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An identifying code is a subset of vertices of a graph with the property that each vertex
is uniquely determined (identified) by its nonempty neighbourhood within the identifying
code. When only vertices out of the code are asked to be identified, we get the related
concept of a locating-dominating set. These notions are closely related to a number of
similar and well-studied concepts such as the one of a test cover. In this paper, we study
the decision problems IDENTIFYING CODE and LOCATING-DOMINATING SET (which consist in
deciding whether a given graph admits an identifying code or a locating-dominating set,
respectively, with a given size) and their minimization variants MINIMUM IDENTIFYING CODE
and MINIMUM LOCATING-DOMINATING SET. These problems are known to be NP-hard, even
when the input graph belongs to a number of specific graph classes such as planar
bipartite graphs. Moreover, it is known that they are approximable within a logarithmic
factor, but hard to approximate within any sub-logarithmic factor. We extend the latter
result to the case where the input graph is bipartite, split or co-bipartite: both problems
remain hard in these cases. Among other results, we also show that for bipartite graphs of
bounded maximum degree (at least 3), the two problems are hard to approximate within
some constant factor, a question which was open. We summarize all known results in
the area, and we compare them to the ones for the related problem DOMINATING SET.
In particular, our work exhibits important graph classes for which DOMINATING SET is
efficiently solvable, but IDENTIFYING CODE and LOCATING-DOMINATING SET are hard (whereas
in all previous works, their complexity was the same). We also introduce graph classes
for which the converse holds, and for which the complexities of IDENTIFYING CODE and
LOCATING-DOMINATING SET differ.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies the computational complexity of problems where one wants to find a set of vertices in a graph that
uniquely identifies each vertex. In particular, we study this complexity according to the graph class of the input. We mainly
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Fig. 1. A hypergraph H with a set cover, a test cover and a discriminating code (black edges). In the two last figures, the sets next to the vertices represent
the sets of edges of the solution containing that vertex. The test cover is not a set cover and hence it is not a discriminating code.

focus on identifying codes, which are subsets of vertices that identify all vertices using the intersection of their closed
neighbourhood with the code. The slightly less restrictive concept of locating-dominating sets will also be studied.

1.1. Definitions and problems

The graph-theoretic problems we will consider are special cases of more general ones, defined on hypergraphs, that we
shall describe first.

In this paper, to avoid confusion we will usually call hypergraphs and their vertex and edge sets H = (I, A) and graphs
G = (V, E). Given a hypergraph H, a set cover of H is a subset S of its edges such that each vertex v belongs to at least
one set S of S. We say that S dominates v. A test cover of H is a subset 7 of edges such that for each pair u, v of distinct
vertices of H, there is at least one set T of 7 that contains exactly one of u and v. We say that T (and also 7) separates u
from v. A set of edges that is both a set cover and a test cover is called a discriminating code of H. It has to be mentioned
that some hypergraphs may not admit any set cover (if some vertex is not part of any edge) or test cover (if two vertices
belong to exactly the same set of edges). See Fig. 1 for examples of these concepts.

While set covers are a standard and widespread notion in combinatorics and theoretical computer science, test covers
are less known. They were introduced under the name of separating systems by Rényi [53] (see also Bollobas and Scott [8] for
more recent work in the same line of research). They were independently studied in Garey and Johnson’s book [33] under
the name of test collections and further studied, see [24,47]. Discriminating codes were more recently (and independently)
introduced and studied in [12,13]. As we will see later, the notions of test covers and discriminating codes are very similar
in nature. Due to their properties enabling the unique identification of elements (vertices) of a system (hypergraph) using
the set of their attributes (edges), they have had a number of interesting applications in the areas of testing individuals
(such as patients or computers) for diseases or faults, see [12,24,47].

In this paper, we are mainly interested in special cases that can be defined over graphs rather than hypergraphs. The
notion that we will mainly study, introduced in 1998 in [40], is the one of identifying codes. Given a graph G and a vertex
v of G, we denote by N(v) and by N[v] the open and the closed neighbourhood of v, respectively. An identifying code of
G is a subset C € V(G) such that C is a dominating set, i.e. for each v € V(G), N[vINC # ¢ and C is a separating code, i.e.
for each pair u,v € V(G), if u # v, then N[u]NC # N[v] N C. The minimum size of an identifying code of a given graph
G will be denoted y'P(G). The notion of an identifying code is a generalization of the well-studied locating-dominating sets,
introduced three decades ago [54,55]. Given a graph G, a locating-dominating set of G is a subset C € V(G) which is both
a dominating set and which separates all vertices that are not in the code, i.e. for each pair u,v € V(G) \ C, if u # v, then
N(u) NC % N(v) NC. The minimum size of a locating-dominating set of a given graph G will be denoted y'P(G). It is easily
seen that any identifying code is a locating-dominating set. See Fig. 2 for examples of these concepts.

Whereas it is clear that any graph admits a (locating-)dominating set (its whole vertex set), a graph may not admit a
separating code if it contains twin vertices, i.e. vertices having the same closed neighbourhood. In a graph containing no
twins, the whole vertex set is a separating code (and therefore an identifying code); we call such graphs twin-free.
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Fig. 2. A graph with a dominating set, a separating set, an identifying code and a locating-dominating set (black vertices). The set next to each vertex v in
the three last figures indicates the intersection of N[v] and the solution.

It can be observed that a dominating set, a separating code and an identifying code of a given graph G are exactly a
set cover, a test cover and a discriminating code, respectively, of the closed neighbourhood hypergraph of G, which is defined
over V(G) and whose edge set is the collection of closed neighbourhoods of the vertices of G.

Identifying codes, locating-dominating sets and further related notions have been studied extensively in the literature.
We refer to [45] for an on-line bibliography on these topics, which lists more than 240 papers as of February 2013. In
particular, see [2,3,6,14,28,30,31,34,43,49,54-56] for studies of the computational complexity of these problems. We remark
that in many of these papers, due to the similarity between the two problems, the algorithmic properties of identifying
codes and locating-dominating sets are studied together. For the same reason, we do so as well.

One of the interests of these notions lies in their applications to the location of threats in facilities [54,58| and error
detection in computer networks [40]. One can also mention applications to routing [44], to bio-informatics [37] (where
identifying codes are called differentiating dominating sets) and to measuring the first-order logical complexity of graphs [41]
(where locating-dominating sets are called sieves).

For definitions of computational complexity, we refer to the books [4,33]. Let us formally define the decision and opti-
mization problems (whose name is preceded by “MIN") associated with identifying codes and locating-dominating sets:

ID CoDE
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k?

MiN ID CODE

INSTANCE: A graph G.

SOLUTION: An identifying code C of G.
MEASURE: |C|.

Loc-Dowm SET
INSTANCE: A graph G and an integer k.
QUESTION: Does G have a locating-dominating set of size at most k?

MIN Loc-DoM SET

INSTANCE: A graph G.

SOLUTION: A locating-dominating set D of G.
MEASURE: |D.

Problems associated with set covers, test covers, discriminating codes, dominating sets and vertex covers are defined
analogously, hence we skip their definitions.
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When measuring the quality of an approximation algorithm for a minimization problem P (with running time polynomial

in the size of the instance), we consider its performance ratio, i.e. the guaranteed quantity o = max{%} over all instances
Ip of P (where SOL;, is a solution to P given by the algorithm applied on instance Ip, and OPT(Ip) denotes the size of an
optimal solution of P for Ip). We say that P is w-approximable and that the algorithm is an «a-approximation algorithm.

We recall that the class APX is the class of all optimization problems that are c-approximable for some constant c.
Following terminology from e.g. [22], we also refer to the class log-APX as the class of all optimization problems that are
f (n)-approximable, where n is the size of the instance and f is a poly-logarithmic function.

In this paper, we will study specific graph classes, of which many are standard, such as bipartite graphs, planar graphs
or graphs of given maximum degree. Bipartite graphs which do not have any induced cycle of length more than 4 are
called chordal bipartite (note that they are in general not chordal). Complements of bipartite graphs are called co-bipartite
graphs. A class containing co-bipartite graphs is the one of asteroidal triple-free graphs (which we do not define here); in
turn, Dominating Shortest Path graphs, introduced in [42], are those graphs admitting a dominating set whose vertices are the
ones of a shortest path between two vertices of the graph; this class includes all asteroidal triple-free graphs. Interesting
superclasses of co-bipartite graphs are quasi-line graphs (graphs for which each vertex neighbourhood can be partitioned
into two cliques) and its superclass, the claw-free graphs (graphs having no K3 as an induced subgraph). Split graphs are
those whose vertex set can be partitioned into a clique and an independent set.

1.2. A few observations

We remark a few facts that are useful in the studied context. We now show, in a series of easy observations and
reductions, that test covers and discriminating codes are very close to each other.

Observation 1. Let H be a hypergraph admitting a set cover and a test cover. If C is a test cover of H, then there is an edge X of H such
that C U {X} is a discriminating code of H.

Proof. If C is not a discriminating code already, then C is not a set cover; that means at most one vertex of H, say v, is not
dominated (if there were two, they would not be separated). Let X be an edge containing v (it exists since H admits a set
cover). Then C U {X} is a discriminating code. 0O

We remark that Observation 1 holds, of course, in the same way for separating codes and identifying codes as they
are special cases of the corresponding hypergraph problems. We can use Observation 1 to define the following simple
reductions. These reductions will show that problems MIN TEsT COvER and MIN DISCRIMINATING CODE are computationally
almost equivalent.

Reduction 2 (MIN TEST COVER — MIN DISCRIMINATING CODE). Given a hypergraph H = (I, A), we construct in polynomial time
the hypergraph H' = (I’, A"), where I’ =1U {x} and A’ =AU {I'}.

Reduction 3 (MIN DiSCRIMINATING CODE — MIN TEST COVER). Given a hypergraph H = (I, A), we construct in polynomial time
the hypergraph H” = (I”, A”), where I” =1U{y} and A” = A.

Proposition 4. In Reduction 2, H has a test cover of size k if and only if H' has a discriminating code of size k + 1. In Reduction 3,
H has a discriminating code of size k if and only if H” has a test cover of size k.

Proof. For the first claim, if H has a test cover 7 of size k, then 7 U {I'} is a discriminating code of H’. If H' has a
discriminating code 7 of size k + 1, then it has to contain edge I’ as otherwise x is not dominated. Then 77\ {I'} is a test
cover of H since I’ does not separate any pair of vertices.

For the second claim, it is clear that any discriminating code of H is a test cover of H”, leaving only y undominated.
Now, in any test cover 7 of H”, y must be undominated; hence all other vertices are dominated, and 7 is a discriminating
code of H. O

Proposition 4 shows that the complexities of finding optimal discriminating codes and test covers are essentially the
same (for general hypergraphs). In fact, similar reductions could also be done for more special cases such as identifying
codes and separating codes in graphs.

We now show a way to relate (non-)approximability results of MiN ID CoDE and MIN Loc-Dom SET. The following theorem
was given in [34].

Theorem 5. (See [34].) Let G be a graph having a locating-dominating set D. If G is twin-free, one can construct using D an identifying
code C of G with |C| < 2|D|.
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We observe that the reverse constructions are trivial, since any identifying code is a locating-dominating set. Hence
Theorem 5 shows:

1
EOPTID(G) < OPTp(G) < OPT;p(G) < 20PTp(G)

Using Theorem 5 and these inequalities, we can link the complexity of approximating MiN Loc-Dom SET and MIN Ib CODE
in the following two corollaries:

Corollary 6. Any a-approximation algorithm for MiN Loc-DoM SET can be transformed into a 2c-approximation algorithm for MIN
Ip CoDE, and vice-versa.

Corollary 7. If it is NP-hard to ac-approximate MIN ID CODE, then it is NP-hard to & -approximate MIN Loc-Dom SET. If it is NP-hard
to c-approximate MIN Loc-DoM SET, then it is NP-hard to & -approximate MIN ID CODE.

We remark that, in the previous corollary, -approximation hardness only makes sense if o > 2.
1.3. Related work

It is well-known that MIN SET CoVER is an NP-hard problem [33], and that it is even log-APX-hard [52] (whereas logarith-
mic factors are tractable [39]); this even holds for the special case of MIN DOMINATING SET [16,35,36]. The same properties
hold for MIN TesT Cover [24] (and by Proposition 4, using Reduction 2 this result transfers to MiN DISCRIMINATING CODE)
and MIN ID CopE (see [6,43,56], for different proofs). MIN DISCRIMINATING CODE was shown to be NP-hard, even when the
bipartite incidence graph of the input hypergraph is planar [13].

Regarding the behaviour of the graph-theoretic problems of our interest when the instances are restricted to belong
to specific graph classes, much is known for DOMINATING SET and MIN DOMINATING SET: the NP-completeness of DOMINAT-
ING SET holds for many classes of graphs such as (chordal) bipartite graphs, split graphs, line graphs or planar graphs but
not for strongly chordal graphs, directed path graphs (which include the more famous interval graphs), or graphs having
a dominating shortest path (see e.g. [25] for an on-line database, and [19,35,36] for surveys and summaries). The log-
APX-completeness of MIN DOMINATING SET is known to hold even for bipartite graphs and split graphs [16], however it
does not hold for planar graphs or unit disk graphs (for which MiN DOMINATING SET admits PTAS algorithms [5,38,50]) or in
(bipartite) graphs of bounded maximum degree (at least 3), where it is APX-complete [16].

In comparison, much less is known about problems Ip Copg, MIN ID CopE, Loc-Dom SET and MIN Loc-Dom SET; extending
this knowledge is the main goal of this paper. It is known that, in general, ID CopE and Loc-Dom SET are NP-complete [14,
18]. This result holds even for bipartite graphs [14], and for ID CoDE it holds for planar graphs of maximum degree 3
[2,3], planar bipartite unit disk graphs [49], line graphs [30], split graphs [28,31], and, interestingly, interval graphs [28,
31]. Regarding the minimization problems, log-APX-completeness of MIN ID CoDE and MIN Loc-Dom SET is known only for
general graphs [6,43,56], and the two problems are APX-complete for graphs of bounded maximum degree at least 8 and 5,
respectively [34].

1.4. Our contribution and structure of the paper

We extend the knowledge about the computational complexity of Ib Copg, Loc-Dom SET, MIN Ib CopE and MIN Loc-Dom
SET when these problems are restricted to specific classes of graphs. We compare these results to the corresponding ones
for DOMINATING SET and MIN DOMINATING SET; see Tables 1 and 2 for a summary of many known complexity results for these
problems when instances are restricted to belong to some standard graph classes. These tables also indicate graph classes
where the complexity of MIN ID CobE or MIN Loc-Dom SET is unknown, giving rise to interesting open problems.

We will show in Section 2 that MiN I CoDE and MIN Loc-Dom SET are log-APX-complete even for bipartite, split and co-
bipartite graphs using approximation-preserving reductions from MIN DISCRIMINATING CODE. Prior, three different papers [6,
43,56] showed that MIN ID CODE is log-APX-complete, but only in general graphs. Moreover, the proofs of [6,43,56] are rel-
atively involved, while we use the intuitive proximity between MIN DISCRIMINATING CODE and MIN ID CoDE to design much
simpler reductions. Note that on co-bipartite graphs, MiN DOMINATING SET is in fact trivially solvable in polynomial time; in
contrast, our result shows that MiN Ip Cobe and MIN Loc-Dom SET are computationally very hard on this class. As we will
see, this result shows similar contrasts, with the complexity of MIN DOMINATING SET for Dominating Shortest Path graphs
and (¢-)claw-free graphs.

In Section 3, we show that MIN ID CopE and MIN Loc-Dom SET are APX-complete for bipartite graphs of maximum
degree 3, answering a question from [34] and improving one of the results therein. Along the way, we obtain that the two
problems are NP-hard for the same classes with the additional restriction of planarity (this improves three results from
[2,3,49]), as well as for chordal bipartite graphs.

Finally, in Section 4, we exhibit two classes of graphs, which we call SC1- and SC2-graphs. For SC1-graphs, DOMINATING
SET is NP-complete, but ID Cope and Loc-Dom SET are solvable in polynomial time; for SC2-graphs, DOMINATING SET and
Loc-Dowm SET are solvable in polynomial time, but Ip CoDE is NP-complete. These results are interesting because, until now,
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Table 1

Comparison of complexities of decision problems ID CoDg, Loc-Dom SET and DOMINATING SET for selected graph classes. Underlined entries are new results
proved in this paper. The abbreviations “P”, “NP-c”, “DSP” and “AT-free” stand for “polynomial-time solvable”, “NP-complete”, “Dominating Shortest Path”
and “asteroidal triple-free”, respectively. SC1- and SC2-graphs will be defined in Section 4. Definitions of graph classes that are not defined in this paper
can be found in [11,25].

Graph class Ip CopE Loc-Dom SET DOMINATING SET
Bipartite NP-c [14] NP-c [14] NP-c [7]
Chordal bipartite NP-c [Th. 31] NP-c [Th. 33] NP-c [48]
Planar max. degree 3 NP-c [3] NP-c [Th. 29] NP-c [33,57]
Planar bipartite max. degree 3 NP-c [Th. 26] NP-c [Th. 29] NP-c [57]
(Planar) line NP-c [30] OPEN NP-c [59]
Planar bipartite unit disk NP-c [49] NP-c [49] NP-c [17]
Bounded tree-width/clique-width P [46] P [46] P [20,21]
Line of bounded tree-width P [30] P [30] P [20]
Split NP-c [31] NP-c [Co. 21] NP-c [7]
Undirected path NP-c [31] NP-c [31] NP-c [9]
Interval, directed path NP-c [31] NP-c [31] P [9]
Unit interval OPEN OPEN P [9]
Strongly chordal NP-c [31] NP-c [31] P [26]
Permutation NP-c [31] NP-c [31] P [27]
Bipartite permutation OPEN OPEN P [27]
AT-free, DSP NP-c [31] NP-c [Co. 21] P [42]
Co-bipartite NP-c [Co. 21] NP-c [Co. 21] P [42]
(Planar) SC1 P [Th. 35] P [Th. 36] NP-c [Th. 37]
(Planar) SC2 NP-c [Th. 40] P [Th. 39] P [Th. 39]
Table 2

Comparison of complexity lower bounds, “LB”, and upper bounds on approximation ratios, “UB” (as functions of the order n of the input graph) of opti-
mization problems MIN ID CoDg, MIN Loc-DoM SET and MIN DOMINATING SET for selected graph classes. Underlined entries are new results proved in this
paper. Graph classes for which the precise complexity class of MiN ID CoDE or MIN Loc-Dom SET is not fully determined are marked with () (note that for
all graph classes except, up to our knowledge, undirected path graphs, the complexity class of MiN DOMINATING SET is fully determined). The abbreviations
“NP-h", “APX-h", “log-APX-h", “DSP” and “AT-free” stand for “NP-hard”, “APX-hard", “log-APX-hard”, “Dominating Shortest Path” and “asteroidal triple-free”,
respectively. Definitions of graph classes that are not defined in this paper can be found in [11,25].

Graph class MIN Ip CoDE MIN Loc-DomM SET MIN DOMINATING SET
LB UB LB UB LB UB
In general log-APX-h O(Inn) log-APX-h O(Inn) log-APX-h O(Inn)
[6,43,56] [24] [56] [34,56] [52] [39]
Bipartite log-APX-h O(Inn) log-APX-h O(Inn) log-APX-h O(Inn)
Co. 15 [24] Co. 15 [34,56] [16,52] [39]
Split, chordal log-APX-h O(Inn) log-APX-h O(Inn) log-APX-h O(Inn)
Co. 18 [24] Co. 18 [34,56] [16,52] [39]
Planar () NP-h 7 NP-h 7 NP-h PTAS
[3] [55] Th. 29 [55] [33] [5]
Line (x) APX-h 4 OPEN 8 APX-h 2
[28] [30] [30]+Co. 6 [15,59] [59]

Ky ¢-free log-APX-h O(Inn) log-APX-h O(Inn) APX-h -1
(£>3) Co. 21 [24] Co. 21 [34,56] [15,59] [16]
Max. degree A APX-h O(InA) APX-h O(InA) APX-h O(lnA)

A > 8 [34] [24] A >5[34] [34,56] A>3 [51] [39]
Max. degree A >3 APX-h O(InA) APX-h O(InA) APX-h O(InA)
and bipartite Th. 27 [24] Th. 29 [34,56] [16] [39]
Unit disk (x) NP-h O(Inn) NP-h O(Inn) NP-h PTAS
[49] [24] [49] [34,56] [17] [38]
Co-bipartite, log-APX-h O(Inn) log-APX-h O (Inn) P
AT-free, DSP Co. 21 [24] Co. 21 [34,56] [42]
Strongly chordal (x) NP-h O(Inn) NP-h O(Inn) P
[31] [24] [31] [34,56] [26]
Undirected path () NP-h O(Inn) NP-h O(Inn) NP-h O(Inn)
[31] [24] [31] [34,56] [9] [39]
Directed path (x) NP-h O(Inn) NP-h O(Inn) P
[31] [24] [31] [34,56] [9]
Interval () NP-h 6 NP-h 12 P
[31] [10] [31] [10]+Co. 6 [9]
Permutation (x) NP-h O(Inn) NP-h O(Inn) P
[31] [24] [31] [34,56] [27]

all known results for given graph classes were showing that ID CoDE and Loc-Dom SET were at least as hard as DOMINATING
SET, and that the complexities of ID Cope and Loc-Dom SET were the same.
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2. Bipartite, co-bipartite and split graphs

In this section, we provide three similar reductions from MIN DISCRIMINATING CODE to MIN ID CoDE for bipartite, split
and co-bipartite graphs showing that MIN ID CoDE is log-APX-complete in these three classes of graphs. Previously, only
log-APX-completeness for general graphs was known. We begin with preliminary considerations that will be used in all
three reductions.

2.1. Useful definitions, bounds and constructions

In this section, we will use the framework of AP-reductions, introduced in [22] and which is now accepted as one of the
most suitable kind of reductions for preserving approximability factors [4, Chapter 8.6].

Definition 8. (See [4, Definition 8.3].) Let P and Q be two optimization problems. An AP-reduction from P to Q is a triple
(f,g,a) where f, g are functions and « is a positive constant, with the following properties:

1. Function f maps any instance Ip of P together with any ¢ > 1 to an instance f(Ip,c) of Q.

2. For any instance Ip of P, for any ¢ > 1, and for any solution SOL¢j, ) of f(Ip, ), function g maps (Ip,7,SOLf, ¢)) tO
a solution g(f(Ip,c),SOLf(, ¢)) of Ip.

3. For any instance Ip of P, for any c > 1, if Ip has a solution, then f(Ip,c) has a solution.

. For any fixed ¢ > 1, f(-,¢) and g(:, -, ¢) are computable in polynomial time.

5. For every instance Ip of P, for any ¢ > 1, and for any solution SOL(j, ¢, of f(Ip,0), if:

N

{ ISOLf(1p.0l — OPTq(f(Ip,c))

OPTq (f(Ip,c))" ISOLf(1p,0l

18CF(Ip.0).SOLf 1y o) OPTp(Ip)
OPTp(Ip) "18(fUp, ), SOLs(1p )l

} <c, then:

max{ }gl—i—a(c—l).

We will use AP-reductions together with the following theorem:

Theorem 9. (See [22].) Any optimization problem P with instance Ip that is log-APX-hard with respect to AP-reductions is NP-hard
to approximate within a factor cIn(|Ip|), for some constant ¢ > 0.

We will also use the following bounds on the size of a minimum discriminating code:

Theorem 10. (See [12].) Let H = (I, A) be a hypergraph admitting a discriminating code, C. Then |C| > log, (|I| 4+ 1). If C is inclusion-
wise minimal, then |C| < |I|.

We now describe two constructions, that ensure that the vertices of some vertex set A are correctly identified using the
vertices of another set L.

Construction 11 (Bipartite logarithmic identification of A over (A, L)). Given two sets of vertices A and L with |L| > [log,(|A| +
1)7, the bipartite logarithmic identification of A over (A, L), denoted LOG(A, L), is the graph of vertex set AUL and where
each vertex of A has a distinct nonempty subset of L as its neighbourhood.

The next construction is similar, but makes sure that each vertex of A has at least two neighbours in L.

Construction 12 (Non-singleton bipartite logarithmic identification of A over (A, L)). Given two sets of vertices A and L with
|A| <2 —|L| —1,' the non-single bipartite logarithmic identification of A over (A, L), denoted £LOG*(A, L), is the graph
of vertex set AU L and where each vertex of A has a distinct subset of L of size at least 2 as its neighbourhood.

2.2. Bipartite graphs

We first give a reduction to MIN ID CoDE for bipartite graphs.

1 There are exactly 2!l — |L| — 1 distinct subsets of L with size at least 2.
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Fig. 3. Reduction from MIN DiSCRIMINATING CODE to MIN ID CoDE (with ¢ = [log,(|A| + 1)7). Black vertices belong to the identifying code C(D) defined in
the proof of Theorem 14.

Reduction 13 (MIN DiSCRIMINATING CODE — MIN ID CODE for bipartite graphs). Given an instance (I, A) of MIN DISCRIMINATING
CoDE, we construct in polynomial time the following bipartite graph G(I, A) on |I|+|A|+9[log,(|A]| + 1)] + 3 vertices, with
vertex set:

V(GU,A)=1UAU{x,y,z}U{aj,bj,cj.dj,ej, fj, g, hj.ij|1<j<[log(|Al+1)]}.

and edge set:

E(GUA)={xy}U{y.z}U{{z,i}|iel}
UE(B(, A))
UE(LOG(A, {aj|1=<j<[log(1AI+1)]}))
U{{aj,bj}. {bj, cj} {aj. dj}. {dj. g} | 1 < j < [logy (1Al + 1)}
U{{dj. e}, {ej. fi}. (gj. hj}, thy. i} | 1< j < [logy(|Al + 1)}

where B(I, A) denotes the bipartite incidence graph of (I, A) and E(LOG(A, L)) denotes the bipartite logarithmic identifi-
cation of A over (A, L) (see Construction 11).
The construction is illustrated in Fig. 3.

Theorem 14. Let (I, A) be an instance of MIN DISCRIMINATING CODE, and G (I, A), the bipartite graph constructed using Reduction 13.
Then, (I, A) has a discriminating code of size at most k if and only if G(I, A) has an identifying code of size at most k + 6[log, (|A| +
1)] + 2, and one can construct one using the other in polynomial time.

Proof. Sufficient side (=) Let D C A be a discriminating code of (I, A), |D| = k. We define C(D) as follows:

C(D) =DU{x,z}U{aj, c;j.dj, fj, gj.ij | 1 <] < [logy (1Al +1)]}.

One can easily check that C(D) has size k + 6[log,(|A| + 1)1 + 2, and is clearly a dominating set. To see that it is an
identifying code of G(I, A), observe that vertex z separates all vertices of I from all vertices which are not in I U{z}. Vertex z
itself is the only vertex dominated only by z (each vertex of Z being dominating by some vertex of D); y is dominated by
both x, y and x, only by itself. Since D a discriminating code of (I, A), all vertices of I are dominated by a distinct subset
of D. Furthermore, due to the bipartite logarithmic identification of A over (A, {a; | 1 < j < [log,(JA|+1)1}) (and since each
vertex a; belongs to the code), all vertices of A are dominated by a unique subset of {a; | 1 < j < [log,(]A| + 1)1}. Finally, it
is easy to check that all vertices of type aj, bj,c;j,dj,ej, fj, gj, hp,ij are correctly separated.

Necessary side (<) Let C be an identifying code of G(I, A), |C| =k + 6[log,(|A| + 1)1 + 2. We first “normalize” C by
constructing an identifying code C* of G(I, A), |C*| <|C|, such that the two following properties hold:

lc*n{V (G, A)\{TUA}}| =6[logy(|Al +1)] +2 (1)
lc*ni|=9. (2)

To get Condition (1), we replace [C N {V(G(, A)) \ {IUA}}| by {x,z} U {aj,cj,d;, fj,gj,ij|1=<j<T[logy(JA]|+1)]} to
get code C' (whose structure is similar to the one of the code constructed in the (=) part of the proof). Observe that
IC’'| < |C|. Indeed, we already had |C N {V (G, A)) \ {I U A}}| > 6[log,(|A| + 1)] + 2. To see this, note that vertex z is the
only one separating {x, y}, and |C N {x, y}| > 1 since C must dominate x. Similarly, for any j € {1,...,log,(|A| + 1)}, vertices
aj,dj, g; are the only ones separating {bj, c;}, {e;, fj} and {hj,i;}, respectively, and |C N {bj,c;}| =1, |CN{ej, fj}| =1 and
ICN{hj,ij}| > 1, since C must dominate cj, f; and ij, respectively.
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To fulfill Condition (2), we replace each vertex i € I NC’ by some vertex in A. If C"\ {i} is an identifying code, we may
just remove i from the code. Otherwise, note that i is not needed for domination since all vertices of I are dominated
by z and all vertices of A are dominated by some vertex in {a; | 1 < j < [log,(|]A| 4 1)7}. Hence, i separates i itself from
some other vertex i’ in I (indeed, one can check that all other types of pairs which could be separated by i are actually
already separated by some vertex of C' N (V(G(I, A)) \ I)). But then, the pair {i,i’} is unique (suppose i separates i itself
from two distinct vertices i’ and i” of I, then i’ and i” would not be separated by C’, a contradiction). Since (I, A) admits a
discriminating code, there must be some vertex a of A separating i from some i’. Hence we replace i by a. Doing this for
every i € C' N1, we get code C*, and |C*| < |C'| < |C|.

Using the previous observations and by similar arguments as in the (=) part of the proof, one can easily check that after
these two modifications performed on code C, the obtained code C* is still an identifying code.

By Condition (2), we have [C*N A| <|C| —6[log, (Al + 1] +2=k.

To finish the proof, we claim that C* N A is a discriminating code of (I, A). This is easy to observe, as all pairs {I, I} of
I are separated by C*. By Condition (1), they must be separated by some vertex of A (note that z is adjacent to all vertices
of I). Hence C* N A is a discriminating code of (I, A). O

Theorem 14 proves that Ip CoDE for bipartite graphs is NP-hard. In fact, Reduction 13 also preserves approximation ratios
up to a constant factor, as shown by the following corollary.

Corollary 15. Reduction 13 is an AP-reduction with parameter &« = 8 and MIN Ip Copg, MIN Loc-Dowm SET for bipartite graphs are
log-APX-complete.

Proof. We will use Theorem 14 to show that any c-approximation algorithm - for Min ID CopE for bipartite graphs can
be transformed into a 7c-approximation algorithm for MIN DISCRIMINATING CODE, and 7c <1 + ¢(8 — 1); therefore, by Def-
inition 8, we have an AP-reduction with o = 8. Since MIN DISCRIMINATING CODE is log-APX-complete by [24] together with
Proposition 4 and MIN Ip CoDE is known to be in log-APX, we get the claim for MiIN Ip Copk. Corollary 7 immediately implies
the claims for MiIN Loc-Dom SET.

Let (I, A) be an instance of MIN DiSCRIMINATING CODE with optimal value OPT, and let G(I, A) be the bipartite graph
constructed using Reduction 13. By Theorem 14, we have:

y'°(G(1, A)) < OPT + 6[log, (|A| +1)] + 2. (3)
Let C be an identifying code of G(I, A) computed by 4. We have:

Icl <y (G, A)). (4)

By Theorem 14, we can compute in polynomial time a discriminating code D of (I, A). Using Inequalities (3) and (4)
together with the fact that [log,(|A[)] < OPT < |D| (Theorem 10), we get?:

ID| < IC| — 6[log (|Al +1)] —2
<cy(GU, A)) —6[logy (1Al +1)] — 2
<c(OPT +6]logy(|A| +1)] +2) —6[logy (Al +1)] — 2
<cOPT + (c — 1)(6[log, (|A| +1)] +2)
< CcOPT + (c — 1)(6[log, (|Al)] + 8)
< cOPT + (c — 1)(60PT + 8)
< (7c —6)OPT +8
<7cOPT. O

2.3. Split graphs
In this section, we use a reduction from MIN DISCRIMINATING CODE to MIN ID CoDE for split graphs similar to Reduction 13.

Reduction 16 (MIN DisCRIMINATING CODE — MIN Ip CoDE for split graphs). Given an instance (I, A) of MIN DISCRIMINATING
CoDE, we construct in polynomial time the following split graph Sp(I, A) on |I| + |A| 4+ 6[log,(|A| + 1)] + 1 vertices, with
vertex set V(Sp(I, A)) =K US (K is a clique and S, an independent set). More specifically:

2 For the last line inequality, we assume here that OPT > 2.
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Fig. 4. Reduction from MIN DISCRIMINATING CODE to MIN ID CoDE (with £ = 2[log, (|A| + 1)7).

K=1u{uyu{k;|1=<j=<2[log(Al+1)]}
S=AU{vIU{sj.t;|1<j<2[logy (Al +1)]}.
Sp(I, A) has edge set:

E(Spd, A)) = {u, v}
UE(B(, A))
UE(LOG* (A, {kj | 1< j=<2[log(IAl+1)]}))
U {{kj, sj} (k. e} | 1< j < [logy (1Al +1)]}
U{a,b|a,beK, a#b},
where B(I, A) denotes the bipartite incidence graph of (I, A) and E(LOG*(A, L)) denotes the non-singleton bipartite loga-

rithmic identification of A over (A, L) (see Construction 12).
The construction is illustrated in Fig. 4.

Theorem 17. Let (I, A) be an instance of MIN DISCRIMINATING CODE, and Sp(I, A), the split graph constructed using Reduction 16.
Then, (I, A) has a discriminating code of size at most k if and only if Sp(I, A) has an identifying code of size at most k + 4[log, (|A| +
1)] + 1, and one can construct one using the other in polynomial time.

The proof of Theorem 17 being very similar to the one of Theorem 14, we delay it to Appendix A. As Theorem 14 for bi-
partite graphs, Theorem 17 shows that Ip CoDE for split graphs is NP-hard; moreover, Reduction 16 preserves approximation
ratios up to a constant factor (the proof being the same as the one of Corollary 15, we omit it).

Corollary 18. Reduction 16 is an AP-reduction with parameter « = 6 and MiIN ID CoDE, MIN Loc-Dowm SET for split graphs are log-
APX-complete.

2.4. Co-bipartite graphs

We now prove that MIN ID CODE is log-APX-complete even for co-bipartite graphs, that is, graphs whose vertex set can be
partitioned into two cliques. Note that this class (when assumed to be connected) is a subclass of Dominating Shortest Path
graphs (a class containing the more well-known asteroidal triple-free graphs) since any pair of adjacent vertices belonging
each to a distinct one among the two cliques, forms a dominating shortest path. This is particularly interesting since Dom-
INATING SET is solvable in polynomial time for Dominating Shortest Path graphs [42]. Any co-bipartite graph is also trivially
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Fig. 5. Reduction from MIN DISCRIMINATING CODE to MIN ID CoDE (with ¢ = [log, (|A| 4+ 1)1).

quasi-line, and, in turn, claw-free. Hence our result contrasts again with the complexity of MIN DOMINATING SET, which is
approximable within a factor of ¢ — 1 for £-claw-free graph® for any fixed ¢, as shown in [16] using a short argument.

Reduction 19 (MIN DiSCRIMINATING CODE — MIN ID CODE for co-bipartite graphs). Given an instance (I, A) of MIN DISCRIMINAT-
ING CODE, we construct in polynomial time the following co-bipartite graph G(I, A) on |I| + |A| 4+ 6[log,(]A| + 1)] vertices,
with vertex set V(G(I, A)) = K' U K2, where K and K? are two cliques over the following sets of vertices:

K'=1U{aj,bj.cj|1<j<[log(IAl+1)]}
K*=AU{dj.ej, fj|1=<j=[log(IAl+1)]}.
G(I, A) has edge set:

E(G(I,A)) =E(B(, A))
UE(£OG(A fa; |1 < j = [loga (141 +1)1})
U {{aj,dj}, {bj,dj}, {bj. ej}, {bj, fi}. {cj, fi} | 1< j<[logy(|Al+1)]}
UlxylxyeKk' Ufxy|xyek?}.

where B(I, A) denotes the bipartite incidence graph of (I, A) and E(LOG(A, L)) denotes the bipartite logarithmic identifi-
cation of A over (A, L) (see Construction 11).
The construction is illustrated in Fig. 5.

Theorem 20. Let (I, A) be an instance of MIN DISCRIMINATING CoDE, and G (I, A), the bipartite graph constructed using Reduction 19.
Then, (I, A) has a discriminating code of size at most k if and only if G(I, A) has an identifying code of size at most k + 5[log, (|A| +
1)1 — 2, and one can construct one using the other in polynomial time.

Once again, the proof of Theorem 20 being very similar to the one of Theorem 14, we delay it to Appendix A. Again, we
can show that Reduction 19 also preserves approximation ratios up to a constant factor (the proof being the same as the
one of Corollaries 15 and 18, we omit it).

Corollary 21. Reduction 19 is an AP-reduction with parameter o = 7 and MiIN ID CoDEg, MIN Loc-DoM SET for co-bipartite graphs
(and hence for quasi-line graphs, asteroidal triple-free graphs and Dominating Shortest Path graphs) are log-APX-complete.

3 A graph is ¢-claw-free if it has no K 1,¢ as an induced subgraph — hence 3-claw-free means claw-free.
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Fig. 6. Reduction gadget for edge e = {x, y} in Reduction 25 from MIN VERTEX COVER to MIN ID CoDE. The original vertices of G, x and y, are circled.

3. Reductions for (planar) bipartite graphs of bounded maximum degree and chordal bipartite graphs

In this section, we improve the NP-completeness results for various subclasses of planar graphs from [2,3] and [49]
by showing that Ip CopE and Loc-Dom SET are NP-complete for planar bipartite graphs of maximum degree 3. We also
improve and extend the APX-hardness results for MiIN ID CoDE and MIN Loc-Dom SET for non-bipartite graphs of maximum
degree at least 8 and 5, respectively, from [34] by showing that they are APX-hard even for bipartite graphs of maximum
degree 3 (the authors of [34] asked whether their result could be extended to bipartite graphs, hence our result answers
their question in positive). Finally, we show that Ip Cope and Loc-Dom SET are NP-complete for chordal bipartite graphs.
Note that the class of chordal bipartite graphs is interesting for the following reason: DOMINATING SET is NP-complete for
this class [48], but the related problem ToTAL DOMINATING SET is polynomial-time solvable [23].

3.1. Definition of L-reductions

The following type of reductions, called L-reductions (for “linear reductions”) was introduced in [51]; they are now widely
used to prove APX-hardness of optimization problems.

Definition 22. (See [51].) Let P and Q be two optimization problems. An L-reduction from P to Q is a four-tuple (f, g, o, 8)
where f and g are polynomial time computable functions and «, 8 are positive constants with the following properties:

1. Function f maps instances of P to instances of Q and for every instance Ip of P:

OPTq (f(Ip)) <o - OPTp(Ip).

2. For every instance Ip of P and every solution SOL¢ ;) of f(Ip), g maps the pair (f(Ip),SOLf,)) to a solution SOL;,
of Ip such that:

|OPTp(Ip) — ISOLy, || < B - [OPTq (f(Ip)) — ISOLg 1) |-
L-reductions are useful due to the following fact:

Theorem 23. (See [51].) Let P and Q be two optimization problems. If there exists an L-reduction from P to Q with parameters « and
B and Q has a (1 + €)-approximation algorithm for some € > 0, then P has a (1 + aS€)-approximation algorithm.

This can be used to derive hardness results in the following way:

Corollary 24. (See [51].) Let P and Q be two optimization problems. If there exists an L-reduction from P to Q with parameters «
and B and it is NP-hard to approximate P within ratio rp = 1+ 8, then it is NP-hard to approximate Q within ratiorq =1+ %

3.2. Reductions from MIN VERTEX COVER
We first present a reduction from MIN VERTEX COVER to MIN ID CODE. It consists in a very simple edge-gadget.

Reduction 25 (MIN VERTEX COVER — MIN ID CoDE). Given a graph G, we construct the graph G’ on vertex set

V(G)=V(G)U{pe.qe | e € E(G)},

and edge set

E(G') = {{x, pe}. {¥. Pe}. {Pe. Ge} | e = {x, y} € E(G)}.

The construction is illustrated in Fig. 6.

For the following claims, let G be a connected cubic graph and G’, the graph obtained from G using Reduction 25.
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Claim A. Let N be a vertex cover of G. Using \/, one can build an identifying code of G’ of size at most |N'| + |E(G)|.

Proof. Let C = N U {pe | e € E(G)}. We can easily check that C is an identifying code of G’: any original vertex x of G is
dominated by the unique set of vertices {p. | x € e,e € E(G)} (this set having at least two elements by the first paragraph of
the proof). For each edge {x, y} =e € E(G), vertex p, is dominated by itself and at least one of x, y; g is dominated by p.
only. O

Claim B. Let C be an identifying code of G'. One can use C to build a vertex cover of G of size at most |C| — |E(G)|.

Proof. We observe that for each edge e = {x, y} of G, one of pe, g belongs to C, since C has to dominate g.. Moreover, one
of x, y belongs to C since pe, . need to be separated by C. Hence, the restriction of the code to the original vertices of G,
CNV(G), is a vertex cover of G with size at most |C| — |[E(G)|. O

In what follows, let 7(G) denote the minimum size of a vertex cover of G. The previous claims are enough to give a new
proof that ID CoDE is NP-complete:

Theorem 26. Ip CoDE is NP-complete, even for planar bipartite graphs of maximum degree 3.

Proof. We apply Reduction 25 to VERTEX CovEr for planar cubic graphs, which is known to be NP-complete [1,32].# Given
a planar cubic graph G, it is easy to check that G’ is planar, has maximum degree 3, and is bipartite, since the edge gadget
for edge e = {x, y} is bipartite, with x, y in the same part. Now, Claims A and B applied to an optimal vertex cover and an
optimal identifying code show that y'°(G’) = 7(G) + |E(G)|, completing the proof. O

In fact, we can show that Reduction 25 applied to MIN VERTEX COVER for graphs of maximum degree 3 is an L-reduction.

Theorem 27. Reduction 25 applied to graphs of maximum degree 3 is an L-reduction with parameters o = 4 and B = 1. Therefore,
MIN ID CoDE is APX-complete, even for bipartite graphs of maximum degree 3.

Proof. Let G be a graph of maximum degree 3 and G’ the graph constructed from G using Reduction 25. We have to prove
Properties 1 and 2 from Definition 22.

First of all, by Claim A, given an optimal vertex cover N* of G, we can construct an identifying code C with y'P(G') <
IC| < IN*| + |E(G)| = 7(G) + |E(G)|. Similarly, by Claim B, given an optimal identifying code C* of G’, we can construct a
vertex cover A of G such that 7(G) < |N| < |C*| — |E(G)| = ¥'P(G) — |E(G)|. Hence we have:

y'°(G") =7(G) + |[E(G)|. (5)

Property 1 Since G has maximum degree 3, each vertex can cover at most three edges, hence we have 7(G) > @ S0

|E(G)| <37(G). Using Equality (5), we get:
Y°(6') =1(6) +|E©)] <41(C),
which proves Property 1 of Definition 22.

Property 2 Let C be an identifying code of G’. Using Claim B applied to C, we obtain a vertex cover N with |[A/| <
|C| — |E(G)|. By Equality (5), we have —7(G) =|E(G)| — y™?(G’). So we obtain:

N —1(G) <|C|— ‘E(G)| + ’E(G)’ . )/ID(G/)
|T(G) — IV < |[¥yP(6) —Icl

)

which proves Property 2 of Definition 22.

For the second part of the statement, note that MiIN VERTEX COVER is known to be APX-complete, even for graphs of
maximum degree 3 [1,16]. By construction and as observed in the proof of Theorem 26, the graphs built from graphs with
maximum degree 3 in Reduction 25 are bipartite and of maximum degree 3. O

A similar, slightly more involved, reduction from MIN VERTEX COVER to MIN Loc-Dom SET is as follows:

4 The reduction in [32] is for planar subcubic graphs, but one can make the constructions cubic using the gadgets for vertices of degree less than 3 given
in [1].
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Fig. 7. Reduction gadget for edge e = {x, y} in Reduction 28 from MIN VERTEX COVER to MIN Loc-Dom SET. The original vertices of G, x and y, are circled.

Reduction 28 (MIN VERTEX COVER — MIN Loc-Dom SET). Given a graph G, we construct the graph G’ on vertex set

V(G')=V(G)U{ge.Te, Se. te, e | € € E(G)},

and edge set

E(G/) = {{X, e}, {¥, Se}, {Te, te}, {te, Se}, {Ue, e}, {Ue, Se}, {Ge, te), {qe, Ue} | e={x,y}e E(G)}~
The construction is illustrated in Fig. 7.

For the following claims, let G be a graph and G’, the graph obtained from G using Reduction 28.
Claim C. Let A/ be a vertex cover of G. Using \, one can build a locating-dominating set of G’ of size at most |N'| + 2|E(G)|.

Proof. Once again, we assume that G has minimum degree 2.

First, let D = A/. Then, for each edge e = {x, y} € E(G), if x € N/, put vertices s, t, into D. Otherwise, put vertices re, te
into D.

We can check that D is a locating-dominating set of G’. Recall that we need separation only for vertices in V(G’) \ D.
If an original vertex x of G does not belong to N, all its neighbours in G belong to N'; hence x is dominated by two or
three vertices from D of the form s, hence x is separated from every other vertex. Moreover, for each edge e of G, vertices
e, Te, Se, Ue are separated from all vertices of V(G’) \ {qe, e, Se, te, Ue} by either re, s or te; finally, it is easy to check that
they are correctly separated from each other. O

Claim D. Let D be a locating-dominating set of G’. For each e € E(G), we have:

’Dﬂ {ge Te, Se, te, ue}‘ > 2.

Proof. Note that N(te) = N(u.), hence one of them (say t.) belongs to D. Now, u, needs to be dominated, hence one of
e, Te, Se, Ue, belong to D. O

Claim E. Let D be a locating-dominating set of G’. For each e = {x, y} € E(G), we have:

DX, ¥, Ge. Te Se, te. Ue}| > 3.

Proof. By contradiction, suppose |D N {x, ¥, ge,Te, Se, te, Ue}| = 2. By the same argument as in the proof of Claim D, we can
assume to € D, and |D N {qe, Te, Se, Ue}| = 1. We derive a contradiction for each case: if q. or u, belongs to D, re, s, are not
separated. If ro € D, qe, Se are not separated. If s, € D, ¢, 1. are not separated. O

Claim F. Let D be a locating-dominating set of G’. From D, we can build a locating-dominating set D’ with |D’| < |D| such that for
each e = {x, y} € E(G), we have |D’ N {qe, Te, Se, te, Ue}| = 2.

Proof. Let e = {x, y} € E(G). Assume that |D N {qe, e, Se, te, Ue}| > 3. By the same argument as in the previous proofs,
we may also assume that t, € D. If neither r, nor s, belongs to the solution, then D N {qe, e, Se, te, Ue} = {Qe, te, Ue}.
Then, observe that D’ := D \ {u.} is still a locating-dominating set, as u. is now the only vertex out of the solution
dominated only by ¢, and u, was not involved in the separation of r., s, being their common neighbour. Now, either
D' N {qe, Te, Se» te, Ue}| = 2 and we are done, or one of re, s, belongs to D’ (say, r. € D/, the other case following by sym-
metry). We let D" := (D’ \ {qe, Se, Ue}) U {y}. Now, vertices ge, Se, U, are separated; the only problem could come from the
separation of x and u,, however, since we repeat the operation for each original edge e of G, in the end either x belongs
to D”, or all its neighbours (at least two) do, and x, u, are separated. O



62 E Foucaud / Journal of Discrete Algorithms 31 (2015) 48-68

Claim G. Let D be a locating-dominating set of G'. One can use D to build a vertex cover of G of size at most |D| — 2|E(G)|.

Proof. Use Claim F to build code D” such that |D”| < |D| and for each e = {x, y} € E(G), we have |D" N{qe, e, Se, te, Ue}| =
2. By this property and Claim E, we have |D” N {x, y}| > 1. Hence ' = D" \ {qe, Te, Se, te, Ue | € € E(G)} is a vertex cover of
G with |N| < |D"| - 2|E(G)| < |D| - 2|E(G)|. D

We are now ready to prove the following:
Theorem 29. Reduction 28 applied to graphs of maximum degree 3 is an L-reduction with parameters o = 7 and B8 = 1. Therefore,
MIN Loc-DoM SET is APX-complete, even for bipartite graphs of maximum degree 3, and Loc-DoM SET is NP-complete, even for planar

bipartite graphs of maximum degree 3.

Proof. Once again, applying Reduction 28 to VERTEX COVER for planar graphs of maximum degree 3, Claims C and G show
that:

y'2(G’) = 7(G) +2|E(G)

, (6)

proving the NP-completeness part of the statement.
For showing that we have an L-reduction, let G be a graph of maximum degree 3 (and minimum degree 2) and G’ the
graph constructed from G using Reduction 28. We have to prove Properties 1 and 2 from Definition 22.

Property 1. Again, we have 7(G) > @ so |E(G)| <37(G). Using Equality (6), we get:
YP(C') = 1(G) +2[E(G)| = 71(G),
which proves Property 1 of Definition 22.

Property 2. Let D be a locating-dominating set of G’. Using Claim G applied to D, we obtain a vertex cover N with
IN| < |D| — 2|E(G)|. By Equality (6), we have —7(G) = 2|E(G)| — y'P(G’). So we obtain:

W] —7(G) <|D| —2|E(G)| +2|E(G)| — y*P(C")
|G — V]| = |¥*°(¢) — Il

which proves Property 2 of Definition 22. O

3.3. Reductions from MIN DOMINATING SET

We now give another reduction, this times from MIN DOMINATING SET to MIN ID CODE.

Reduction 30 (MIN DOMINATING SET — MIN ID CoDE). Given a graph G, we construct the graph G’ on vertex set

V(G') = V(G) U {ax, by, cx, dx. ex | x € V(G)},

and edge set

E(G/) =E(G)U {{X, ax}, (X, ex}, {ax, bx}, {ax, cx}, {ax, dx}, {ex, by}, {ex, cx}, {ex, dx} | Xe V(G)}~

The construction is illustrated in Fig. 8.

Even though Reduction 30 can be shown to be an L-reduction when applied to MiN DOMINATING SET for graphs of
bounded maximum degree, we use it only as a classical reduction between decision problems, as the reduction would not
strengthen our previous non-approximability results.

Theorem 31. ID CoDE is NP-complete, even for chordal bipartite graphs.

Proof. We apply Reduction 30 to the class of chordal bipartite graphs, for which DOMINATING SET is known to be
NP-complete [48]. Given a chordal bipartite graph G, it is easy to check that the parts added to G to construct G’ do
not add any induced cycle of length more than 4. We now show that G has a dominating set of size at most k if and only
if G’ has an identifying code of size at most k + 3|V (G)|.

Sufficient side (=) Let D be a dominating set of size k. Consider the code C = DU {{ay, bx, cx} | x € V(G)}. One can easily
check that each pair x, y of original vertices of G are separated by ay and ay, and x is separated from ay, by, cy,d, by at
least one of ay, by. For each original vertex x of G, since D is a dominating set of G, x and dy are separated by the vertex
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Fig. 8. Reduction from MIN DOMINATING SET to MIN ID CODE.

Gy

Fig. 9. Reduction from MIN DOMINATING SET to MIN Loc-DoM SET.

of D that dominates x. Vertices ay, by, Cx, dx are easily seen to be separated among themselves by one of ay, by, cx, as well
as ay, by, cx are separated from x by at least one of by, cy.

Necessary side (<) Let C be an identifying code of G’ of size k + 3|V (G)|. Observe that vertices by, ¢y and dy have
the same open neighbourhoods, so |C N {by, cx, dx}| > 2. For the same reason, |C N {ax, ex}| > 1. Without loss of generality,
we may assume that C N {by, cx, dx} = {bx, cx} and C N {ay, ex} = {ax}. Now, since C is an identifying code, x and ey are
separated, that is, C N (N[x] U {dx} \ {ax, ex}) # @. We build D as follows: first, D =C NV (G). For each x such that x, dy are
separated by dy in C, add x to D. It is easy to observe that D is a dominating set, and by the first part of the proof, that
DI <ICl=3IV(G)|=k. O

A similar reduction to MIN Loc-DoM SET can be given:

Reduction 32 (MiN DOMINATING SET — MIN Loc-Dom SET). Given a graph G, we construct the graph G’ on vertex set

V(G')=V(G) U {ax, by, cx,dx | x€ V(G)},

and edge set

E(G/) =E(G)U {{X, ax}, {x, dx}, {ax, b}, {ax, cx}, {dx, by}, {dx, cx} | Xe V(G)}-

The construction is illustrated in Fig. 9.
Again, similar arguments than for Reduction 30 apply to Reduction 32, leading to the following result:
Theorem 33. Loc-Dowm SET is NP-complete, even for chordal bipartite graphs.

4. Further classes of graphs for which the complexities of DOMINATING SET, ID CODE and Loc-Dowm SEkT differ

An interesting question is for which classes of graphs the complexities of the decision problems DOMINATING SET, ID
Copk and Loc-Dowm Skt differ. We saw in Subsection 2.4 that for co-bipartite graphs, Ip Cobe and Loc-Dowm SET are hard, but
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Fig. 10. Example of an SC1-graph.

DOMINATING SET is trivially solvable in polynomial time.> Such a result was not known prior to the author’s PhD thesis [28],
from which many results of this paper are taken. In [28,31], it was also proved that ID CoDE is NP-complete for the class of
interval graphs, whereas DOMINATING SET is linear-time solvable in that class [9].

In this section, we define a subclass of bipartite graphs for which the converse holds: DOMINATING SET is NP-complete,
but Ip CopE and Loc-Dowm SET are solvable in polynomial time. We call these graphs SC1-graphs (the name comes from the
fact that the hardness of the considered problems is due to their similarity to instances of SET COVER). We also define the
similar class of SC2-graphs, for which, interestingly, the complexities of ID Cobe and Loc-Dom Skt differ. Such a class was
not known to exist before this work.

Definition 34. A graph G is said to be an SCI1-graph if it can be built from a bipartite graph with parts S and T and an
additional set S’ disjoint from S and T with |S’'| =5|S| such that:

e for each vertex x of S, there are two vertex-disjoint paths xaybycxy and xdyex of length 3 and 2, respectively, with
ay, by, cx, dy, ex € S’ and no other edges from vertices of S’ than those of the two paths, and
e each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least two elements.

An example of an SC1-graph is pictured in Fig. 10.

Theorem 35. Let G be an SC1-graph built from a bipartite graph with parts S and T. Then y'°(G) = 4|S|, SU {as, bs, ds | s € S} is an
optimal identifying code of G, and it can be computed in polynomial time.

Proof. Note that each vertex s of S necessarily belongs to any identifying code, since it is the only one separating ds from e;s.
Similarly, each vertex as with s € S is the only one separating bs from c;s. In order to dominate c¢s and eg, one of b, cs and
ds, es respectively, has to belong to any identifying code. Hence y'(G) > 4/S|.

Using the facts that each vertex of T is adjacent to at least two vertices of S and that all the neighbourhoods of vertices
of T within S are distinct, it is easy to show that S U {as, bs,ds | s € S} is an identifying code.

Finally, one can easily check in polynomial time whether a given graph is an SC1-graph; once this is done, it is straight-
forward to compute the code S U {as, bs,ds |s€S}. O

We have a similar statement for locating-dominating sets:

Theorem 36. Let G be an SC1-graph built from a bipartite graph with parts S and T. Then y'P(G) = 3|S|, S U {bs,ds | s € S} is an
optimal locating-dominating set of G, and it can be computed in polynomial time.

Proof. As in the proof of Theorem 35, for each s € S, in order to dominate cs and es, one of bs, cs and d, es respectively,
has to belong to any locating-dominating set. For any possible choice of vertex among bs, cs, one additional vertex among
s, ds, bs, ¢s is needed (either to separate as from c¢s or to dominate bs). Hence le(G) > 3|S|.

As in the proof of Theorem 35, it is easy to show that S U {bs,ds | s € S} is a locating-dominating set and that it can be
computed in polynomial time. O

Theorem 37. DOMINATING SET is NP-complete for planar (bipartite) SC1-graphs of maximum degree 5.

5 Recall that this class is included in the class of asteroidal triple-free graphs, which itself is a subclass of the class of Dominating Shortest Path graphs,
in which DOMINATING SET is still solvable in polynomial time [42].
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Fig. 11. Example of an SC2-graph.

Proof. We reduce SET COVER to DOMINATING SET for SC1-graphs. Let (I, A) be a hypergraph such that each vertex of A has
a distinct neighbourhood within I and at least two neighbours in I. For example, one can take an instance of VERTEX COVER
for planar cubic graphs, which is a special case of SET COVER (where [ is the set of edges of a simple graph; each set of A
stands for a given vertex and contains all edges incident to it), known to be NP-complete [1,32]. Let B(I, A) be the bipartite
incidence graph of (I, A), and build the SC1-graph G from B(I, A) with parts S=A and T =1. If (I, A) comes from VERTEX
Cover for planar graphs of maximum degree 3, G is planar and has maximum degree 5. We claim that (I, A) has a set
cover of size k if and only if G has a dominating set of size k + 2|S|.

For the first part, let C C A be a set cover of (I, A). One can easily check that the set C U {bs,ds | s € S} is a dominating
set of G.

For the converse, let D be a dominating set of G of size k + 2|S|. Since for each vertex s € S, ¢s and e; need to be
dominated, we have |[DNS’| > 2|S|. In fact, we can assume that for each vertex s € S, |[DNS’| = {bs, ds}; then all vertices of
SUS’ are dominated by some vertex of D N S’. We can also assume that DN T =@, since all vertices of S are dominated
by some vertex of DN S’: if a vertex t € T belongs to D, we can replace it by an arbitrary neighbour of t in S to get a
dominating set D" with |D’| < |D|. Observe that D' NS has to dominate all the vertices of T, hence (I, A) has a set cover
of size |ID'NS|<|D|—2|S|=k. O

We now introduce the class of SC2-graphs.

Definition 38. A graph G is said to be an SC2-graph if it can be built from a bipartite graph with parts S and T and an
additional set S’ disjoint from S and T with |S’| = |S| such that:

o for each vertex x of S, there is a vertex I, € S’ of degree 1 adjacent to x, and
e each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least two elements.

An example of an SC2-graph is pictured in Fig. 11.
In what follows, ¥ (G) denotes the size of a smallest dominating set of graph G.

Theorem 39. Let G be an SC2-graph built from a bipartite graph with parts S and T. Then y (G) = y'P(G) = |S|, S is an optimal
(locating- )dominating set of G, and it can be computed in polynomial time.

Proof. Since for every x € S, every vertex Iy needs to be dominated, either x or Iy belongs to any dominating set of G. It is
easily observed that S is a dominating set of G. Moreover, since by the definition of an SC2-graph, each vertex of T has a
distinct neighbourhood within S, and this neighbourhood has at least two elements, all vertices of T and S’ are separated,
hence S is also locating-dominating. Now, as for SC1-graphs, one can easily check in polynomial time whether a given graph
is an SC2-graph; once this is done, it is straightforward to compute S. O

Theorem 40. ID CopE is NP-complete for planar (bipartite) SC2-graphs of maximum degree 3.

Proof. We observe that Reduction 25 from Subsection 3.2 yields planar SC2 graphs of maximum degree 3 when applied to
VERTEX COVER for planar graphs of maximum degree 3. Hence Theorem 27 shows the claim. O

5. Open problems

We conclude with open problems. The complexities of (MIN) ID Copt and (MIN) Loc-DomM SET are open for several impor-
tant input graph classes, as shown in Tables 1 and 2. Regarding interval graphs and permutation graphs, the approximation
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complexity of MIN Ib CopE (and MIN Loc-DomM SET) is still an open question.® It is also of interest to determine the com-
plexity of Ip CopE and Loc-Dow Skt for bipartite permutation graphs and unit interval graphs. Finally, we remark that MiN
DOMINATING SET admits PTAS algorithms for planar graphs [5] and for unit disk graphs [38,50]. Does the same hold for MIN
Ip CopE and MIN Loc-Dom SET?

Appendix A. Omitted proofs

Proof of Theorem 17. Sufficient side (=) Let D C A be a discriminating code of (I, A), |D| =k. We define C(D) as follows:

C(D)=DU{u} U fkj.t; | 1< j <2[logy (Al +1)]}.

One can easily check that C(D) has size k+ 2[log,(|A| +1)]+ 1 and is a dominating set of Sp(I, A). To see that it is also
an identifying code of Sp(I, A), observe that each vertex of K is separated from each vertex of S by u. Moreover vertex u is
the only vertex that is dominated only by the vertices of C(D) from K. All pairs of vertices of K are separated: each vertex
ki is separated from each other vertex of K by its private neighbour t;, and since D is a discriminating code of (I, A), each
vertex of Z is dominated by a distinct and nonempty set of vertices of D. Finally, all pairs of vertices of S are separated:
due to the non-singleton bipartite logarithmic identification of A, each vertex of A is dominated by a distinct subset of
vertices of {k; | 1 < j <2[log,(|A| 4+ 1)1} that has size at least 2. Finally, each vertex s; is the only vertex dominated only
by ki, and each vertex t; is the only vertex of S dominated by itself.

Necessary side (<) Let C be an identifying code of Sp(I, A) with |C| =k + 4[log,(|A| + 1)1 + 1. We first “normalize” C
by constructing an identifying code C* of Sp(I, A), |C*| <|C|, such that the two following properties hold:

|c* N (V(Spd, M)\ 1 U A))| =4[logy(IAl +1)] + 1 (A1)
lc*ni|=9. (A2)

To get Condition (A.1), we replace [C N {V (Sp(I, A)) \{IUA}}| by {u} Uk, tj|1<j<2[logy(|Al + 1)1} to get code C’
(whose structure is similar to the one of the code constructed in the (=) part of the proof). Observe that |C’| < |C|.
Indeed, we had |C N {V (Sp(I, A)) \ {IU A}}| > 4[log,(|A| +1)] + 1. To see this, note that for any j € {1, ..., 2[log,(|A| + 1)1},
ICN{kj,sj, tj}] = 2. Indeed, N(sj) = N(t;); as they must be separated by C, one of them, say s;, belongs to C. But t; must
be dominated, hence one of k; and t; belongs to C. Finally, v must be dominated, hence |C N {u, v}| > 1.

To fulfill Condition (A.2), we note that each vertex i € N C’ can simply be removed from the code. Assume for the
sake of contradiction, that C"\ {i} is not an identifying code. Note that i cannot be needed for domination since all vertices
of I are dominated (e.g. by u) and all vertices of A are dominated by some vertex in {k; |1 < j < 2[log,(|A] + D1}
Hence, i is needed for separation. Since K is a clique and contains already many vertices of C’ (i.e. u and all vertices of
{kj|1<j<2llogy(|JA|+1)1}), i may only separate two vertices of S (no vertex of S is adjacent to all the vertices of C' N K,
hence all vertices of S are separated from all vertices of K). Actually, these two vertices have to both belong to A since no
other vertex from S can be adjacent to I. But all pairs in A are separated by some vertex in {k;j | 1 < j <2[log,(|A| + D1},
a contradiction. Removing every i € C’ NI in this way, we get code C*, and |C*| < |C'| < |C|.

Using the previous observations and by similar arguments as in the (=) part of the proof, one can easily check that after
these two modifications performed on code C, the obtained code C* is still an identifying code.

By Condition (A.2), we have |[C* N A| <|C| —4[log,(|A|+ 1)1+ 1=k.

To finish the proof, we claim that C* N A is a discriminating code of (I, A). This is easy to observe, as all pairs {I, I} of
I are dominated and separated by C*. By Condition (A.1), they must be separated by some vertex of A. Hence C*N A is a
discriminating code of (I, A). O

Proof of Theorem 20. We first assume that a; is the vertex adjacent to all vertices of A as given by the construction of
E(LOG(A,L)).

Sufficient side (=) Let D C A be a discriminating code of (I, A), |D| = k. Without loss of generality, we assume that a;
is adjacent to some vertex of D. We define C(D) as follows:

C(D)=DU{aj,bj.cj.dj, fi | 1< j<[logy(JAl+ 1)1} \ {b1. f1}.

One can easily check that C(D) has size k + 5[log,(]A| + 1)] — 2 and is a dominating set of G(I, A). Let us show that
it is also an identifying code of G(I, A). First of all, due to the bipartite logarithmic identification of A over (A, {a; |1 <
j < Tlogy(JA| + 11}), each vertex of A is dominated by a distinct subset of vertices of {a;j | 1 < j < [logy(|A| 4+ 1)1}; note
that any other vertex (except e, which however is not dominated by any vertex a;) is dominated by some vertex b;. Hence
each vertex of A is separated from all other vertices. Next, each vertex of Z is dominated by a distinct nonempty subset

6 After the submission of this paper, a 6-approximation algorithm for MiN Ip CobE (implying a 12-approximation algorithm for MIN Loc-Dom SET by
Corollary 6) appeared in [10]; however it is not known whether a PTAS exists.
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of D since D is a discriminating code of (I, A). Within V(G) \ (AU ), only vertices of the form a; may be dominated by
vertices of D; however each vertex a; is separated from any vertex of Z by d;. It remains to check that vertices of the form
aj, bi, ci,d;, e, fi are separated from each other. For any i, j (possibly i = j), any vertex among {a;, b;, c;} is separated from
any vertex of {d;,ej, f;} by the set {ay | 1 <k < [log,(|A| + 1)1}. Similarly, for i # j, any vertex of {a;, b;, c;} is separated
from any vertex of {aj, bj, c;} by either d;,d;, f; or fj (noticing that each vertex c; except c; is dominated by f;). Again, for
i# j,dj,ej, fi are separated from dj, e, f; by at least one of c¢;, ¢; (noticing that each vertex among {d;, e;, f;} is dominated
by bj, except when i =1). For any i, it remains to check the separation of any pair within {a;, b;, ¢;} and within {a;, b;, ¢;}.
If i #1, observe that a; is dominated by d;, b; is dominated by both d;, f;, and c¢; is dominated by f;. Furthermore, ay, by
and aq, c1 are separated by some vertex of D that is adjacent to a; (we assumed that it exists); by, c1 are separated by dj.
Finally for any i, d; is separated from both e;, f; by a;; e; and f; are separated by c;.

Necessary side (<) Let C be an identifying code of G(I, A), |C| =k + 5[log,(|A| + 1)] — 2. We first “normalize” C by
constructing an identifying code C* of G(I, A), |C*| < |C|, such that the two following properties hold:

lc*n{v(cU, M)\ {TUA}}|=5[log,(JAl +1)] -2 (A3)
lc*niI|=0. (A4)

To get Condition (A.3), we first replace |CN{V (G(I, A))\{IUA}}| by {aj,bj,cj,dj, fj|1=<j<T[logy(JA|4+1)1}\{b1, f1} to
get code C’ (whose structure is similar to the one of the code constructed in the (=) part of the proof). Observe that |C’| <
|C|. Indeed, we had [CN{V(G(I, A))\ {IUA}}| >5[log,(|A| +1)] — 2. To see this, note that for any j e {1,...,log,(|A|+ 1)},
vertices aj, c; are forced by {dj, e;} and {e}, f;}, respectively, and |CN{d;,e;}| > 1 since C must separate b; from c;. Finally,
consider the two sets F ={f; | je{1,...,logy(JA|+ 1)}} and B ={bj | j € {1,...,logy(|A| + 1)}}. Finally, observe that at
least |F| — 1 vertices of F (|B| — 1 vertices and of B, respectively) do not need to belong to C. Indeed, for any pair c;, ;j
of vertices with i # j and 1 <1i, j < [logy(|A| 4+ 1)] (e;, ej, respectively), either f; or f; (b; or bj, respectively) must belong
to C.

To fulfill Condition (A.4), we replace each vertex i € INC’ by some vertex in A. If C’\ {i} is an identifying code, we may
just remove i from the code. Otherwise, note that i is not needed for domination since all vertices of K' U A are dominated
by a;. Hence, i separates i itself from some other vertex i’ in I (indeed, one can check that all other types of pairs which
could be separated by i are actually already separated by some vertex of C’ N (V(G(I, A)) \ I)). But then, the pair {i, i’} is
unique (suppose i separates i itself from two distinct vertices i’ and i” of I, then i’ and i” would not be separated by C’,
a contradiction). Since (I, A) admits a discriminating code, there must be some vertex a of A separating i from some i’.
Hence we replace i by a. Doing this for every i € C' N I, we get code C*, and |C*| < |C'| <|C|.

Using the previous observations and by similar arguments as in the (=) part of the proof, one can easily check that after
these two modifications performed on code C, the obtained code C* is still an identifying code.

By Condition (A.4), we have [C* N A| <|C| — 5[log,(|]A| + 1)1 + 2 =k. To complete the proof, we claim that C*N A is a
discriminating code of (I, A). This is easy to observe, as all pairs {I, I’} of I are separated by C*. By Condition (A.3), they
must be separated by some vertex of A. Hence C* N A is a discriminating code of (I, A). O
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