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Abstract. We call a subset C of vertices of a graph G a (1,≤ `)-identifying

code if for all subsets X of vertices with size at most `, the sets {c ∈ C | ∃u ∈
X, d(u, c) ≤ 1} are distinct. The concept of identifying codes was introduced

in 1998 by Karpovsky, Chakrabarty and Levitin. Identifying codes have been

studied in various grids. In particular, it has been shown that there exists a
(1,≤ 2)-identifying code in the king grid with density 3

7
and that there are no

such identifying codes with density smaller than 5
12

. Using a suitable frame

and a discharging procedure, we improve the lower bound by showing that any
(1,≤ 2)-identifying code of the king grid has density at least 47

111
. This reduces

the gap between the best known lower and upper bounds on this problem by
more than 56%.

1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V and edge set
E. The closed neighbourhood of a vertex v ∈ V , which consists of the vertex itself
and all the adjacent vertices, is denoted by N [v]. In addition, we write N [X] =⋃
v∈X N [v] for X ⊆ V . In [8], a subset C ⊆ V is called a (1,≤ `)-identifying code if

N [X] ∩ C 6= N [Y ] ∩ C
for any two distinct subsets X ⊆ V and Y ⊆ V of size at most ` (one of them can
be the empty set). The elements of a code C are called codewords.

Identifying codes were introduced by Karpovsky, Chakrabarty and Levitin in [12]
and can be applied to locate objects in sensor networks [15]. A network is mod-
elled by a graph and a sensor can check its closed neighbourhood. It gives an
alarm if it detects at least one of the sought objects there. Suppose we have a
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(1,≤ `)-identifying code C in the graph, and we place the sensors to the vertices
corresponding to the codewords of C. Then, knowing the set of alarming sensors
A ⊆ C, we can determine where the objects are (assuming that there are at most
` of them). Indeed, we have A = N [X] ∩ C for some subset X of size at most `,
and because these are unique, we can determine X — the set of vertices where the
objects are.

Of course, we would like to use as few sensors as possible, so our aim is to find
identifying codes with smallest possible cardinality. For infinite grids, we define
below the measure density for this purpose.

Identifying codes have been considered, for example, in the following infinite
grids: the square grid, the triangular grid, the king grid and the hexagonal mesh [1,
2, 3, 4, 5, 6, 7, 9, 10, 11]. For more papers concerning the topic of identification,
see [13]. In this paper, we focus on (1,≤ 2)-identifying codes in the king grid. The
king grid has vertex set Z2 and two vertices are adjacent if and only if the Euclidean
distance between them is at most

√
2. Hence, the closed neighbourhood of a vertex

consists of nine vertices (see Figure 1).

Figure 1. The infinite king grid with a (1,≤ 2)-identifying code
of density 3

7 .

Even though we study only (1,≤ 2)-identifying codes herein, note that the defini-
tion of (1,≤ `)-identifying codes may be naturally generalized to (r,≤ `)-identifying
codes, where r denotes the radius of the code. We do not give a formal definition, but
refer the reader to e.g. [8] instead. It is worth mentioning that (r,≤ `)-identifying
codes have been extensively studied in the king grid, and all but two cases have
been solved completely (see Table 1 for a summary of known bounds).

In this paper, we focus on one of the two remaining open cases: (1,≤ 2)-
identifying codes. In [8], a construction of a (1,≤ 2)-identifying code in the infinite
king grid with density 3

7 was given (see Figure 1). Recently, in [14], a lower bound

of 5
12 was obtained. In this paper, we show that our approach, which utilizes certain

frames, improves this lower bound to 47
111 , which reduces by more than 56% the gap

between the best known lower and upper bounds.

2. Preliminaries

We call code any subset of Z2. As usual, the density D(C) of a code C ⊆ Z2 is
defined by

D(C) = lim sup
n→∞

|C ∩Qn|
|Qn|
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r = 1 r = 2 r ≥ 3

` = 1 2
9 [3, 6] 1

4r [2]

` = 2 47
111 – 3

7 [8] 31
120 [8] – 2

7 [14] 1
4 [8]

` ≥ 3 no identifying code exists [8]

Table 1. Known bounds on the optimal densities of (r,≤ `)-
identifying codes in the king grid.

where Qn = {(x, y) ∈ Z2 | |x| ≤ n, |y| ≤ n}.
The next theorem gives the previously known bounds for the optimal density of

a (1,≤ 2)-identifying code in the king grid.

Theorem 1 ([6, 14]). Let d be the optimal density of a (1,≤ 2)-identifying code in
the king grid. Then 0.4166 < 5

12 ≤ d ≤
3
7 < 0.4286.

To prove bounds on the density of a code C, one method is to use a finite subset
X of Z2. For any vertex v ∈ Z2, we denote by v+X or X+v the set {v+u | u ∈ X},
and by n(X,C) the average number of codewords of C in the translations of X:

n(X,C) = lim supn→∞

∑
v∈Qn

|(v+X)∩C|
|Qn| . If we have some knowledge about n(X,C),

we can get results on the density of C with the following proposition.

Proposition 2. Let C be a code of Z2 and X a nonempty finite subset of Z2, then

D(C) =
n(X,C)

|X|
.

Proof. Let h be an integer such that X ⊆ Qh. Let n be a positive integer. A vertex
of (v+X)∩C, for v ∈ Qn+h is either in C ∩Qn, or in Qn+2h \Qn. In the union of
all the sets (v +X) ∩ C, with v ∈ Qn+h, each vertex of C ∩Qn is counted exactly
|X| times and each vertex of Qn+2h \ Qn is counted at most |X| times. Hence we
have

|X||C ∩Qn| ≤
∑

v∈Qn+h

|(v +X) ∩ C| ≤ |X|(|C ∩Qn|+ |Qn+2h \Qn|).

By dividing every term by |Qn|, we obtain

|X| · |C ∩Qn|
|Qn|

≤
∑
v∈Qn+h

|(v +X) ∩ C|
|Qn|

≤ |X| · |C ∩Qn|
|Qn|

+ |X| · |Qn+2h \Qn|
|Qn|

.

Since h is a fixed integer, we have lim sup
n→∞

|Qn+2h\Qn|
|Qn| = 0. As n→∞ we obtain

lim sup
n→∞

∑
v∈Qn+h

|(v +X) ∩ C|
|Qn|

= |X| ·D(C).

To end the proof, one can easily verify that lim sup
n→∞

∑
v∈Qn+h

|(v+X)∩C|
|Qn| = n(X,C).

The identifying code problem can be seen as a covering problem. Indeed, a code
C is a (1,≤ `)-identifying code if and only if, for any two distinct subsets of vertices,
X and Y , of size at most `, the symmetric difference N [X]∆N [Y ] is covered by at
least one element of C. The following theorem, from [8], reduces (in the case of the
king grid) the family of sets that a code has to cover to be a (1,≤ 2)- identifying
code.
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Theorem 3 ([8], Theorem 2.1). A code C is a (1,≤ 2)-identifying code in the king
grid if and only if, for all (x, y) ∈ Z2, the sets

1. {(x, y), (x+ 3, y), (x, y + 3), (x+ 3, y + 3)},
2. {(x, y), (x+ 1, y), (x+ 2, y)}
3. {(x, y), (x, y + 1), (x, y + 2)}

each contain at least one codeword of C.

Note that Theorem 3 together with Proposition 2 directly implies that the density
of a (1,≤ 2)-identifying code of the king grid is at least 1

3 . To improve this lower
bound (and the one of Theorem 1), we will use, as the set X of Proposition 2, the
set of Figure 2 (without loss of generality, one can set the left-lower corner of this
set to be the origin). We call frame any set which is a translation of the set of
Figure 2.

The aim of this paper is to give a lower bound on the average number of codewords
in a frame. More precisely, we will use a discharging procedure to show that the
average number of codewords in a frame is at least 5 + 3

37 . Although our frame
approach seems, at first sight (see Lemma 4), to give less information than the
method of [14], the handling of the neighbourhood of a frame makes it more powerful
(see Section 3).

To this end, note that there is a natural bijection between all the frames and the
set Z2. We consider the frames lattice over the set of all frames, where the distance
between two frames is the distance in the king grid between the two corresponding
vertices. As an example, the 2-ball of a frame F is the set of frames

{F + (x, y) | (x, y) ∈ Z2,max{|x|, |y|} ≤ 2}.

We will often study a frame together with all the vertices at distance at most two
of some vertex of the frame. Therefore, we will use the notation Xy with X∈A-H
and y∈a-h, for a vertex on line X and column y with respect to the coordinates of
Figure 2. The four vertices in positions Cc, Cf, Fc and Ff are called the corners of
the frame. A side of a frame is a set of four vertices of the frame lying in the same
line or column.

The conditions of Theorem 3 can be reformulated using our terminology. A code
C is a (1,≤ 2)-identifying code in the king grid, if and only if for each frame F ,

Condition 1: At least one corner of F is a codeword of C.

Condition 2: Each set of three consecutive vertices on a side of F contains at least
one codeword of C.

In the following, we assume that C is a (1,≤ 2)-identifying code of the king grid.
Given an integer k, a k-frame (resp. k+-frame, k−-frame) is a frame containing
exactly k (resp. at least k, at most k) vertices of C.

Lemma 4. Let F be a frame, then F is a 4+-frame. If F is a 4-frame, then all its
codewords are in the corners of F .

Proof. It is easily observed that any frame F can be partitioned into four sets of
three consecutive vertices on a line or column. Hence, by Condition 2, F contains
at least four codewords.

Assume that F contains exactly four codewords. By Condition 1, one of the
codewords must be in a corner, say in position Cc. Then, by Condition 2, there
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Figure 2. Notation for vertices in the neighbourhood of a frame.

must be another codeword on line C. If it was on column d or e, one could partition
the remaining vertices into three sets of three consecutive vertices on a line or column
and F would be a 5+-frame, a contradiction. So there is a codeword in position
Cf. Using similar arguments, the two other codewords must be in positions Fc and
Ff.

Observation 5. If a frame has three non-corner codewords on two of its sides,
then it is a 6+-frame.

Proof. Assume first that the three non-corner codewords lie on opposite sides. With-
out loss of generality, we can assume there are in positions Cd, Ce and Fd. By
Condition 1, there must be one codeword in a corner. Assume it is in column
c. Then, by Condition 2, there must be another codeword in column c and one
in column f, leading to a 6+-frame. If the corner codeword is in column f, then
there would be two codewords in column f and one in column c, leading again to a
6+-frame.

We assume now that the three non-corner codewords are on adjacent sides. With-
out loss of generality, we can assume they are not in the set S composed by line C
and column f. By Condition 2, there are at least two codewords in S. By Condi-
tion 1, there is a codeword in a corner. If there is a codeword in position Fc then
F is a 6+-frame. Otherwise, there is a corner codeword in S and then there must
be three codewords in S, leading to a 6+-frame.

Observation 6. If a frame F has a corner codeword c and two non-corner code-
words on one of the sides of F that c does not belong to, then F is a 6+-frame.

Proof. Without loss of generality, we assume that there are three codewords in
positions Cc, Fd and Fe. By Condition 2, there must be another codeword in
column c, another codeword in line C and one among positions Df, Ef and Ff.
Hence, F is a 6+-frame.

Lemma 7. Let F be a 4-frame. Then the four frames F + {(0, 2), (0,−2), (2, 0),
(−2, 0)} are 6+-frames.

Proof. By Lemma 4, the four codewords of F are its four corners. By Condition
1 applied on F + (1, 0), there is a codeword on either position Cg or position
Fg. Hence by Observation 5, F + (2, 0) is a 6+-frame. The claim is obtained by
symmetry.
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Lemma 7 gives a short new proof of a result first given in [14]. It demonstrates
the strength and potential of our method by giving an easy way to prove the 5

12
bound. Notice that the original different approach of [14] was based on certain
tilings.

Theorem 8 ([14]). The density of any (1,≤ 2)-identifying code of the king grid is
at least 5

12 .

Proof (using the frame approach). Let C be a (1,≤ 2)-identifying code of the king
grid. We use the discharging method to show that the average number of codewords
in a frame is at least 5. Since the size of each frame is 12, the result will follow by
Proposition 2.

In the beginning, each k-frame has charge k. Then, each 6+-frame F gives charge
1
4 to each 4-frame among frames F + {(0, 2), (0,−2), (2, 0), (−2, 0)}. By Lemma 4,
there exist only 4+-frames. By Lemma 7, each 4-frame receives charge 1 and each
6+-frame gives at most charge 1 away. So after the discharging process, each frame
has at least charge 5. Each frame only gives charge to vertices at distance at most
2, hence the average number of codewords of C in a frame is at least 5 and we are
done.

In the following, we will prove our main result.

Theorem 9. The density of any (1,≤ 2)-identifying code of the king grid is at least
47
111 > 0.4234.

In order to utilize our frame approach, we need to device a more carefully designed
discharging method than the one of our proof of Theorem 8. As will be seen in
Figures 5 and 6, our approach leads to building a large part of the best known
(perhaps optimal) code of density 3

7 . It is possible that if one could manage to
study an even larger neigbourhood in the frame lattice than the 2-ball, the lower
bound could be raised to get rather close to 3

7 . However, working in the 2-ball is
already quite complicated.

In order to prove Theorem 9, we will give a final charge of more than 5 to each
frame, therefore getting a bound strictly greater than 5

12 . Hence, a charge value
of 5 can be seen as the reference for the value of the charge of a frame. We say
that the charge excess of a k-frame is k− 5. The charge excess within a subset S of
frames is the sum of the charge excesses of all the frames of S.

3. Structural properties of code C

We now prove some results on the structure of C in the viewpoint of the frames.
These results will then be used in our discharging procedure.

We call 4-benefactor a 6+-frame F having a 4-frame among frames F + {(0, 2),
(0,−2), (2, 0), (−2, 0)}.

Lemma 10. Let F be a 4-benefactor. Then F has 6+-frames in each corner position
of its 2-ball being at distance 2 from the 4-frames among F + {(0, 2), (0,−2), (2, 0),
(−2, 0)}. Moreover, if F is a 6-frame, there is a unique 4-frame among frames
F + {(0, 2), (0,−2), (2, 0), (−2, 0)}. If F is a 7+-frame, there are at most two 4-
frames among frames F + {(0, 2), (0,−2), (2, 0), (−2, 0)}.

Proof. The first part of the claim is a direct consequence of Lemma 7.
There is at least one 4-frame among F + {(0, 2), (0,−2), (2, 0), (−2, 0)}, without

loss of generality, we can assume that F+(−2, 0) is a 4-frame. Then F+(2, 0) cannot
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be a 4-frame since then, no corner of F is a codeword, contradicting Condition 1
on F . Suppose now that there is another 4-frame among F + {(0, 2), (0,−2)}, say
F + (0, 2). As before, F + (0,−2) cannot be a 4-frame. By Condition 1 applied on
F , there is a codeword in position Ff. By Condition 1 applied on F + (−1, 0) and
F + (0, 1), there are two codewords among positions Ce, Fe, Ec and Ef. Hence F
is a 7+-frame and we are done.

F

6+

6+

4

X

X

X

X

X

X

X

X

XZ

XZ

XZZ

ZY

Y

X

X

X

Figure 3. 2-ball around a 4-benefactor 6-frame.

The 6+-frames in the corner positions of a 4-benefactor 6+-frame described in
the previous lemma are called the co-benefactors of F . The next lemma is valid for
other cases by symmetry. The proof is quite repetitive, therefore it is to be found
in Appendix A.

Lemma 11. Let F be a 4-benefactor 6-frame oriented as in Figure 3. Then

• Frame F has at least two 6+-frames F1, F2 in its 2-ball (in addition to its
co-benefactors).

• If F has no 6+-frame in a Y - or Z-position, then F has at least three 6+-
frames in its 2-ball (in addition to its co-benefactors), or one of its co-
benefactors is a 7+-frame and F + (−1, 0) is not a 6+-frame.

A frame is called 1-poor (resp. 2-poor) if it is a 5-frame having at most one
6-frame in its 2-ball (resp. no 6+-frame at distance 1 and at most two 6-frames at
distance 2).

Lemma 12. Let F be a 5-frame, then F has at least one 6+-frame in its 2-ball.
Moreover, one of the following properties holds

• F has a 6-frame at distance 1 and another 6+-frame in its 2-ball,
• F has a total charge excess of at least 3 within its 2-ball, with at least two

6+-frames,
• F is 1-poor and, up to symmetry, the configuration around F is depicted on

Figure 5,
• F is 2-poor and, up to symmetry, the configuration around F is depicted on

Figure 6.

Proof. Let F be 5-frame. We make a case analysis according to the configurations
of F depicted on Figure 4. Cases A1 to A10 represent cases where F has only one
corner codeword, cases B1 to B4 are those cases where F has exactly two corner
codewords on the same side, cases C1 to C3 are the cases where F has three corner
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A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

B1 B2 B3 B4

C1 C2 C3 D

Figure 4. All the possibilities for a 5-frame.

codewords, and case D is the case where F has four corner codewords. The cases
which are symmetric to those of Figure 4 will follow from the same arguments.
Moreover, note that if F had exactly two corner codewords on opposite corners, by
Condition 2, each side of F would contain an additional codeword and F would be
a 6+-frame.

Since the arguments for many cases are quite similar and some of them are rather
lengthy and repetitive, we only provide the proofs of cases A1 to A7 and C3 here.
The remaining cases are provided in Appendix B.

Case A1. By Observation 5, F + (−1, 0) and F + (0, 1) both are 6+-frames and
we are done.

Case A2. By Observation 5, F + (−1, 0) is a 6+-frame. By Observation 6,
F + (0, 1) is a 6+-frame and we are done.

Case A3. By Observation 6, F + (−1, 0) and F + (0, 1) both are 6+-frames and
we are done.
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Case A4. By Observation 5, F + (0, 1) is a 6+-frame. Now, by Condition 2,
there is a codeword on either position Dd or Ed. In either case, by Observation 5,
F + (−1, 2) or F + (1,−1) respectively, is a 6+-frame and we are done.

Case A5. By Observation 6, F + (0, 1) is a 6+-frame. Now, by Condition 2,
there is a codeword on either position Dd or De. In either case, by Observation 5,
F + (−1,−1) or F + (2, 1) respectively, is a 6+-frame and we are done.

Case A6. By Observation 6, F + (0, 1) is a 6+-frame. Now, by Condition 2,
there is a codeword in either position Dd or Ed. In both cases, by Observation 5,
F + (−1,−1) or F + (1,−1) respectively, is a 6+-frame and we are done.

Case A7. By Observation 5, F + (0, 1) is a 6+-frame. If F + (−1,−1) is a
6+-frame, we are done. Otherwise, from the assumptions there are already four
non-corner codewords in F + (−1,−1), hence F + (−1,−1) is a 5-frame and, by
Condition 1, all its further non-corner positions contain no codeword. In particular,
there is no codeword in both positions Dd and Gd. By Condition 1, there is a
codeword on at least one of the positions Dg and Gg. Hence, by Observation 5,
F + (2,−1) is a 6+-frame and we are done.

Case C3. Assume first that there is no codeword in position De. Then, there
must be codewords in both positions Dd and Ee. Then, by Observation 5, F+(1, 1)
and F+(−1,−1) are both 6+-frames. Hence we can assume that there is a codeword
in position De, and, by symmetry in position Ed.

If there is a codeword in position Dd, by Observation 5, F+(0, 2) and F+(0,−1)
are 6+-frames and we are done. Hence we may assume there is no codeword in
position Dd.

If there is a codeword in position Ee, by Observation 5, F + (0, 1) and F + (2, 0)
are 6+-frames and we are done. Hence we may assume there is no codeword in
position Ee.

If there is a codeword in position Bc or Bf, by Observation 5, F + (0, 2) is a
6+-frame and F + (0, 1) must be a 6+-frame too, so we are done. Hence we may
assume there is no codeword in positions Bc and Bf and, by symmetry, on positions
Cb and Fb.

If there is a codeword in position Be, then F + (0, 1) is a 6+-frame. Now, if
either F + (−1, 1) or F + (−2, 2) is a 6+-frame, we are done. Otherwise, there
is no codeword in position Ca and hence there is a codeword in position Fa by
Condition 1.This implies that F + (−2,−1) is a 6+-frame, so we are done. Hence
we may assume there is no codeword in position Be and, by symmetry, in position
Eb.

If there is a codeword in position Eg, by Observation 5, F+(2, 1) and F+(2,−2)
are 6+-frames. If F + (1, 0) is a 6+-frame, we are done. Otherwise, there is no
codeword in position Dg, and a codeword among positions Cg and Fg. If there is
a codeword in position Fg, by Observation 5, F + (1,−1) is a 6+-frame. If there
is a codeword in position Cg, by Observation 5, F + (2, 0) is a 6+-frame. Hence
we may assume there is no codeword in position Eg and, by symmetry, in position
Ge.

If there is a codeword in position Gc, by Observation 5, F + (0,−2) and F +
(−2,−1) are 6+-frames. If there are only two 6-frames and no additional 6+-frame
in the 2-ball of F , F is 2-poor, then, using the same techniques than previously, one
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can check that the codewords around F are fixed as in Figure 6 and we are done.
Otherwise, there is a total charge excess of at least 3 within the 2-ball of F and we
are done too. Hence we may assume there is no codeword in position Gc and, by
symmetry, in position Cg.

We note that F +(1,−1) is a 6+-frame. If F +(1,−1) is a 6-frame and if it is the
only 6-frame within the 2-ball of F , then, one can check that F is 1-poor and that
the codewords around F are fixed as in Figure 5, and so, we are done. Otherwise,
either F + (1,−1) is a 7+-frame and then F + (1,−2) is a 6+-frame, or F + (1,−1)
is a 6-frame and there exists another 6+-frame within the 2-ball of F . In both cases
we are done.

A
B
C
D
E
F
G
H

a b c d e f g h

1-poor frame F

1-poor-benefactor

X: not a 1-poor frame
? : maybe a 1-poor frame

6+-frame

F
6

6+

6+
X

X

?

Figure 5. Neighbourhood of a 1-poor frame in the vertex lattice
(on the left) and in the frame lattice (on the right).

Lemma 13. If F is a 1-poor frame, then F has a 6-frame F6 at distance 1 such
that

• F6 has at most two 1-poor frames in its 2-ball and each of them is at distance 1
of F6,

• F6 has at least two 6+-frames at distance 2,
• F6 is not a 4-benefactor.

Proof. By Lemma 12, if F is a 1-poor frame, the neighbourhood of F is fixed and
depicted in Figure 5 (up to symmetry). The only 6+-frame in the neighbourhood
of F is F6 = F + (1,−1) and contains exactly six codewords. The first point of the
lemma follows from the fact that a 1-poor frame must have a 6-frame in a corner of
its 1-ball, however by using the left part of Figure 5 the positions marked by “X”
on the right part of the figure cannot host a 1-poor frame. The second point follows
using Observation 5 on the left part of Figure 5. The last point follows by noting
that a 4-benefactor must have two non-codeword corners in the same column or
line, which is not the case here.

A frame playing the role of F6 in the previous lemma is called a 1-poor-benefactor.

Lemma 14. If F is a 2-poor frame, then F has two 6-frames at distance 2. One
of them, say F6, has the following properties

Advances in Mathematics of Communications Volume 8, No. 1 (2014), 35–52



Improved bound for id. codes in king grid 45

A
B
C
D
E
F
G
H

a b c d e f g h

2-poor frame F 2-poor-benefactor6+-frame X: not a 2-poor frame

F
6

6

6+

6+

6+

XX

Figure 6. Neighbourhood of a 2-poor frame in the vertex lattice
(on the left) and in the frame lattice (on the right).

• F6 is neither a 4-benefactor nor a 1-poor-benefactor,
• F6 has at least four 6+-frames in its 2-ball,
• F6 has only one 2-poor frame in its 2-ball.

Proof. By Lemma 12, if F is a 2-poor frame, the neighbourhood of F is fixed and
depicted in Figure 6 (up to symmetry). Let F6 = F + (−2,−1). The first point of
the lemma follows from the facts that, by Lemma 12, a 1-poor frame has exactly one
6-frame in its 2-ball and that a 4-benefactor must have two non-codeword corners
in the same line or column (hence, the only possibility would be that F + (−2, 1)
is a 4-frame, which is not true). The second point follows by using Observation 5
on the left part of Figure 6. For the third point, observe that the only possible
locations for another 2-poor frame in the 2-ball of F6 are those marked by an “X”
on the right part of Figure 6: F + (−3, 1) and F + (−1, 1). However, both have two
6+-frames in their 2-ball that do not match the codeword configuration of a 2-poor
frame as given on the left part of Figure 6.

A frame playing the role of F6 in the previous lemma is called a 2-poor-benefactor.

4. The discharging procedure

We are now ready to describe the discharging procedure which leads to our result.
In the beginning, each k-frame has charge k. Let α = 1

37 . We apply the following
rules

1. Let F be a 4-benefactor 6-frame without any 7+-frame among its co-
benefactors. Assume F is oriented as in Figure 3 (other cases follow by sym-
metry). We consider two subrules
(a) If there is a 6+-frame in a Y -position of Figure 3, say in position F +

(−1, 1) (the other case will be covered by symmetry), and no other 6+-
frames in Y - and Z-positions of Figure 3, then F gives charge 3α+1

4 to
the 4-frame F + (−2, 0), charge α to frame F + (0, 1), charge 2α to the
other 5-frames in Z-positions of Figure 3, charge 3α

2 to the other 5-frame
in Y -position of Figure 3 and charge α to all the other 5-frames in the
2-ball of F .
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(b) Otherwise, F gives charge 3α+1
4 to the 4-frame F + (−2, 0), charge 2α to

5-frames in Z-positions of Figure 3, charge 3α
2 to 5-frames in Y -positions

of Figure 3 and charge α to all the other 5-frames in the 2-ball of F .
2. Let F be a 4-benefactor 6-frame with a 7+-frame among its co-benefactors.

Assume F is oriented as in Figure 3, and that F +(−2, 2) is a 7+-frame (other
cases follow by symmetry). Then F gives the same charges than in Rule 1,
except for the frame F + (−1, 1) which receives no charge from F .

3. A 4-benefactor 7+-frame F gives charge 3α+1
4 to the 4-frames among F +

{(0, 2), (0,−2), (2, 0), (−2, 0)}, charge 3α to frames at distance 1 and charge
2α to frames at distance 2.

4. A 1-poor-benefactor, recall that it is a 6-frame, gives charge 3α to the 1-poor
frames in its 2-ball, 2α to the other 5-frames at distance 1 and charge α to
the other 5-frames at distance 2.

5. A 2-poor-benefactor, recall that it is a 6-frame, gives charge 2α to the unique
2-poor frame in its 2-ball, 2α to the other 5-frames at distance 1 and charge
α to the other 5-frames at distance 2.

6. Other 6-frames give charge 2α to 5-frames at distance 1 and charge α to
5-frames at distance 2.

7. Other 7+-frames give charge 3α to 5-frames at distance 1 and charge 2α to
5-frames at distance 2.

We note that the rules are not ambiguous. Indeed, by Lemmas 13 and 14, a
6-frame can be either a 4-benefactor, a 1-poor-benefactor, a 2-poor-benefactor or
not a benefactor at all, but never two at the same time.

Lemma 15. After the application of the discharging rules, each 7+-frame has
charge at least 5 + 3α.

Proof. Let F be a 7+-frame. It is sufficient to show that F gives at most charge
2− 3α = 71

37 .
If F is a 4-benefactor, then by Lemma 10, it has at most two 4-frames among

the frames F + {(0, 2), (0,−2), (2, 0), (−2, 0)}.
If F has two 4-frames among F + {(0, 2), (0,−2), (2, 0), (−2, 0)} then it has at

least three co-benefactors. Hence, F has at most eleven 5-frames at distance 2. By
Rule 3, F gives at most charge 2 · 3α+1

4 + 8 · 3α+ 11 · 2α = 66
37 .

If F has only one 4-frame among F + {(0, 2), (0,−2), (2, 0), (−2, 0)}, then it has
two co-benefactors and hence, at most thirteen 5-frames at distance 2. By Rule 3,
F gives at most charge 3α+1

4 + 8 · 3α+ 13 · 2α = 60
37 .

Finally, if F is not a 4-benefactor, then by Rule 7, it gives at most charge
8 · 3α+ 16 · 2α = 56

37 .

Lemma 16. After the application of the discharging rules, each 6-frame has charge
at least 5 + 3α.

Proof. Let F be a 6-frame. It is sufficient to show that F gives at most charge
1− 3α = 34

37 .
Assume first that F is a 4-benefactor without any 7+-frame among its co-

benefactors. If there were no other 6+-frames than the co-benefactors of F within its
2-ball, F would give, according to Rule 1, charge at most 3α+1

4 +5·2α+2· 3α2 +14α =
37
37 . However, by Lemma 11, F has at least two non-co-benefactor 6+-frames in its
2-ball. Moreover by Lemma 11 as well, either one of those is on a Y - or Z-position
(see Figure 3), or there is a third non-co-benefactor 6+-frame in the 2-ball of F .
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We distinguish two cases. If there is an extra 6+-frame on a Y -position and one
on an X-position (Rule 1a applies), then we save charge at least 3α

2 + α from the
extra frames and charge α from frame F + (0, 1). Otherwise (Rule 1b applies), the
total charge saved on the extra 6+-frames is at least 3α. Indeed, we save at least
2 · 3α2 if the two extra 6+-frames are both on Y -positions, 2 · 2α if they are both on

Z-positions, 2α+ 3α
2 for a Z-position and a Y -position, 2α+α for a Z-position and

an X-position, and 3 · α if there are three extra 6+-frames. In all cases, F gives at
most 34

37 of charge away.
Assume now that F is a 4-benefactor with a 7+-frame among its co-benefactors.

By Lemma 11, there are two 6+-frames F1 and F2 in the 2-ball of F in addition to its
two co-benefactors. By Rule 2, we apply the same discharging as in Rule 1, except
that F gives no charge to F + (−1, 1). By Lemma 11, we know that either one of
F1, F2 is on a Y - or Z-position, either there is a third non-co-benefactor 6+-frame in
the 2-ball of F , or F + (−1, 0) is a 5−-frame. If one of the first two cases holds, the
same arguments than in the previous paragraph apply, and we are done (F might
even keep more charge since it does not give any to F + (−1, 1)). Otherwise, both
F1 and F2 are not on a Y - or Z-position and F +(−1, 0) is a 5−-frame, that is, both
F1 and F2 are at distance 2 from F . Hence, there are at most twelve 5-frames on an
X-position in the 2-ball of F , and F gives at most 3α+1

4 + 5 · 2α+ 3α
2 + 12α = 33.5

37
value of charge away.

If F is a 1-poor-benefactor, by Lemma 13, F has at most two 1-poor frames in
its 2-ball and each of them is at distance 1 of F . Moreover, there are at least two
6+-frames at distance 2 of F . We may assume that F has two 1-poor frames in its
2-ball since by Rule 4, F would give away more charge in this case. Now, by Rule 4,
F gives at most 2 · 3α+ 6 · 2α+ 14 · α = 32

37 .
If F is a 2-poor-benefactor, by Lemma 14, F has only one 2-poor frame and at

least four 6+-frames in its 2-ball. We may assume that these frames are at distance 2
of F since by Rule 5, F would give away more charge in this case. By Rule 5, F
gives at most 2α+ 8 · 2α+ 11 · α = 29

37 .
Finally, if F is not a benefactor, then by Rule 6, it gives at most charge 8 · 2α+

16 · α = 32
37 .

Lemma 17. After the application of the discharging rules, each 5-frame has charge
at least 5 + 3α.

Proof. It is enough to prove that each 5-frame receives charge 3α.
We first note that by our discharging rules, each 6-frame F6 gives at least charge

α to each 5-frame of its 2-ball, except in Rule 2 where F6 does not give anything
to one 5-frame F ′ at distance 1 of F6. However, F ′ has a 4-benefactor 7+-frame at
distance 1, which, by Rule 3, gives charge 3α to F ′.

Let F be a 5-frame. By the previous paragraph, we can consider that F receives
at least charge α from each 6-frame in its 2-ball. By Rules 3 and 7, F receives at
least charge 2α from each 7+-frame in its 2-ball. Hence, if F has a total charge
excess of at least 3 within its 2-ball, with two 6+-frames, F receives at least charge
3α and we are done. Otherwise, by Lemma 12, F is either 1-poor, 2-poor or has a
6-frame at distance 1 and another one in its 2-ball.

If F is 1-poor, by Lemma 13, it has a 1-poor-benefactor in its 2-ball which, by
Rule 4, gives charge 3α to F . If F is 2-poor, by Lemma 14, it has a 2-poor-benefactor
in its 2-ball which, by Rule 5, gives charge 2α to F . Moreover, by Lemma 14, F
has another 6+-frame in its 2-ball which gives charge α to F .
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Finally, suppose F has a 6-frame F6 at distance 1 and another one, F ′6, in its
2-ball. If F receives charge 2α from F6, we are done. Otherwise, by our discharging
rules F6 is necessarily a 4-benefactor. Without loss of generality, we can assume
that F6 is oriented as in Figure 3. Then F6 gives always charge 2α to the 5-frames
in Z-positions, except in Rule 1a where F6 + (0, 1) receives only charge α, but in
this case, F6 + (0, 1) has three 6+-frames in its 2-ball, so F 6= F6 + (0, 1). Frame
F6 + (−1, 0) has three 6+-frames in its 2-ball, so F 6= F6 + (−1, 0). Thus, we
can assume that F is on a Y -position. Hence, we may assume that F ′6 is one of
{F6 + (−2, 2), F6 + (−2,−2)}, that is, F ′6 is also a 4-benefactor. In this case, by
Rules 1 and 2, both F6 and F ′6 give charge 3α

2 to F , and we are done.

Lemma 18. After the application of the discharging rules, each 4-frame has charge
at least 5 + 3α.

Proof. By Lemma 7, a 4-frame F has four 4-benefactors. By Rules 1, 2 and 3, each
4-benefactor gives charge 3α+1

4 to F . Hence, F receives charge 1 + 3α and ends
with charge 5 + 3α.

After the application of our discharging rules, by Lemmas 15, 16, 17 and 18, each
frame has charge at least 5 + 3α = 188

37 , therefore, the average number of codewords

in each frame is at least 188
37 (this is due to the fact that each frame gives charge to

vertices at distance at most 2). There are twelve vertices in each frame, hence, by
Proposition 2, we obtain Theorem 9.
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Appendix A. Proof of Lemma 11

Proof. In this proof, we will often use Conditions 1 and 2 without explicitly referring
to them.

By Condition 1 applied on F + (−1, 0), there is a codeword in either Ce or Fe.
Without loss of generality, we may assume that there is a codeword in position Ce
(the other case follows by symmetry).

Since F is not a 7+-frame, there is no codeword in position Fe and only one
codeword among positions Dc and Ec.

Assume there is a codeword in position Ec and no codeword in position Dc. Due
to Condition 2, there is a codeword in De. Hence, by Observation 5, F + (−1, 1)
is a 6+-frame. If F + (−1, 0) is a 6+-frame, we are done. Otherwise, F + (2, 1) is a
6+-frame and we are also done.

Assume now that there is no codeword in position Ec. Then by Condition 2,
there is a codeword in position Dc.

If there is a codeword in position De, F + (−1, 0) is a 6+-frame and, by Ob-
servation 6, F + (−1, 1) is a 6+-frame and we are done. Hence we may suppose
that there is no codeword in position De. This implies that there is a codeword in
position Df, and no codeword in position Ef (otherwise we are done).

If there is a codeword in position Cf, by Observation 5, F + (0, 1) is a 6+-frame.
Moreover, by Observation 6, F + (1, 0) is a 6+-frame and we are done. So, we may
assume there is no codeword in position Cf, which implies that there is a codeword
in position Ff.

If there is a codeword in position Gd, by Observation 5, F + (−1,−1) and
F + (1,−2) are 6+-frames and we are done. Hence we may assume that there is no
codeword in position Gd.

If there is a codeword in position Fg, F + (1, 0) is a 6+-frame and by Observa-
tion 5, F + (2, 0) is a 6+-frame and we are done. So we may assume that there is
no codeword in position Fg.

If there is a codeword in position Db, F + (−1, 0) is a 6-frame and by Obser-
vation 5, F + (−2,−1) is 6+-frame. If F + (−1,−1) is a 6+-frame we are done,
otherwise, by Observation 5, F + (0,−2) is a 6+-frame. Hence we may assume that
there is no codeword in position Db.

If there is no codeword in position Bf, then there is a codeword in position Bc,
and by Observation 5, F + (−2, 1) is a 6+-frame. Then, there must be a codeword
among positions Bd and Be, implying that F + (−1, 1) is a 6+-frame. Hence we
may assume that there is a codeword in position Bf.

If there is a codeword in position Be, by Observation 5, F + (1, 1) and F + (2, 2)
are 6+-frames and we are done. Hence we assume that there is no codeword in
position Be.

If there is no codeword in position Eg, by Observation 5, F+(2,−1) and F+(2, 2)
are 6+-frames. Now, if there is a codeword in Bd, then by Observation 5, F +(1, 2)
is a 6+-frame and we are done. Otherwise, there is a codeword in Bc and Ba, and
F + (−2, 1) is a 6-frame, and we are done. So, assume that there is a codeword in
position Eg.

If there is a codeword in position Dg, then F + (1, 0) is a 6+-frame and
by Observation 5, F + (2,−1) is a 6+-frame. So we assume there is no codeword in
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position Dg, which implies that there is a codeword in position Gg by Condition 1.
If there is a codeword in position Gf, by Observation 5, F+(0,−2) and F+(2,−1)

are 6+-frames. Now, if there is a codeword in position Ge, F+(1,−1) is a 6+-frame
and we are done. Otherwise, there is a codeword in position Gb and F+(−2,−1) is
a 6+-frame. So we assume that there is no codeword in position Gf, which implies
that there is a codeword in position Ge.

If there is a codeword in position Gb, F+(−1,−1) and F+(−2,−1) are 6-frames
and we are done. So we assume that there is no codeword in position Gb.

If there is a codeword in position Bd, by Observation 5, F + (1, 2) is a 6+-frame.
Moreover F+(1, 1) is a 6+-frame so we are done. So we assume there is no codeword
in position Bd. Then there is a codeword in both positions Ba and Bc, implying
that F + (−2, 1) is a 6-frame.

If there is a codeword in position Cg, F + (1, 0) is a 6-frame and we are done.
So, we assume there is no codeword in Cg. Then, by Observation 5, F + (2, 1) is a
6-frame.

Now, if F + (1,−2) is a 6+-frame we are done. Otherwise, there is no codeword
in position Hd and exactly one codeword among positions He and Hf. Since by the
previous assumptions F +(0,−2) is a 5+-frame, there is a codeword in position Hc.
By Condition 1, there is a codeword in position Ha. This implies that F +(−2,−2)
is a 7-frame and finishes the case analysis.

Appendix B. Proof of Lemma 12

Proof of the remaining cases. Case A8. Assume there is no codeword in position
Dd. Then, F + (−1, 0) and F + (2, 1) are 6+-frames and we are done. So, assume
there is a codeword in position Dd.

If there is a codeword in position Ed, by Observation 5, F+(−2, 0) and F+(1, 0)
are 6+-frames. Hence we may assume there is no codeword in position Ed, and by
symmetry, no codeword in position De either.

If there is a codeword in position Ee, by Observation 5, F+(1, 1) and F+(−1,−1)
are 6+-frames. Hence we may assume there is no codeword in position Ee.

If there is a codeword in position Be, by Observation 5, F + (1, 1) and F + (2, 2)
are 6+-frames. Hence we may assume there is no codeword in position Be, and by
symmetry, no codeword in position Eb either. By Condition 1, this implies that
there is a codeword in position Bb.

If there is a codeword in position Eg, by Observation 5, F + (1, 0) and F + (2, 1)
are 6+-frames. Hence we may assume there is no codeword in position Eg, and by
symmetry, no codeword in position Ge either.

If there is no codeword in position Bd, by Observation 5, F+(0, 2) and F+(−2, 1)
are 6+-frames. If F+(1, 1) is a 6+-frame, we are done. Otherwise, by Observation 5,
F + (2, 1) is a 6+-frame and we are done too. Hence we may assume there is a
codeword in position Bd, and by symmetry, another codeword in position Db.

If there is a codeword in position Bc, F+(0, 1) is a 6-frame and by Observation 5,
F+(−1, 1) is a 6+-frame, so we are done. Hence we may assume there is no codeword
in position Bc, and by symmetry, no codeword in position Cb either.

If there is a codeword in position Gb, F + (−1,−1) and F + (−1,−2) are 6+-
frames. Hence we may assume there is no codeword in position Gb, and by sym-
metry, no codeword in position Bg either.

If there is no codeword in position Gf, there is, by Condition 1, a codeword in
position Gc and then F + (−1,−1) is a 6-frame. Now, if there is no codeword in
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position Fg, F + (1,−1) is a 4-frame and by Lemma 7, F + (1, 1) is a 6+-frame
and we are done. Otherwise, by Observation 5, F + (1,−2) is a 6+-frame. Hence
we may assume that there is a codeword in position Gf, and by symmetry, another
codeword in position Fg.

If there is a codeword in position Gg, F + (1,−1) is a 6-frame and by Observa-
tion 5, F + (1,−2) is a 6+-frame, so we are done. Hence we may assume there is
no codeword in position Gg.

If there is a codeword in position Gc, F+(0,−1) and F+(−1,−1) are 6+-frames,
so we are done. Hence we may assume there is no codeword in positions Gc and
Cg.

If F + (−1, 2) is a 5-frame, by Condition 2, there is no codeword in position Ae
and a codeword on exactly one of the positions Ac and Ad. Then there must be a
codeword in position Af because F +(0, 2) has a fifth codeword. But then F +(2, 2)
is a 6+-frame. Hence, there is a 6+-frame among F + (−1, 2) and F + (2, 2). By
symmetry, there is also a 6+-frame among F + (−2, 1) and F + (−2,−2).

If F + (−1,−2) is a 6+-frame, we are done. Otherwise, there is no codeword in
position Hd, which implies that there is a codeword in position Hg, as well as one
codeword among positions He and Hf. By symmetry, if F + (2, 1) is a 5-frame,
there a codeword in position Gh, as well as a codeword among positions Eh and
Fh. Then, F + (2,−2) is a 6+-frame and we are done.

Case A9. By Condition 2, there are at least two codewords among positions
Dd, De, Ed and Ee. If there are two codewords on the same column or line, (resp.
d, D, e, E), then by Observation 5, resp. F + (1, 0), F + (0,−1), F + (−1, 0),
F + (0, 1), is a 6+-frame. Hence, if there are three codewords among positions Dd,
De, Ed and Ee, there are two 6+-frames at distance 1 of F and we are done.

Therefore, we assume that there are exactly two codewords among positions Dd,
De, Ed and Ee. Then by Condition 2, they cannot lie on a same line or column.
If there are codewords in positions De and Ed, by Observation 5, F + (1,−1)
and F + (−1, 1) are 6+-frames and we are done. Hence, we assume that there are
codewords in positions Dd and Ee.

If there is a codeword in position Eb, by Observation 5, F+(−2, 1) is a 6+-frame,
and by Condition 2, F + (−1, 1) is a 6+-frame as well. Hence we may assume there
is no codeword in position Eb.

If there is a codeword in position Cb, by Observation 5, F+(−2, 0) is a 6+-frame,
and by Condition 2, F + (−1, 0) is a 6+-frame as well. Hence we may assume there
is no codeword in position Cb.

If there is a codeword in position Gd, F + (1,−1) is necessarily a 6+-frame, and
by Observation 5, F + (1,−2) is a 6+-frame. Hence we may assume there is no
codeword in position Gd.

By symmetry, we can assume that there is no codeword in any of the positions
Be, Bc and Dg. Using Condition 2, this implies that there are codewords in
positions Db and Bd.

If there is a codeword in position Gg, F + (1,−1) is necessarily a 6+-frame, and
by Observation 5, F + (2,−1) is a 6+-frame. Hence we may assume there is no
codeword in position Gg.

If there is a codeword in position Ge, F +(1,−1) is necessarily a 6+-frame. Now,
if there is a codeword in position Fb, F + (−1,−1) is necessarily a 6-frame too.
Otherwise, either F +(−2,−1), F +(−1, 1) or F +(−2, 2) is a 6+-frame, and we are
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done. Hence we may assume there is no codeword in position Ge and by symmetry,
there is no codeword in position Eg either.

If there is a codeword in position Fb (resp. in position Bf), F + (−1, 0) (resp.
F + (0, 1)) is necessarily a 6-frame. If there is a codeword in both positions, we are
done. Hence by symmetry, without loss of generality, we can assume that there is
no codeword in position Fb. This implies that F + (−2,−1) is a 6+-frame. If there
is a 6+-frame at distance 1 of F , we are done. Otherwise, F + (1, 2) is a 6+-frame.
If F + (−2, 2) is a 6+-frame, we are done. Otherwise, F + (−2,−1) and F + (1, 2)
are both necessarily 7+-frames and we are done too.

Case A10. Assume that there are no codewords among positions Ed and Ee.
Then, by Condition 2, there are codewords on both positions Dd and De, and by
Observation 5, F + (0,−1) and F + (2, 1) are 6+-frames.

Now, assume that there is a codeword in position Ed or Ee. Then, by Con-
dition 2, F + (0, 1) is a 6+-frame. If there is a codeword in position Ed, by Ob-
servation 5, F + (1,−1) is a 6+-frame. If there is a codeword in position Ee, by
Observation 5, F + (1, 1) is a 6+-frame. In both cases we are done.

Case B1. By Observation 5, F + (−1, 0) is a 6+-frame. By Condition 1, there
is a codeword among positions Cb and Fb. Then, by Observation 5, F + (−2, 0) is
a 6+-frame and we are done.

Case B2. By Observation 5, F + (−1, 0) is a 6+-frame. By Condition 2, there
is a codeword among positions Dd and Ed. If there is a codeword in position Dd
(resp. Ed and not in Dd), by Observation 5, F + (1, 1) (resp. F + (1,−1)) is a
6+-frame and we are done.

Case B3. By Observation 5, F+(−1, 0) is a 6+-frame. If F+(1, 1) is a 6+-frame,
we are done. Otherwise, F +(1, 1) is a 5-frame and it has a unique corner codeword
in position Ed. By Condition 2, this implies that there is a codeword in position
Bc, and then by Observation 5, F + (0, 2) is a 6+-frame and we are done.

Case B4. Assume first that there are no codewords among positions De and
Ee. Then by Condition 2, there must a codeword on both positions Dd and Ed.
Then by Observation 5, F + (1, 0) and F + (−2, 0) are 6+-frames.

If there is a codeword in position De or Ee, then F + (−1, 0) is a 6+-frame. If
there is a codeword in position De (resp. Ee), by Observation 5, F + (1,−1) (resp.
F + (2,−1)) is a 6+-frame and we are done.

Case C1. By Observation 5, both F + (−1, 0) and F + (0, 1) are 6+-frames.

Case C2. By Observation 5, F + (0, 1) is a 6+-frame. By Condition 1, there is
a codeword among positions Bc and Bf. Then, by Observation 5, F + (0, 2) is a
6+-frame.

Case D. By Observation 5, F + (0, 1) is a 6+-frame. By Condition 1, there is
a codeword among positions Bc and Bf. Then, by Observation 5, F + (0, 2) is a
6+-frame.
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