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We introduce the notion of a centroidal locating set
of a graph G, that is, a set L of vertices such that all
vertices in G are uniquely determined by their relative
distances to the vertices of L. A centroidal locating set of
G of minimum size is called a centroidal basis, and its size
is the centroidal dimension CD(G). This notion, which is
related to previous concepts, gives a new way of identi-
fying the vertices of a graph. The centroidal dimension
of a graph G is lower- and upper-bounded by the metric
dimension and twice the location-domination number of
G, respectively. The latter two parameters are standard
and well-studied notions in the field of graph identifica-
tion. We show that for any graph G with n vertices and
maximum degree at least 2, (1 + o(1)) ln n

ln ln n ≤ CD(G) ≤
n − 1. We discuss the tightness of these bounds and
in particular, we characterize the set of graphs reach-
ing the upper bound. We then show that for graphs in
which every pair of vertices is connected via a bounded
number of paths, CD(G) = �(

√|E (G)|), the bound being
tight for paths and cycles. We finally investigate the com-
putational complexity of determining CD(G) for an input
graph G, showing that the problem is hard and cannot
even be approximated efficiently up to a factor of o(log n).
We also give an O(

√
n ln n)-approximation algorithm.
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1. INTRODUCTION

A large body of work has evolved concerning the problem
of identifying an “intruder” vertex in a graph. As examples,
one might seek to identify a malfunctioning processor in a
multiprocessor network, or the location of an intruder such
as a thief, saboteur, or fire in a graph-modeled facility. In this
article, we introduce the new model of centroidal detection
as such a graph identification problem.

An early model considered the case where one could
place detection devices like sonar or Long Range Naviga-
tion (LORAN) stations at vertices in a graph; each detection
device could determine the distance to the intruder’s ver-
tex location. As introduced independently in Slater [25] and
Harary and Melter [11], vertex set L = {w1, . . . , wk} ⊆ V(G)

is a locating set (also called resolving set in the litera-
ture) if for each vertex v ∈ V(G), the (ordered) k-tuple
(d(v, w1), . . . , d(v, wk)) of distances between the detector’s
locations and the intruder vertex v uniquely determines v.
A minimum cardinality locating set is called a metric basis
(also called reference set in the literature), and its order is the
metric dimension of G, denoted by MD(G). Other studies
involving metric bases include for example [1, 3, 12, 19, 22].
Carson [2] and, independently, Delmas et al. [4] (for the lat-
ter authors, under the name of light r-codes) considered the
case in which each detection device at wi can only detect an
intruder at distance at most r.

In another model, the presence of any edge {u, v} ∈ E(G)

indicates that a detection device at u is able to detect an
intruder at v. Let us denote by N(u) and N[u] the open
and the closed neighborhood of vertex u, respectively. A
set D ⊆ V(G) is a dominating set if ∪u∈DN[u] = V(G).
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FIG. 1. Centroidal basis {x1, x3, x6, x8} for path P8.

Clearly, in the latter model, if every possible intruder location
must be detectable, the set of detector locations must form a
dominating set.

The concepts of locating and dominating set were merged
in Slater [28, 29]: when a detection device at vertex u can dis-
tinguish between there being an intruder at u or at a vertex in
N(u) (but which precise vertex in N(u) cannot be determined),
then we have the concept of a locating-dominating set. More
precisely, a set D of vertices is locating-dominating if it is
dominating and every vertex in V(G)\D is dominated by a
distinct subset of D. The minimum cardinality of a locating-
dominating set of graph G is denoted LD(G). When one can
only decide if there is an intruder somewhere in N[u], one
is interested in an identifying code, as introduced by Kar-
povsky et al. [18]. Haynes et al. [13] added the condition that
the locating-dominating set or identifying code not have any
isolated vertices. When a detection device at u can determine
that an intruder is in N(u), but will not report if the intruder
is at u itself, one is interested in open-locating-dominating
sets, as introduced for the hypercube by Honkala et al. [15]
and for all graphs by Seo and Slater [23, 24]. A bibliography
of related papers is maintained by Lobstein [20].

In what follows, we will denote the path and the cycle on
n vertices by Pn and Cn, respectively.

In this article, we introduce the study of centroidal bases.
In this model, we assume that detection devices have unlim-
ited range, as for metric bases. However, exact distances to
the intruder are not known, but for detection devices u, v,
if there is an intruder at vertex x, then the presence of the
intruder in the graph is determined earlier by u than by v
when u is closer to x than v, that is, when d(u, x) < d(v, x).
When d(u, x) = d(v, x), we assume that u and v report
simultaneously.

For example, consider S = {x1, x3, x6, x8} ⊆ V(P8) (see
Fig. 1). For vertex x4, the order in which the detectors of S
report is (x3, x6, x1, x8) because d(x4, x3) = 1 < d(x4, x6) =
2 < d(x4, x1) = 3 < d(x4, x8) = 4. For vertex x2, we
have d(x2, x1) = d(x2, x3), hence the order of reporting is
({x1, x3}, x6, x8). The smallest size of a set S ⊆ V(P8) for
which the order of reporting uniquely identifies each vertex
is, in fact, four.

1.1. Medians and Centroids

In 1869, Jordan [17] showed that each of the centers and
the (branch weight) centroid of a tree either consists of one
vertex, or of two adjacent vertices. The eccentricity of vertex
u is the maximum distance from u to another vertex in graph
G, e(u) = max{d(u, v), v ∈ V(G)}, and the center C(G) of
G is the set of vertices of minimum eccentricity. For a tree
T, the branch weight of u, bw(u), is the maximum number of
edges in a subtree with u as an endpoint. The branch weight

centroid of T is the set Sbw(T) of vertices with minimum
branch weight in T.

In 1964, Hakimi [9] considered two facility location prob-
lems, one involving the center. The second one involved
the distance d(u) = ∑

v∈V(G) d(u, v), measuring the total
response time at u (this notion was called status of v by
Harary in 1959 [10]). The median of G, M(G) = {u ∈
V(G), ∀v ∈ V(G), d(u) ≤ d(v)}, is the set of vertices of
minimum distance in G. In 1968, Zelinka [33] showed that
for any tree T, M(T) = Sbw(T), which seemed to imply
that the median would be a good generalization of the branch
weight centroid of a tree to an arbitrary graph. However (with
details in Slater [27, 30] and Slater and Smart [31]), note
that components of T–u of the same order, one being a path
and the other a star, contribute the same value of a branch
weight, but have much different distances. In trying to keep
closer to the spirit of what the branch weight centroid mea-
sures, the centroid S(G) of an arbitrary graph G was defined
in terms of competitive facility location [26]. For facilities
located at vertices u and v, a customer at vertex x is inter-
ested in which of the facilities is the closer. As defined in
Slater [26], the set Vu,v = {x ∈ V(G), d(x, u) < d(x, v)}
is the set of vertex customer locations strictly closer to u
than to v. Then, f (u, v) = |Vu,v| − |Vv,u| rates how well
u does as a facility location, in comparison to v. Letting
f (u) = min{f (u, v), v ∈ V(G)−u}, the centroid of a graph G
is the set S(G) = {u ∈ V(G), ∀v ∈ V(G) − u, f (u) ≥ f (v)}.
When G is a tree, the centroid and branch weight centroid are
easily seen to coincide. Interestingly, there are graphs G for
which f (u) < 0 for all u ∈ V(G).

Note that in our context of centroidal bases, detectors
located at u and v enable us to determine if an intruder is in
Vu,v, in Vv,u, or in V(G)−Vu,v −Vv,u = {x ∈ V(G), d(x, u) =
d(x, v)}.

1.2. Centroidal Detection

Let B = {w1, . . . , wk} ⊆ V(G) be a set of vertices of graph
G with detection devices located at each wi. As noted, we will
assume that each detection device has an unlimited range—an
intruder entering at any vertex x will, at some point, have its
presence noted at each wi. Simply the presence will be noted,
with no information about the location of the intruder. In par-
ticular, unlike in the setting of metric bases, d(x, wi) will not
be known. However, the time it takes before wi detects the
intruder at x will be an increasing function of the distance
d(x, wi). That is, wi will indicate an intruder presence before
wj whenever d(x, wi) < d(x, wj) (in our previous terminol-
ogy, x ∈ Vwi ,wj ). We will say that x is located first by wi, and
then by wj. Thus, each vertex x has a rank ordering r(x) of
the elements of a partition of B (in fact, r(x) is an ordered
partition of B, that is, an ordered set of disjoint subsets of B
whose union is B). These ordering lists all the elements of
B in nondecreasing order by their distance from x, with ties
noted. Note that the number of ordered partitions of a set B
of k elements is the k-th ordered Bell number, denoted b(k)
(see the book of Wilf [32, section 5.2, Example 1]).
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For B = {x1, x3, x6, x8} in path P8 (see Fig. 1), r(x1) =
(x1, x3, x6, x8), r(x2) = ({x1, x3}, x6, x8), r(x3) = (x3, x1,
x6, x8), r(x4) = (x3, x6, x1, x8), r(x5) = (x6, x3, x8, x1),
r(x6) = (x6, x8, x3, x1), r(x7) = ({x6, x8}, x3, x1), and r(x8) =
(x8, x6, x3, x1).

Definition 1. Vertex set B ⊆ V(G) is called a centroidal
locating set of graph G if r(x) �= r(y) for every pair x, y
of distinct vertices. A centroidal basis of G is a centroidal
locating set of minimum cardinality. The centroidal dimen-
sion of G, denoted CD(G), is the cardinality of a centroidal
basis.

In our example, B = {x1, x3, x6, x8} is the unique centroidal
basis of path P8, and CD(P8) = 4.

Observe that every graph G has a centroidal locating set,
for example, V (G): each vertex x is the only vertex having x
as the first element of r(x).

A useful reformulation of the definition of a centroidal
locating set is as follows:

Observation 2. A set B of vertices of a graph V(G) is a
centroidal locating set if and only if for every pair x, y of dis-
tinct vertices of V(G), there exist two vertices b1, b2 in B such
that either d(x, b1) ≤ d(x, b2) but d(y, b1) > d(y, b2), or
d(y, b1) ≤ d(y, b2) and d(x, b1) > d(x, b2) (in other words,
y ∈ Vb2,b1 but not x, or x ∈ Vb2,b1 but not y).

1.3. Structure of the Paper

We start in section 2 by stating some preliminary obser-
vations and lemmas, and by giving bounds on parameter
CD involving the order, the diameter, and other parameters
of graphs; in particular, we show that (1 + o(1)) ln n

ln ln n ≤
CD(G) ≤ n − 1 when G has n vertices and maximum degree
at least 2.

In section 3, we discuss the tightness of the two aforemen-
tioned bounds by constructing graphs with small centroidal
dimension, and by fully characterizing the graphs having
centroidal dimension n−1.

In section 4, we give a lower bound CD(G) = �
(√

m
k

)
when G has m edges and every pair of vertices is connected
by a small number, k, of paths. We show that the bound is
tight (up to a constant factor) for paths and cycles.

Finally, in section 5, we discuss the computational
complexity of finding a centroidal basis; we show that
for graphs with n vertices, it is NP-hard to compute an
o(ln n)-approximate solution, and describe an O(

√
n ln n)-

approximation algorithm. We also remark that the prob-
lem is fixed-parameter-tractable when parameterized by the
solution size.

2. PRELIMINARIES AND BOUNDS

In this section, we give a series of preliminary lemmas and
bounds for parameter CD that will prove useful later on, and
also help the reader become familiar with some of the aspects
of the problem.

2.1. Preliminary Results

We state a few lemmas that will prove very useful in the
study of centroidal locating sets.

Lemma 3. Let G be a graph. The following statements are
true:

(a) If u is a vertex of degree 1, then any centroidal locating
set of G contains u.

(b) If u is a vertex of degree 1 having a neighbor v of degree
2, then any centroidal locating set of G contains either v
or a neighbor of v other than u.

(c) If u, v are two vertices with N(u) = N(v) or N[u] = N[v],
then any centroidal locating set of G contains at least one
of u and v.

Proof. (a): Otherwise, u and its neighbor are not distin-
guished.

(b) and (c): Otherwise, u and v are not distinguished. ■

Lemma 4. Let S be a set of vertices of a graph G such that
for each u ∈ S, |N(u)\S| ≥ 2 and such that for each u, v ∈ S,
N(u)\S �= N(v)\S. Then V(G)\S is a centroidal locating set
of G.

Proof. Let B = V(G)\S. Every vertex of B is first
located by itself, while every vertex of S is first located by a
distinct set of at least two vertices of B. ■

Note that in particular, Lemma 4 shows that for any vertex
u of degree at least 2 in a graph G, V(G)\{u} is a centroidal
locating set of G.

2.2. Bounds

We now provide some lower and upper bounds for the
value of parameter CD.

Theorem 5. Let G be a graph on n vertices with maximum
degree at least 2. Then

(1 + o(1))
ln n

ln ln n
≤ CD(G) ≤ n − 1.

Proof. Lemma 4 immediately implies the upper bound.
For the lower bound, assume that B is a centroidal basis of
size k = CD(G), and G has n vertices. Then, to each vertex of
G, one can assign a distinct ordered partition of B. It is known
that the number of ordered partitions of a set of k elements,
the ordered Bell number b(k), is approximated by

b(k) ∼ k!
2(ln 2)k+1

+ O(0.16kk!),

See Wilf [32, section 5.2, Example 1]. It is clear that n ≤
b(k). Let us assume that B is a centroidal basis of G of size k,
with n = b(k): for large enough n, we have n = k!(ck+1) for
some constant c. Taking the logarithm of both sides we get
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ln n = ln(k!)+ (k + 1) ln(c). Using Stirling’s approximation
ln(k!) = k ln(k) − k + O(ln(k)), we obtain

ln n = (1 + o(1))k ln(k). (1)

Hence, k = (1 + o(1)) ln n
ln(k)

; again taking the logarithm,
we get

ln(k) = ln ln n − ln ln(k) + ln(1 + o(1))

= (1 + o(1)) ln ln n. (2)

Merging Equalities (1) and 2, we get

k = (1 + o(1))
ln n

ln ln n
.

Since in G, there cannot be any smaller centroidal locating
set than B, the bound follows. ■

The considerations of Theorem 5 can be strengthened if
we assume that the distances of a vertex to vertices in B
are bounded. The following result was already known in the
context of the metric dimension; see for example, Khuller
et al. [19] or Chartrand et al. [3].1

Proposition 6. Let G be a graph with a centroidal locating
set B of size k and let D be an integer. If for every vertex
u ∈ V(G)\B and for every vertex b ∈ B, d(u, b) ≤ D, then
n ≤ k + Dk and hence CD(G) ≥ logD(n) − 1. In particular,
this holds if G has diameter D.

Proof. Let u ∈ V(G)\B be a vertex. Since every vertex
of B is at distance at most D from u, r(u) contains at most
D sets. There are exactly Dk different ordered partitions of
B into at most D sets (this number is equal to the number of
words of length k over an alphabet of size D), hence there can
be at most Dk vertices in V(G)\B, and hence k + Dk vertices
in G. ■

The bound of Proposition 6 was improved by Hernando
et al. [14]:

Theorem 7 ([14]). Let G be a graph on n vertices with
diameter D ≥ 2 and CD(G) = k ≥ 1. Then n ≤(⌊ 2D

3

⌋ + 1
)k + k

∑�D/3�
i=1 (2i − 1)k−1.

We improve the bound in Theorem 7 for D ≤ 3:

Theorem 8. Let G be a graph on n vertices with diameter
D ∈ {2, 3} and let CD(G) = k. If D = 2 and k ≥ 1, n ≤
2k + k − 1. If D = 3 and k ≥ 5, n ≤ 3k − 2k+1 + 2.

Proof. Let B be a centroidal locating set of G.

1 The result was stated in terms of the metric dimension but since any cen-
troidal locating set is also a locating set the bound holds also for the centroidal
dimension.

• D = 2 and k ≥ 1. By Theorem 7 we have n ≤ 2k + k.
However, observe that for every vertex v /∈ B, r(v) =
(N(v) ∩ B, B\N(v)). But there can only be 2k distinct sets
N(v) ∩ B, and moreover if N(v) = B and N(w) = ∅ we have
r(v) = r(w) = (B). Hence |V(G)\B| ≤ 2k − 1 and we are
done.

• D = 3 and k ≥ 5. Since the diameter is 3, for every vertex
v, r(v) has at most three components, unless v ∈ B, then it
may have four. Moreover, if v /∈ B, then r(v) either has one
component (then r(v) = (B)), or two (then r(v) = (S, B\S)

with 1 ≤ |S| ≤ |B|−1), or three (then r(v) = (S, T , B\(S∪T))

with S ∩ T = ∅ and 1 ≤ |T | ≤ |B\S|).

Therefore, we have

|V(G)\B| ≤ 1 +
k−1∑
i=1

((
k
i

)
(2k−i − 1)

)
= 3k − 2k+1 + 2,

that is, 1 plus the number of ways of choosing a nonempty
subset S of B and a nonempty subset of B\S.

Now, if for every pair b, b′ in B we have d(b, b′) ≤ 2,
then no vertex v has four components in r(v) and so the
claimed bound holds. Now, assume that there is a pair b, b′
in B with d(b, b′) = 3. This implies that for any vertex v,
r(v) cannot be of the form ({b, b′}, T , B\({b, b′} ∪ T)) with
S a nonempty proper subset of T\{b, b′} since otherwise we
must have d(v, b) = d(v, b′) = 1 and hence d(b, b′) ≤ 2, a
contradiction. This gives us at least k − 2 + (

k−2
2

)
forbidden

triples of the form ({b, b′}, T , B\({b, b′} ∪ T)) since T can
be chosen to be one of k−2 possible singletons and

(
k−2

2

)
possible pairs. Since k ≥ 5, k − 2 + (

k−2
2

) ≥ k and we are
done. ■

The bounds of Theorem 8 will be proved tight in section 3.
We will now relate parameter CD to parameters MD and

LD.

Lemma 9. Let G be a graph with a locating-dominating set
C such that � vertices from V(G)\C have a unique neighbor
in C. Then CD(G) ≤ LD(G) + �.

Proof. We construct a centroidal locating set C′ from C
by adding at most � vertices to C. Note that in the setting
of a centroidal locating set and considering C as a potential
solution, each vertex of C is located first by itself, and then
by its neighborhood within C, while each vertex v of V(G)\C
is first located by N(v) ∩ C. Hence, any two vertices both in
C or both in V(G)\C are distinguished. However, if for some
vertex v of V(G)\C, N(v) ∩ C = {cv}, v and cv might not be
distinguished. In that case, it is enough to add v to C to solve
this problem. This does not cause any other conflict since
any superset of a centroidal locating set is also a centroidal
locating set. Repeating the process � times completes the
proof (observing that any other vertex of C is distinguished
from all other vertices). ■

Using Lemma 9, we obtain the following theorem:
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Theorem 10. For any graph G, MD(G) ≤ CD(G) ≤
2LD(G).

Proof. For the first inequality, note that any centroidal
locating set B is a locating set. Indeed, if two vertices were at
the same distance to each vertex of B, then they would not be
distinguished by their relative distances by B, a contradiction.

The second inequality is proved by Lemma 9 by observing
that for any locating-dominating set C, � ≤ |C|: for each
cv ∈ C, if there were two vertices of V(G)\C having only cv

as a neighbor in C, they would not be distinguished by C, a
contradiction. ■

For graphs of diameter 2, one gets the following improve-
ment:

Theorem 11. Let G be a graph of diameter 2. Then LD(G)−
1 ≤ MD(G) ≤ CD(G) ≤ 2LD(G).

Proof. The last two inequalities come from Theorem 10.
For the first inequality, we show that any locating set L is
almost a locating-dominating set. Each vertex v of V(G)\L
has distance 1 to all elements of its neighborhood Nv =
N(v)∩ L in L, and distance 2 to all vertices of L\Nv. In other
words, vertices in L only distinguish vertices they are adjacent
to, from nonadjacent ones. Since L is a locating set, it fol-
lows that each vertex in V(G)\L has a distinct neighborhood
within L. Therefore, if L is dominating, it is also locating-
dominating. Otherwise, there is at most one vertex that is not
dominated; adding it to set L, we get a locating-dominating
set of size |L| + 1. ■

3. TIGHTNESS OF THE BOUNDS

In this section, we discuss the tightness of some of the
bounds from section 2.2.

3.1. Graphs with Small Centroidal Dimension

For k = 1, 2 it is easy to construct graphs G on n vertices
with CD(G) = k and n = b(k): for k = 1, b(1) = 1 and K1

is the only answer; for k = 2, b(1) = 3 and both P3, K3 are
answers.

For k = 3, b(3) = 13; the two graphs of Figure 2 have 13
vertices and centroidal dimension 3 (the black vertices form
a centroidal basis).

It holds that b(4) = 75 [21]; a more intricate construction
for this case is presented in Figure 3.

We do not know such optimal examples for k ≥ 5 (recall
that b(k) grows very rapidly with k: b(5) = 541, b(6) =
4683 [21]). Note that it is not possible to directly extend
our example for k = 4 to higher values using the same idea;
indeed, every two vertices from the centroidal basis B are at
distance at most 3 from each other. But in our construction, the
vertices whose vector is a permutation of B have a neighbor
in the basis. Hence their vector r can have length at most 4,
but these k! vertices need to have a vector of length k.

FIG. 2. Two graphs on b(3) = 13 vertices with centroidal dimension 3.

3.1.1. Bounded Diameter. We now discuss the tightness
of the bounds for diameter 2 and 3 of Theorem 8.

Proposition 12. For any k ≥ 4, there is a graph G of
diameter 2 with n = 2k + k − 1 vertices and CD(G) = k.

Proof. We construct G in the following way. We let
V(G) = B ∪ S, where B, S are disjoint sets, B has k ver-
tices, and S has n − k = 2k − 1 vertices. We make sure that
in the subgraph induced by B, every vertex has a neighbor
and a non-neighbor, which is possible since k ≥ 4. The set S
induces a clique and the neighborhood of every vertex of S
within B is distinct and nonempty.

Since G has a vertex of degree n−1 (in S) the diameter is 2.
For every vertex v in B, r(v) = ({v}, N(v) ∩ B, B\N[v]), and
by our assumption on the structure of B, these three sets are
nonempty. For every vertex v in S, r(v) = (N(v)∩B, B\N(v)).
By construction all these vectors are distinct. ■

In fact, in the construction of Proposition 12, B is
a locating-dominating set; similar constructions are well
known in this context, see for example Slater [29]. For
diameter 3, we give a more complicated construction:

Theorem 13. For any k ≥ 4, there is a graph G of diameter
3 with n = 3k − 2k+1 + 2 vertices and CD(G) = k.

Proof. We construct G as follows (see Fig. 4 for an
illustration).

• Let B be an independent set of size k, which will be the
centroidal locating set of G.

• Let X be a clique containing, for every subset S of B with
2 ≤ |S| ≤ k − 2, a vertex x(S) that is adjacent to all vertices
in S. Set X has size

∑k−2
i=2

(
k
i

)
.

• Let Y be an independent set containing, for every subset S of
B with 1 ≤ |S| ≤ k − 2 and for every proper nonempty subset
T of B\S, a vertex y(S, T) (note that 1 ≤ |T | ≤ k − 2). Vertex
y(S, T) is adjacent to all vertices of S. Moreover, if |T | ≥ 2,
y(S, T) is adjacent to x(T ). If T = {t} has size 1, let T ′ be an
arbitrary size 2-subset of B formed by t and an arbitrary vertex
of S, and let y(S, T) be adjacent to x(T ′). Note that set Y has
size

∑k−2
i=1

((
k
i

)
(2k−i − 2)

)
.
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FIG. 3. A graph on b(4) = 75 vertices with centroidal dimension 4. In the central part of the figure, the four
black vertices form the centroidal basis and have their vector r of the form (a, {b, c, d}); they are at distance 3
from each other. The twelve white circle-shaped vertices have their vector of the form (a, b, {c, d}). The six gray
square-shaped vertices have their vector of the form ({a, b}, {c, d}). The unique gray double-circled vertex has
its vector of the form ({a, b, c, d}). In the outer parts of the figure, the 24 gray circled-shaped vertices have their
vector of the form (a, b, c, d). The 12 white square-shaped vertices have their vector of the form (a, {b, c}, d). The
12 white double-circled vertices have their vector of the form ({a, b}, c, d). Finally, the four gray double-squared
vertices have their vector of the form ({a, b, c}, d).

• Let Z be a clique of size k + 1 containing, for each subset S of
B with k − 1 ≤ |S| ≤ k, a vertex z(S) that is adjacent to the
vertices in S.

The order of G is

|B| + |X| + |Y | + |Z| = k +
k−2∑
i=2

(
k
i

)
+

k−2∑
i=1

((
k
i

)
(2k−i − 2)

)

+ k + 1

= 1 +
k∑

i=1

((
k
i

)
(2k−i − 1)

)

= 3k − 2k+1 + 2.

Furthermore, the diameter of G is exactly 3. It is at least
3: consider some vertex y = y(S, T). We have N(y) = S, and
the vertices in T are at distance 2 from y (via vertex x(T )).

However, all vertices of B\(S ∪ T) are at distance 3 from y,
and since T is a proper subset of B\S, B\(S∪T) is nonempty.
Conversely, the diameter is at most 3. If v is any vertex of G,
v is within distance 1 of some vertex b in B, and since X and
Z are cliques and b has a neighbor in both X and Z, every
vertex in X ∪ Z is within distance 2 of b and within distance
3 of v. Moreover, every two vertices in B are at distance at
most 2 apart since they all share a neighbor, z(B). Hence, any
vertex y(S, T) ∈ Y , since it has a neighbor in B, is at distance
at most 3 from any vertex in B. Finally, any vertex in Y has a
neighbor in X, which is a clique; hence any two vertices in Y
have distance at most 3 from each other.

It remains to check that B is a centroidal locating set. For
every b ∈ B, we have r(b) = ({b}, B\{b}). For every vertex
x = x(S) in X, we have r(x) = (S, B\S) and 2 ≤ |S| ≤
k − 2. For every vertex z = z(S) in Z, r(z) = {S, B\S} if
|S| = k − 1 and r((z(B)) = (B). We have now realized all
possible vectors with at most two components. Finally, for
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FIG. 4. The construction of Theorem 13. Gray sets are cliques.

any vertex y = y(S, T) in Y, r(y) = (S, T , B\(S ∪ T)) and by
the definition of Y, none of these three components is empty.
This completes the proof. ■

We leave the question of the tightness of Theorems 5 and 7
open.

Question 14. Is the bound CD(G) ≥ (1 + o(1)) ln n
ln ln n

asymptotically tight, that is, can we find an infinite family

of graphs G with CD(G) = O
(

ln n
ln ln n

)
?

Observe that, by Proposition 6, CD(G) ≥ logD(n) − 1
when G has diameter D and n vertices. Hence, to construct
a graph with a centroidal locating set of size O

(
ln n
f (n)

)
for

some f (n) = O(ln ln n), G should have diameter �
(
ef (n)

)
; in

particular, for f (n) = ln ln n, the diameter should be � (ln n).
It was proved by Sebő and Tannier [22] that for the hyper-

cube Qk with n = 2k vertices, MD(Qk) = 2log2n
log2log2n (1 +

o(1)). In this regard, it would be interesting to determine
whether the family of hypercubes is a positive answer to
Question 14; determining CD(Qk) would be of independent
interest.

Question 15. What is the maximum order of a graph with
centroidal dimension k and diameter D ≥ 4?

3.2. Graphs with Large Centroidal Dimension

A direct consequence of Theorem 5 is that a graph has
centroidal dimension equal to its order if and only if it has
maximum degree at most 1. We now fully characterize the set
of graph with centroidal dimension of value the order minus
one.

For some n ≥ 1, Kn denotes the complete graph on n ver-
tices. For some a, b ≥ 1, Ka,b denotes the complete bipartite

graph with parts of sizes a and b. Let n ≥ 4. We denote by
Sn, the graph obtained by joining K2 to an independent set of
n−2 vertices. We call Tn the tree obtained from P3 by attach-
ing n−3 degree 1-vertices to one of the ends of P3. Finally,
we call Un the graph obtained from K3 by attaching n−3
degree 1-vertices to one of the vertices of K3.

In particular, K1,n−1 is a star, K2,2 is the cycle C4, S4 is the
diamond graph, and T4 is the path P4. See Figure 5 for illus-
trations of these graphs (black vertices belong to a centroidal
basis).

Proposition 16. Let G be a graph on n ≥ 3 vertices
belonging to {Kn, K1,n−1, K2,n−2, Sn, Tn, Un}. Then CD(G) =
n − 1.

Proof. By Lemma 4 applied on a single degree 2-vertex,
it is easily seen that in each case, CD(G) ≤ n − 1. If G is
isomorphic to Kn, the lower bound is directly implied by
Lemma 3(c).

If G is isomorphic to K1,n−1, then by Lemma 3(a) any
centroidal locating set contains all n−1 leaves of K1,n−1.

If G is isomorphic to K2,n−2 or to Sn, by Lemma 3(c) at least
n−3 vertices of degree 2 belong to any centroidal locating
set, as well as one of the other two vertices. However, if no
further vertex does belong to the centroidal locating set, then
the vertex of degree 2 that is not in the set is not distinguished
from its neighbor in the set, a contradiction.

If G is isomorphic to Tn, by Lemma 3(a) all n−2 vertices
of degree 1 belong to any centroidal locating set. Moreover,
one further vertex also does according to Lemma 3(b).

Finally, if G is isomorphic to Un, again by Lemma 3(a) all
n−3 vertices of degree 1 belong to any centroidal locating
set, as well as one degree 2-vertex of the triangle by Lemma
3(c). If no further vertex does belong to a centroidal locating
set, then the two degree 2-vertices of the triangle are not
distinguished, a contradiction. ■

In fact, the graphs from Figure 5 are the only extremal
graphs, as shown in the following theorem:

Theorem 17. Let G be a connected graph on n ≥ 3 ver-
tices with CD(G) = n − 1. Then G belongs to {Kn, K1,n−1,
K2,n−2, Sn, Tn, Un}.

Proof. We assume by contradiction that CD(G) = n−1
but G does not belong to the list. Hence, n ≥ 5 since all
connected graphs on three or four vertices are in the list. Let
u be a vertex of G of degree at least 2. By Lemma 4, V(G)\{u}
is a centroidal locating set. First of all, observe that there is
no vertex at distance 3 of u: for contradiction, assume that z
is such a vertex and let t be a neighbor of z with deg(t) ≥ 2
that lies on a path from u to z. By Lemma 4, B = V(G)\{u, t}
is a centroidal locating set, a contradiction.

We now assume that deg(u) = 2. Let v, w be the two
neighbors of u, and let x, y be two other vertices in G (they
exist since n ≥ 5). Since there is no vertex at distance 3 of u,
both x, y are neighbors of at least one of v, w. First, assume
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FIG. 5. The list of graphs on n vertices with centroidal dimension n−1.

that x is a neighbor of both v and w and that y is only a
neighbor of v. Then B = V(G)\{v, w} is a centroidal locating
set, a contradiction. Indeed, each vertex of B is first located
by itself, then by its neighbors in B, while v, w are first located
by a set of at least two vertices. Moreover, v is (in particular)
first located by y, while w is not.

Hence, either all vertices other than u, v, w are adjacent to
both v, w, or none is. In the first case, if all common neigh-
bors of v, w form an independent set, G is isomorphic to
either K2,n−2 or Sn, a contradiction. Hence, there is an edge
between two common neighbors of v, w, say between x, y.
Then, B = V(G)\{u, x} is a centroidal locating set, a contra-
diction. Indeed, each vertex of B is first located by itself, then
by its neighbors in B, while u, x are first located by a set of at
least two vertices. Moreover, x is (in particular) first located
by y, while u is not.

We now have that each vertex other than u, v, w is adjacent
to exactly one of v, w. Let Sv be the set of neighbors of v other
than u, w and let Sw be the set of neighbors of w other than
u, v. If both |Sv|, |Sw| ≥ 1, by Lemma 4, V(G)\{v, w} is a
centroidal locating set, a contradiction. Otherwise, either G
is isomorphic to Tn if v, w are nonadjacent, or to Un otherwise,
a contradiction in both cases.

By the previous discussion, G has no degree 2-vertices.
Hence deg(u) ≥ 3. Suppose, moreover, that N(u) is an inde-
pendent set. Since G is not isomorphic to K1,n−1, there are
vertices at distance 2 from u. Hence u has a neighbor, v, with
two such vertices as neighbors (since deg(v) �= 2): let x,
y be these vertices. Then, B = V(G)\{u, v} is a centroidal
locating set, a contradiction. Indeed, all vertices but u, v are
located first by themselves only, whereas u is located first by
N(u)\{v} and v by a set containing both x, y.

Now, we assume that N(u) is a clique. Since G is not a
complete graph, u has a neighbor v, having a neighbor x with
d(u, x) = 2. Then, by Lemma 4, V(G)\{u, v} is a centroidal
locating set of G, a contradiction.

Hence, N(u) is neither an independent set, nor a clique:
there is a vertex v in N(u) with a neighbor w and a non-
neighbor x, both being in N(u). Since no vertex in G has
degree 2, v has an additional neighbor, y. But then by
Lemma 4, V(G)\{u, v} is a centroidal locating set of G, a
contradiction. ■

4. GRAPHS WITH FEW PATHS CONNECTING
EACH PAIR OF VERTICES

We now study parameter CD for graphs in which every
pair of vertices is connected via a bounded number k of
paths. We show that such graphs have centroidal dimension

�
(√

m
k

)
, where m is the number of edges. In particular,

this applies to paths and cycles; for these graphs, we show
that the lower bound is asymptotically tight. These cases are
particularly interesting for the following reason: the metric
dimension of a path or a cycle with n vertices is easily seen
to be constant (1 for any path, 2 for any cycle), whereas the
location-domination number is linear (roughly 2

5 th of the ver-
tices [29]). In contrast, the centroidal dimension is about the
square-root of the order.

But first, the following technical lemma will be useful
when showing our lower bound.

Lemma 18. Let G be a graph with u, v two adjacent ver-
tices, and let B be a centroidal locating set. Then, there are
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two vertices b1, b2 of B and a path P : b1 − u − v − b2 such
that at least one of the following properties hold:

1. {u, v} = {b1, b2} and P is the edge {u, v};
2. d(u, b1) = d(u, b2), d(v, b1) �= d(v, b2) (or, symmet-

rically, d(v, b1) = d(v, b2), d(u, b1) �= d(u, b2) and P
contains a shortest path from u to b1 and a shortest path
from v to b2;

3. d(u, b1) + 1 = d(u, b2), d(v, b1) = d(v, b2) + 1, P con-
tains a shortest path from u to b1 and a shortest path
from v to b2, P has odd length and {u, v} is the middle
edge of P.

Proof. If both u, v belong to B, we are in the first case
and we are done.

Otherwise, since B is a centroidal locating set, without
loss of generality there are two vertices b, b′ of B such that
d(u, b) ≤ d(u, b′) and d(v, b) > d(v, b′), or vice versa.

Case a d(u, b) = d(u, b′). We show that the second case
of the statement holds. If v lies on a shortest path Pu from
u to one of b, b′ (say, b), we are done: then no shortest path
from u to b′ can go through v (otherwise d(v, b) = d(v, b′)).
Hence, setting b = b2 and b′ = b1, the concatenation of Pu

and any shortest path from u to b′ is a path P satisfying the
desired properties.

Hence, we assume that v does not lie on a shortest path
from u to b. Since d(v, b) �= d(v, b′), we can assume without
loss of generality that d(v, b′) �= d(u, b′)+1 (moreover, since
d(v, b′) ≤ d(u, b′)+1, we have d(v, b′) ≤ d(u, b′)). Hence, a
shortest path Pv from v to b′ does not go through u. Let Pu be
a shortest path from b to u. If the concatenation Pu − uv − Pv

is a path, we are done by setting P = Pu−uv−Pv, b = b1 and
b′ = b2. Therefore, assume that it is not a path, and let w be the
vertex closest to u appearing in both Pu and Pv: Pu − uv − Pv

contains a cycle going through u, v, w. Now, since no shortest
path from v to b′ goes through u, we have d(v, w) ≤ d(u, w).
Also, since we assumed that v does not lie on a shortest
path from u to b, in particular d(u, w) ≤ d(v, w). There-
fore, d(u, w) = d(v, w). This implies that d(v, b′) = d(u, b′)
(indeed, we had d(v, b′) ≤ d(u, b′) and now d(u, b′) ≤
d(u, w) + d(w, b′) = d(v, w) + d(w, b′) = d(v, b′)). Hence,
d(v, b) < d(v, b′). Let P′

u be the path obtained from the con-
catenation of a shortest path from u to w and the subpath of Pv

from w to b′, and let P′
v be a shortest path from v to b. Then,

P′
v does not contain any vertex of P′

u (indeed, if there was
such a vertex t, then d(u, b) ≤ d(v, b) < d(v, b′) = d(u, b′),
a contradiction). Hence, the concatenation P = P′

v −uv −P′
u

is a path that has the desired properties.

Case b d(u, b) < d(u, b′). We show that the third case
of the statement holds. Since d(v, b) > d(v, b′) and u, v are
adjacent, d(v, b) = d(u, b) + 1 and d(v, b′) = d(u, b′) − 1.
Hence d(v, b′) < d(v, b) < d(v, b′) + 2 and d(u, b) <

d(u, b′) < d(u, b) + 2, and d(u, b) = d(v, b′). We set b1 = b
and b2 = b′. Observe that the concatenation P of a shortest
path from b1 to u, the edge uv, and a shortest path from v to
b2 is a path from b1 to b2 (if it were not a path, we would

have d(u, b) = d(u, b′) = d(v, b) = d(v, b′)). Since P has
the desired properties, this completes the proof. ■

In what follows, for a pair {u, v} of vertices in a graph G,
we let kodd(u, v) and kev(u, v) be the number of odd and even
(not necessarily disjoint) paths connecting u to v, respectively.

Theorem 19. Let G be a graph on n vertices and m edges
such that for every pair {u, v} of vertices, 2kev(u, v) +
kodd(u, v) ≤ k for some integer k. Then, CD(G) >

√
2m
k .

In particular, for every tree T, CD(T) >
√

n − 1.

Proof. Let B be a centroidal locating set of G. To
each pair u, v of adjacent vertices in G, we assign a triple
(b1, b2, P) = T(u, v) of two vertices b1, b2 of B and a path
P : b1 − u − v − b2 satisfying one of the three properties
described in Lemma 18. The assignment is done as follows:

1. if both u, v belong to B, set T(u, v) = (u, v, uv) (we say
that the pair u, v is of type 1);

2. otherwise, if there is a pair {b1, b2} of B and a path P
for which the second property of Lemma 18 holds, then
set T(u, v) = (b1, b2, P) (we say that the pair u, v is of
type 2);

3. otherwise, let T(u, v) consist of an arbitrary pair b1, b2 of
vertices of B with a path P such that the third property of
Lemma 18 holds (we say that the pair u, v is of type 3).

Now, for a given pair b1, b2 of B and a path P from b1

to b2, we will upper bound the number of pairs of adjacent
vertices u, v such that T(u, v) = (b1, b2, P).

Assume first that P has odd length. If P is the edge
b1, b2, there is only the pair {u, v} = {b1, b2} of type 1
with T(u, v) = (b1, b2, P). Otherwise, assume {u, v} is a
pair of type 2 with T(u, v) = (b1, b2, P). Then by Lemma
18, d(u, b1) = d(u, b2) = �1 and the subpath of P from u
to b1 has length �1. Since the subpath from v to b2 is also
a shortest path and d(u, b2) = �1, it has length �2 with
�1 − 1 ≤ �2 ≤ �1 + 1. The length of P is �1 + �2 + 1.
Since it is an odd number, �2 = �1 and {u, v} is the middle
edge of P. If {u, v} is of type 3, by Lemma 18, {u, v} is also
the middle edge of P. Hence in total there is at most one pair
u, v with T(u, v) = (b1, b2, P).

Now, assume that P has even length. Let {u, v} be a pair
with T(u, v) = (b1, b2, P). Then, by Lemma 18, u, v cannot
be of type 1 or type 3, so it must be of type 2. By the same
arguments as in the previous paragraph, the length of the
subpath of P from b1 to u is �1, and the length of the subpath
of P from v to b2 is either �1 − 1 or �1 + 1. In both cases, one
of u, v is the middle vertex of P. Hence there can be at most
two such pairs.

To summarize, we proved that for each pair b1, b2 of B,
the number of pairs u, v with T(u, v) = (b1, b2, P) for some
path P is at most

2kev(b1, b2) + kodd(b1, b2) ≤ k.
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FIG. 6. Illustration of the sets defined in the proof of Theorem 20.

Since in total, there are m pairs of adjacent vertices in G
and each such pair is associated to exactly one of the

( |B|
2

)
pairs of B, we have m ≤ k

( |B|
2

)
<

k|B|2
2 , and the bound

follows.
When G is a tree, there are n−1 edges, and there is a unique

path between any pair of vertices, hence k ≤ 2. ■

We now show that the bound of Theorem 19 is tight up to
a constant factor for paths and cycles.

Theorem 20. Let n ≥ 3 .

1. If n is even,
√

2
2

√
n < CD(Cn). If n is odd,

√
6

3

√
n <

CD(Cn). In both cases, CD(Cn) < 7
√

2n
2 + 1. If n = 2�2

for some integer �, then CD(Cn) ≤ √
2n − 2.

2.
√

n − 1 < CD(Pn) < 6
√

n − 1+3. If n = (2�)2 +1 for
some integer �, then CD(Pn) ≤ 2

√
n − 1 − 3.

Proof. Lower bounds. The bounds follow from Theo-
rem 19 since paths are trees, and by observing that cycles
have n edges. For even cycles, for any pair {u, v} of ver-
tices, kodd(u, v) ≤ 2 and kev(u, v) ≤ 2 and kodd(u, v) +
kev(u, v) = 2, hence 2kev(u, v) + kodd(u, v) ≤ 4. For odd
cycles, kodd(u, v) = 1 and kev(u, v) = 1, hence 2kev(u, v) +
kodd(u, v) ≤ 3.

Upper bounds for cycles. We first prove that for any
p, q ≥ 2, if n = p(2q + 2), then

CD(Cn) ≤ p + q − 1. (3)

Assuming that n = 2�2, and setting p = � and q = � − 1,
Inequality (3) yields the claimed bound CD(Cn) ≤ 2�− 2 =√

2n − 2.
Let {x0, . . . , xn−1} be the vertex set of Cn. Let us divide

Cn into p portions of 2q + 2 consecutive vertices each: for
0 ≤ i ≤ p−1, Ri = {xi(2q+2), xi(2q+2)+1, . . . , x(i+1)(2q+2)−1}.
For each i, we further define two subsets of Ri as follows:
Si = {s1

i , . . . , sq
i } and Ti = {t1

i , . . . , tq
i }, where for 1 ≤ j ≤ q,

sj
i = xi(2q+2)+j and tj

i = xi(2q+2)+q+1+j. In other words, Si

contains q vertices from Ri, starting from the second one, and

Ti contains the q last vertices of Ri. Observe that the first and
the (q + 2)-nd vertices from Ri neither belong to Si, nor Ti.

We now define a set B = B0 ∪ B1, which we claim, will
be our centroidal locating set. We let B0 = {b0

0, . . . , bq−1
0 },

where for 0 ≤ i ≤ q − 1, bi
0 = x2(i+1) (that is, B0 contains

each second vertex of R0). We let B1 = {b0
1, . . . , bp−1

1 }, where
for 0 ≤ i ≤ p − 1, bi

1 = xi(2q+2) (that is, B1 contains the first
vertex of each set Ri).

An illustration of sets Si, Ti, B0, B1 is given in Figure 6.
Observe that B has p + q − 1 elements. It remains to show

that B is a centroidal locating set.
First of all, notice that for any 0 ≤ i ≤ p − 1, bi

1 ∈ B1

is the unique vertex that is first located by itself, and later
by {b(i−1)modp

1 , b(i+1)modp
1 } at the same time. For i �= 0, the

(q + 2)-nd vertex of Ri, xi(2q+2)+q+1, is the only one that is

located first by {bi
1, b(i+1)modp

1 } at the same time. Similarly,
xq+1 is the unique vertex first located by the vertices of B0

(in some order), and then by {b0
1, b1

1} at the same time. If
x ∈ S0 ∪ T0, if x ∈ B0, x is the only vertex located first by
itself only; if x /∈ B0, x is the only vertex located first by its
two neighbors. Hence, all the previously considered vertices
are distinguished from any other vertex in Cn.

Now, let u, v be a pair of vertices not yet proved to be
distinguished. If u ∈ Si, v ∈ Ti (1 ≤ i ≤ p − 1), then
d(u, bi

1) < d(u, b(i+1)modp
1 ) but d(v, bi

1) > d(v, b(i+1)modp
1 ).

If u ∈ Si, v ∈ Si′ (1 ≤ i, i′ ≤ p − 1), then d(u, bi
1) < d(u, bi′

1)

but d(v, bi
1) > d(v, bi′

1). The case where u ∈ Ti, v ∈ Ti′

is symmetric. If u ∈ Si, v ∈ Ti′ (1 ≤ i, i′ ≤ p − 1),
if i = (i′ + 1)modp, then d(u, b(i+1)modp

1 ) < d(u, bi′
1)

while d(v, b(i+1)modp
1 ) > d(v, bi′

1). Otherwise, d(u, bi
1) <

d(u, b(i′+1)modp
1 ) while d(v, bi

1) > d(v, b(i′+1)modp
1 ).

It remains to prove that for 1 ≤ i ≤ p − 1, any two
vertices from Si are distinguished (the case of two vertices
of Ti would follow by symmetry). To see this, let sj

i ∈ Si. If

i ≤
⌈

p−1
2

⌉
, d(sj

i , b2i
1 ) = d(sj

i , bj
0) = (2q + 2)i − j, and no

other vertex of Si has this property. Similarly, if i >
⌈

p−1
2

⌉
,

d(sj
i , b2i−p

1 ) = d(sj
i , bj

0) = (2q+2)(p− i)+ j. This completes
the proof of validity of B.
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To prove the bound for all cycles, if n is not of the form
2�2, let m = 2�2 be the integer of this form that is closest
to n and such that m ≤ n: n = m + k for some k, and
n < 2(� + 1)2. A construction similar to the previous one
can be done. Letting p = �, q = � − 1, we construct B1 =
{b0

1, . . . , bp−1
1 } with bi

1 = xi(2q+2) as previously; however this
time, B1 does not include any vertex from {xm, . . . , xn−1}.
Instead, we let B0 = {x1, . . . , x2q+1} ∪ {xm, . . . , xn−1}: B0

contains the first 2q+2 vertices (except x0), together with the
k last vertices. It is clear that the construction works the same
way as in the previous proof—we omit the details as a formal
proof would be tedious.2 In total, B = B0∪B1 has size at most
p+2q+1+k = 3�−1+k. Since 2(� + 1)2 −2�2 = 4�+2,
k < 4� + 2 and |B| ≤ 7� + 1. Furthermore, 2�2 < n and
� <

√
2n
2 . Hence |B| < 7

√
2n

2 + 1, proving the bound.

Upper bounds for paths. A similar construction as the
one for cycles can be done for the case of paths: for any
p, q ≥ 2, if n = p(2q + 2) + 1, then CD(Pn) ≤ p + 2q − 1.
The idea of the construction is again to divide the vertex set
{x0, . . . , xn−1} into p portions of size 2q + 2 each (vertex
xn−1 does not belong to any such portion). For 0 ≤ i ≤ p,
bi

1 = xi(2q+2), and B1 contains all vertices of the form bi
1. B0 is

defined in the same way as for our construction for cycles, but
now we also consider a set B′

0 similar to B0, but on the other
end of the path. We have |B0 ∪B′

0 ∪B1| = p+1+2(q−1) =
p + 2q − 1, and similar arguments as for the construction for
cycles show that B0 ∪ B′

0 ∪ B1 is a centroidal locating set.
Hence, assuming n = (2�)2 + 1 for some � ≥ 2 and

setting p = 2� and q = � − 1, we get CD(Pn) ≤ 4� − 3 =
2
√

n − 1 − 3.
For the general bound, once again we do not optimize the

constant. Assume that n is not of the form (2�)2 + 1, and let
m = (2�)2+1 be the integer of this form that is closest to n and
m ≤ n: we have n = m + k for some k, and n < (2(� + 1))2 + 1.
Let p = 2� and q = � − 1. Now, B1 is selected as before
among the first m vertices; B1 has p elements. B0 contains
the first 2q + 2 vertices (except x0), and B′

0 contains the last
k +2q+3 vertices (except xm). In total, B = B0 ∪B′

0 ∪B1 has
p+(2q+1)+(k+2q+2) = p+4q+3+k = 6�−1+k ver-
tices. Since (2(� + 1))2 +1−(2�)2 −1 = 6�+4, k < 6�+4.
This implies |B| < 12�+ 3. Since n > (2�)2 + 1, � <

√
n−1
2 ;

hence, |B| < 6
√

n − 1 + 3. ■

5. COMPLEXITY RESULTS

Let us now turn our attention to the computational com-
plexity of finding a small centroidal locating set, that is, the
computational complexity of the following problem:

Centroidal Dimension

INSTANCE: A graph G.
TASK: Find a centroidal basis of G.

2 In fact we have not taken care of optimizing the construction, as here all
the vertices of B0 are probably not needed.

We have seen in Theorem 11 that for any graph of diame-
ter 2, LD(G)−1 ≤ CD(G) ≤ 2LD(G). We get the following
corollary, showing that Centroidal Dimension is compu-
tationally very hard, even from the approximation point of
view (recall that α-approximation algorithm for problem P
is a polynomial-time algorithm for P which always outputs a
solution of size no greater than α times the size of an optimal
solution).

Corollary 21. Centroidal Dimension is NP-hard to
approximate within any factor o(ln n) for graphs on n vertices
(even for graphs with a vertex adjacent to all other vertices,
and hence diameter 2-graphs). For graphs of diameter 2, it
has an O(ln n)-approximation algorithm.

Proof. Since LD(G) − 1 ≤ CD(G) ≤ 2LD(G) and
the bounds are constructive, any α-approximation algorithm
(α ≥ 1) for Minimum Locating-Dominating Set can
be transformed into an approximation algorithm of factor
2α(1 + 1

OPT ) = 2α(1 + o(1)) for Centroidal Dimension

for graphs of diameter 2, and vice versa. Indeed, given an
α-approximate locating-dominating set D of G, we construct
a centroidal locating set of G of size at most 2|D|. We have
2|D| ≤ 2αLD(G) ≤ 2α(CD(G)+1) = (2α+ 2α

CD(G)
)CD(G).

For the converse, the reasoning is similar.
This also implies that if Minimum Locating-Dominating

Set is NP-hard to α-approximate for graphs of diameter 2
for some α ≥ 2, then Centroidal Dimension is NP-hard to
approximate within factor

(
α
2

OPT
OPT+1

)
= α(1−o(1))

2 for graphs

of diameter 2.
The positive approximation bound follows, as Minimum

Locating-Dominating Set is well known to be O(ln n)-
approximable, see for example Gravier et al. [8].

Moreover, it follows from a reduction for Minimum Iden-

tifying Code in the first author’s thesis [5, section 6.4]
and a lemma from Gravier et al. [8] (see also Foucaud
[6, 7]) that Minimum Locating-Dominating Set is NP-
hard to approximate within a factor of o(ln n) for graphs
having a vertex adjacent to all other vertices. This proves
the nonapproximability bound. ■

Note that Corollary 21 fully determines the computational
complexity of Centroidal Dimension in graphs of diame-
ter 2 from the approximation point of view. It was recently
proved by Hartung and Nichterlein that the related problem
Metric Dimension remains NP-hard to approximate within
a factor of o(ln n) even for subcubic graphs [12]. In general,
it would be interesting to extend the result of Corollary 21 to
other families of graphs.

As is often the case with domination or identification prob-
lems in graphs, a good way of reformulating our problem is to
represent it as an instance of Minimum Set Cover, which is
well known to be (ln n+1)-approximable (see Johnson [16]):

Minimum Set Cover

INSTANCE: A hypergraph H = (V , E).
TASK: Find a minimum-size subset C ⊆ E such that

∪X∈CX = V .
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For example, Metric Dimension for a graph G can be
expressed in this way by constructing a hypergraph HMD(G)

on vertex set
(

V(G)
2

)
with a hyperedge Ev for each vertex

v ∈ V(G) containing all pairs {x, y} of vertices with d(x, v) �=
d(y, v). Then HMD(G) has a set cover of size k if and only if
G has a locating set of size k, as shown by Khuller et al. [19].
Hence Metric Dimension is O(ln n)-approximable.

Next, we give a similar reduction for Centroidal Dimen-

sion, but with a weaker approximation ratio.

Theorem 22. Centroidal Dimension is O(
√

n ln n)-
approximable for graphs on n vertices.

Proof. Using Observation 2, finding a centroidal locat-
ing set is equivalent to finding a set of pairs of vertices which
identifies each pair of vertices in G—where a pair b1, b2 iden-
tifies x, y if d(x, b1) ≤ d(x, b2) but d(y, b1) > d(y, b2), or
d(y, b1) ≤ d(y, b2) and d(x, b1) > d(x, b2).

Let G be a graph on n vertices. We define the hypergraph
H = HCD(G) on vertex set V(H) = (

V(G)
2

)
. For each pair

{x, y} of vertices of G, H has a hyperedge Ex,y that contains
all pairs that are identified by {x, y}.

Let C be a set cover of H. Using our previous observation,
one can construct a centroidal locating set B(C) of G by tak-
ing the union of all elements in the pairs that correspond to
hyperedges in C: B(C) = {x ∈ V(G), ∃y ∈ V(G), Ex,y ∈ C}.
Indeed, every pair of vertices of G is identified by a pair
corresponding to a hyperedge of H. Hence we have

|B(C)| ≤ 2|C|. (4)

For the other direction, given a centroidal basis B of G,
one can construct a set cover of H consisting of all

( |B|
2

)
pairs

of vertices of B: each pair u, v in V (G) is identified by some
pair x, y in B, hence vertex {u, v} in H is covered by the
corresponding hyperedge Ex,y. Denoting by SC(H) the size
of an optimal set cover of H, this implies

SC(H) ≤
(|B|

2

)
≤

(
CD(G)

2

)
. (5)

Now, to approximate Centroidal Dimension, we con-
struct H = HCD(G) from G, and apply the standard approxi-
mation algorithm for Minimum Set Cover [16] to get a set
cover C of H of size O (ln n · SC(H)). By Inequalities (4)
and (5), we get a centroidal locating set B(C) of size at most
2|C| = O (ln n · SC(H)) = O

(
ln n · CD(G)2).

Now, if CD(G) ≥
√

n
ln n , we have a trivial O(

√
n ln n)-

approximation by selecting all vertices as a solution, since
n = O(

√
n ln n · CD(G)).

If CD(G) ≤
√

n
ln n , |B(C)| = O

(
ln n · CD(G) ·

√
n

ln n

)
=

O
(√

n ln n · CD(G)
)

. ■

We note that the quadratic dependence between SC(H)

and CD(G) is necessary for Inequality (5) in the reduction of
Theorem 22. Indeed, when we considered the case of cycles

in section 4, we had n special pairs to distinguish using other
pairs b1, b2 from B, but any pair b1, b2 could only distinguish
a small (constant) number of these n pairs. However, we could
build a centroidal locating set B of size O

(√
n
)
, meaning that

a large fraction of the pairs from B were indeed necessary to
distinguish the pairs. Hence this would lead to a set cover
of H of size �(|B|2) in our reduction. This suggests that one
cannot improve the approximation ratio from Theorem 22 for
Centroidal Dimension using our reduction. Hence we ask
the following question:

Question 23. What is the exact approximation complexity
of Centroidal Dimension?

We close the section with a remark on the parameter-
ized complexity of Centroidal Dimension: this problem
is fixed-parameter-tractable with parameter k, the size of
the solution, that is, it admits an algorithm of running time
f (k)nO(1) for some computable function f :

Proposition 24. Centroidal Dimension is fixed-parameter-
tractable when parameterized by the size of the solution.

Proof. We know that the order n of a graph with a cen-
troidal locating set of size k is at most b(k), hence, if the input
has more that b(k) vertices, we answer NO. Otherwise, we
enumerate all

( n
k

)
subsets of vertices of size k to check if one

of them is a centroidal locating set (checking whether a given
set is centroidal locating can be done in time nO(1)). This algo-
rithm has running time

( n
k

)
nO(1) ≤ nk+O(1) = b(k)k+O(1),

which is computable and only depends on k. ■

In contrast to Proposition 24, it was proved by Hartung
and Nichterlein [12] that deciding whether there is a solution
of size k for Metric Dimension is highly unlikely to be
solvable by an algorithm of running time no(k).
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