x, y of vertices if xϕ(y) ∈ E(G), then −→xy is an arc of D. The
constructed digraph has G as its incidence bipartite graph. ��
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Fig. 3 Digraph of a bipartite graph

An example of the correspondence between a bipartite graph with a perfect match-
ing (thick edges) and a digraph is given in Fig. 3.

We are now ready to achieve our goal of classifying the extremal set systems in
Bondy’s theorem when |A| = |X |.
Theorem 17 A set system (A, X) with |A| = |X | is extremal if and only if its incidence
bipartite graph B(A, X) is the incidence bipartite graph of a digraph in (K1,⊕,−→
 ).

Proof If B(A, X) is the incidence bipartite graph of a member D of (K1,⊕,−→
 ), then

by Theorem 9 we have
−→
γ ID(D) = |V (D)| thus by Proposition 8 with any separating

code of size |V (D)|−1 there must be a vertex which is not dominated. Any separating
code V (D) − x of D corresponds to the choice of x in Bondy’s theorem, and leaves
some vertex in D undominated—that is, there exists Ai ∈ A such that Ai − x = ∅.
Hence (A, X) is extremal.

For the other direction, we distinguish two cases.
Case a. B(A, X) admits a perfect matching. Then the directed graph D built from

B(A, X) using this matching as in the method of Proposition 8 is such that
−→
γ ID(D) =

|V (D)|. Thus by Theorem 9, D ∈ (K1,⊕,−→
 ) and we are done.
Case b. B = B(A, X) does not contain a perfect matching. Then by Hall’s mar-

riage theorem (see, e.g. [3]), there is a subset X ′ of X such that |NB(X ′)| < |X ′|.
For Ai ∈ A we define A′

i = Ai ∩ X ′ and A′ = {A′
1 . . . A′

|A|} − ∅. Consider the set
system (A′, X ′) (|A′| < |X ′|). By Proposition 14 there is an element x0 in X ′ such
that A′

i − x0 are all nonempty and distinct as long as they induce distinct elements
in A′. Now it is easy to check that X − x0 induces nonempty and distinct elements
on A. ��

Using the previous theorem we can describe the extremal set systems (A, X) with
|A| = |X | purely in the terminology of sets:

Corollary 18 A set system (A, X) with |A| = |X | is extremal if and only if:

–
⋃

Ai = X
– for any subset Ai with at least two elements, there is an element x of Ai such that

Ai − x ∈ A.

Proof If D is a digraph of (K1,⊕,−→
 ), it is easy to see that the set system correspond-
ing to its incidence bipartite graph B(D) has the properties.
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Now, let (A, X) be a set system having the properties of the corollary.
Assume there is an element x such that all Ai − x are distinct and nonempty. Take Ai

to be the smallest subset containing x , it exists because
⋃

Ai = X . Then Ai �= {x}
and so there is an element y such that Ai − y = A j . Then necessarily x �= y and A j

is a smaller set than Ai containing x . This is a contradiction. ��
We conclude this section by relating this work to a similar problem studied by

Charon et al. [5]. We have previously seen that Bondy’s theorem can be stated in the
language of separating codes in bipartite graphs. Furthermore, the extremal case we
have studied, where a minimum separating code does always give an undominated
vertex, is equivalent to the one where the only minimum discriminating code consists
in the whole vertex set (in fact Proposition 8 holds also for separating and discrimi-
nating codes in bipartite graphs). Therefore Theorem 17 can be stated in the language
of discriminating codes:

Corollary 19 Given a bipartite graph G = (S ∪ T, E) with |S| = |T | which is
S-identifiable, a minimum discriminating code C ⊆ T of G has size |S| if and only if
G is the incidence bipartite graph B(D) of some digraph D in (K1,⊕,−→
 ).
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