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a b s t r a c t

A dominating set of a graph G is a set D of vertices of G such that every vertex outside D is
adjacent to a vertex in D. A locating-dominating set of G is a dominating set D of Gwith the
additional property that every two distinct vertices outside D have distinct neighbors in D;
that is, for distinct vertices u and v outside D, N(u) ∩ D ≠ N(v) ∩ D where N(u) denotes
the open neighborhood of u. A graph is twin-free if every two distinct vertices have distinct
open and closed neighborhoods. The location-domination number of G, denoted γL(G), is
the minimum cardinality of a locating-dominating set in G. Garijo et al. (2014) posed the
conjecture that for n sufficiently large, the maximum value of the location-domination
number of a twin-free, connected graph on n vertices is equal to ⌊

n
2 ⌋. We propose the

related (stronger) conjecture that if G is a twin-free graph of order n without isolated
vertices, then γL(G) ≤

n
2 . We prove the conjecture for cubic graphs. We rely heavily on

proof techniques from matching theory to prove our result.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A dominating set in a graph G is a set D of vertices of G such that every vertex outside D is adjacent to a vertex in D.
The domination number, γ (G), of G is the minimum cardinality of a dominating set in G. The literature on the subject of
domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [7,8]. In this paper,
we focus our attention on a variation of domination, called location-domination, which is widely studied in the literature. A
locating-dominating set is a dominating set D that locates all the vertices in the sense that every vertex outside D is uniquely
determined by its neighborhood in D. The location-domination number of G, denoted γL(G), is the minimum cardinality of
a locating-dominating set in G. The concept of a locating-dominating set was introduced and first studied by Slater [12,13]
and studied in [2,3,5,11–14] and elsewhere.

A classic result due to Ore [10] states that every graph without isolated vertices has a dominating set of cardinality at
most one-half its order. As observed in [5], while there are many graphs (without isolated vertices) which have location-
domination number much larger than one-half their order, the only such graphs that are known contain many twins, that
is, pairs of vertices with the same closed or open neighborhood. Garijo, González, and Márquez [6] consider the function
λ|C∗(n), which is the maximum value of the location-domination number of a twin-free, connected graph on n vertices.
They prove that for every n ≥ 14, λ|C∗(n) ≥ ⌊

n
2⌋, and they find different conditions for a twin-free graph G to satisfy

γL(G) ≤ ⌊
n
2⌋. Motivated by these results, they state the following conjecture.

Conjecture 1 ([6]). There exists a positive integer n1 such that, for every n ≥ n1, λ|C∗(n) = ⌊
n
2⌋.
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We pose the related conjecture that in the absence of twins, the classic bound of one-half the order for the domination
number also holds for the location-domination number.

Conjecture 2. Every twin-free graph G of order n without isolated vertices satisfies γL(G) ≤
n
2 .

We remark that Conjecture 2 implies Conjecture 1. Indeed, if Conjecture 2 is true, then λ|C∗(n) ≤ ⌊
n
2⌋ for all n ≥ 2,

which implies, by the results of Garijo et al. [6], that λ|C∗(n) = ⌊
n
2⌋ for every n ≥ 14. Moreover, Conjecture 2 is a stronger

conjecture than Conjecture 1 in the sense that Conjecture 2 applies to twin-free graphs of arbitrary order with no isolated
vertex, while Conjecture 1 is claimed to hold only for (connected) twin-free graphs of sufficiently large order.1

Strict inequality may hold in Conjecture 2. Consider, for example, the twin-free, bipartite graph G formed by taking as
one partite set a set S of k ≥ 2 elements, and as the other partite set all the distinct non-empty subsets of S, and joining each
element of S to those subsets it is a member of. Then, G has order n = k + 2k

− 1 and γL(G) = |S| = k = ⌊log2 n⌋. This is a
classic construction in the area of location-domination, see for example [13].

Garijo et al. [6] prove Conjecture 2 for graphs without 4-cycles (which include trees) and for the class of graphs with
independence number at least one-half the order (which includes bipartite graphs). Further, they prove Conjecture 2 for
twin-free graphs satisfying certain conditions on the upper domination number and the chromatic number. In [5], the
authors provide several constructions for twin-free graphs with location-domination number one-half their order. The
variety of these constructions shows that these graphs have a rich structure,which is an indication that Conjecture 2might be
difficult to prove. Further support is given to this conjecture in [5] where it is proved for split graphs and co-bipartite graphs,
and in [4] where it is proved for line graphs. The following theorem summarizes the known results about Conjecture 2.

Theorem ([5,6,9]). Conjecture 2 is true if the twin-free graph G of order n (without isolated vertices) satisfies any of the following
conditions.
(a) [6] G has no 4-cycles.
(b) [6] G has independence number at least n

2 .
(c) [6] G has clique number at least ⌈

n
2⌉ + 1.

(g) [6] G has upper domination number at least n
2 or G has upper domination number at least n

2 + 1.

(h) [6] G has chromatic number at least 3n
4 or G has chromatic number at least 3n

4 + 1.
(d) [5] G is a split graph or a co-bipartite graph.
(e) [4] G is a line graph.
(f) [9] G is a claw-free, cubic graph.

In this paper, we continue to advance the study of Conjecture 2 by proving it for the class of cubic graphs, as stated in
our main theorem:

Theorem 3. If G is a twin-free, cubic graph of order n, then γL(G) ≤
n
2 .

We start by giving some definitions and notations in Section 2, and we prove Theorem 3 in Section 3. The essence of our
proof of Theorem3 is to apply the Tutte–Berge Formula and usematching theory in order to obtain certain desired structures
of a cubic graph that will enable us to construct locating-dominating sets of size at most one-half the order of the graph.

2. Definitions and notation

For notation and graph theory terminology, we in general follow [7]. Specifically, let G be a graph with vertex set V (G),
edge set E(G) and with no isolated vertex. The open neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V | uv ∈ E(G)}
and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}. The degree of v is dG(v) = |NG(v)|. If the graph G is clear from
the context, we simply write V , E, N(v), N[v] and d(v) rather than V (G), E(G), NG(v), NG[v] and dG(v), respectively. Two
distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed twins if N[u] = N[v]. Further, u and v are
twins in G if they are open twins or closed twins in G. A graph is twin-free if it has no twins. We use the standard notation
[k] = {1, 2, . . . , k}.

Given a set F of edges, we will denote by G − F the subgraph obtained from G by deleting all edges of F . For a set S of
vertices, G − S is the graph obtained from G by removing all vertices of S and removing all edges incident to vertices of S.
The subgraph induced by S is denoted by G[S]. A cycle on n vertices is denoted by Cn and a path on n vertices by Pn. An odd
component of G is a component of G of odd order. The number of odd components of G is denoted by oc(G).

1 In [5], we attributed Conjecture 2 to the authors of [6] who posed Conjecture 1. However, as correctly pointed out by the reviewers of the current paper,
the statements of Conjectures 1 and 2 are different. Hence, although Conjecture 2 is motivated by Conjecture 1, we pose Conjecture 2 as an independent
conjecture which is a strengthening of Conjecture 1.



F. Foucaud, M.A. Henning / Discrete Mathematics 339 (2016) 1221–1231 1223

A set D is a dominating set of G if N[v] ∩ D ≠ ∅ for every vertex v in G, or, equivalently, N[S] = V (G). Two distinct
vertices u and v in V (G) \ D are located by D if they have distinct neighbors in D; that is, N(u) ∩ D ≠ N(v) ∩ D. If a vertex
u ∈ V (G) \ D is located from every other vertex in V (G) \ D, we simply say that u is located by D. For k ≥ 1 if X is a set of
vertices in G and x ∈ V (G) \ X , then the vertex x is said to be k-dominated by X if x has exactly k neighbors inside X; that is,
|N(x) ∩ X | = k.

A set S is a locating set of G if every two distinct vertices outside S are located by S. In particular, if S is both a dominating
set and a locating set, then S is a locating-dominating set. Further, if S is both a total dominating set and a locating set, then
S is a locating-total dominating set (where S is a total dominating set of G if every vertex of G is adjacent to some vertex in
S). We remark that the only difference between a locating set and a locating-dominating set in G is that a locating set might
have a unique non-dominated vertex.

An independent set in G is a set of vertices no two of which are adjacent. Two distinct edges in a graph G are independent if
they are not adjacent in G (i.e., the two edges are not incident with a common vertex). A set of pairwise independent edges of
G is called amatching in G. A matching of maximum cardinality in G is called amaximummatching in G. The number of edges
in a maximummatching of a graph G is called thematching number of G, denoted by α′(G). LetM be a specified matching in
a graph G. A vertex v of G is an M-matched vertex if v is incident with an edge of M; otherwise, v is an M-unmatched vertex.
If the matchingM is clear from context, we simply call aM-matched vertex amatched vertex and aM-unmatched vertex an
unmatched vertex.

3. Proof of Theorem 3

In this section, we present a proof of Theorem 3. Our proof relies heavily on matching theory in graphs. We begin with
some useful definitions and lemmas related to matchings.

3.1. Useful definitions and lemmas

We shall need the following theorem of Berge [1] about the matching number of a graph, which is sometimes referred
to as the Tutte–Berge formulation for the matching number. Recall that oc(G) denotes the number of odd components in a
graph G.

Theorem 4 (Tutte–Berge Formula). For every graph G,

α′(G) = min
X⊆V (G)

1
2

(|V (G)| + |X | − oc(G − X)) .

We shall also need the following structural result about maximum matchings in graphs which is a consequence of the
proof of the Tutte–Berge Formula.

Theorem 5 ([1]). Let G = (V , E) be a graph and let X be a proper subset of vertices of G such that (|V | + |X | − oc(G − X))/2
is minimum. If M is a maximum matching in G, then |M| = (|V | + |X | − oc(G − X))/2 and there are exactly oc(G − X) − |X |

vertices that are M-unmatched. Furthermore, if MX is the subset of edges of M that belong to G − X, then every vertex in G − X
is MX -matched, except for exactly one vertex from each odd component of G− X. If U denotes this set of oc(G− X) vertices that
are MX -unmatched, one from each odd component of G − X, then X is M-matched to a subset of vertices in U.

The structure described in Theorem 5 is illustrated in Fig. 1.
Definition of the setDG(M). Let G be a graph and letM be amaximummatching of G. We defineDG(M) to be the collection
of all sets D of vertices such that the following holds:

• For every edge uv ∈ M , if exactly one of u and v has a neighbor that is M-unmatched, then the vertex in {u, v} with an
M-unmatched neighbor belongs to D.

• For every edge uv ∈ M , if neither unor v has anM-unmatchedneighbor or if both u and v have a (common)M-unmatched
neighbor, then exactly one of u and v belongs to D.

If the graph G is clear from the context, we simply write D(M) rather than DG(M).
Definition of a D-bad pair. Given a set D ⊆ V (G), we define a D-bad pair of vertices as two vertices in V (G) \ D that are not
located by D. If the set D is clear from the context, we simply write that a pair of vertices is a bad pair rather than a D-bad
pair.

In our proof, we will use the following lemmas.

Lemma 6. Let G be a cubic graph, let M be a maximum matching of G, and let D ∈ DG(M). Then, D is a dominating set of G,
and each M-unmatched vertex is dominated by at least two vertices of D.
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Fig. 1. Example of the structure of a graph with maximummatchingM (thickened edges) with respect to a given set X .

Proof. It follows readily from the two properties of sets D ∈ DG(M), that every M-matched vertex is dominated by D. If x
is an M-unmatched vertex, then since G is cubic, the vertex x is adjacent to two M-matched vertices that are incident with
distinct edges, e1 and e2 say, ofM . Hence, by the construction of D, the set D contains a neighbor of x incident with e1 and a
neighbor of x incident with e2. Thus, x is dominated by at least two vertices of D. �

Lemma 7. Let G be a twin-free, cubic graph, let M be a maximum matching of G, and let D ∈ DG(M). Then, the vertices of each
D-bad pair are 2-dominated.

Proof. Let {u, v} be a D-bad pair. If u and v were 3-dominated by D, then they would be open twins, a contradiction. Hence,
u and v are dominated by at most two vertices of D. By Lemma 6, onlyM-matched vertices can be 1-dominated by D, but if
u and v are M-matched vertices, they would each be dominated by the vertex of D that they are matched to under M and
would therefore not form a D-bad pair, a contradiction. Hence, u and v are 2-dominated by D. �

Lemma 8. Let G be a twin-free, cubic graph. Among all maximum matchings M of G and all sets D ∈ DG(M), let the matching
M0 and the set D0 ∈ DG(M0) be chosen so that the number of D0-bad pairs is minimum. Then, the vertices of each D0-bad pair
are M0-matched vertices.

Proof. Let X be a proper subset of vertices of G such that (|V |+|X |−oc(G−X))/2 is minimum. The structure of the graph G
with respect to thematchingM0 and the setX is described in Theorem5. Let {u, v} be an arbitraryD0-bad pair. Suppose to the
contrary that they are not bothM0-matched vertices. By Lemma 7, both u and v are 2-dominated by D0. By the definition of
a set in DG(M0), if both u and v areM0-unmatched and 2-dominated, they would be open twins, a contradiction. Therefore,
exactly one of u and v is M0-unmatched. Renaming u and v if necessary, we may assume that u is M0-unmatched. Thus, by
Theorem 5, the vertex u belongs to an odd component, Cu say, of G − X . Let x and y be the two common neighbors of u and
v in D0. Let x′ and y′ be the verticesM0-matched to x and y, respectively.

Suppose that both x and y belong to Cu. If v ∉ V (Cu), then v ∈ X . But then the vertex that is M0-matched to v belongs
to D0, implying that v would be 3-dominated by D0, contradicting Lemma 7. Hence, v ∈ V (Cu). If v is matched to neither
x nor y by M0, then, once again, v would be 3-dominated by D0, a contradiction. Hence, v is M0-matched to either x or y.
Renaming x and y if necessary, we may assume that xv ∈ M0, and so v = x′. If u and v are adjacent, then u and v would be
closed twins, a contradiction. Hence, u and v are not adjacent. The third neighbor of u, different from x and y, is therefore
the vertex y′ that isM0-matched to y (otherwise, by the definition of DG(M), uwould be 3-dominated, a contradiction). We
now consider the set D′

= (D0 \ {y}) ∪ {y′
}.

We note that y and y′ have a common M0-unmatched neighbor, namely u, implying that D′
∈ D(M0). Suppose there is

a vertex z different from u that is adjacent to both x and y′. Then, z is either in X or in Cu. In both cases, z is M0-matched.
If z = v, then u and z are open twins, a contradiction. Since N(y) = {u, v, y′

} while z is adjacent to x, we note that z ≠ y.
Therefore, z ∉ {v, y} and theM0-matched neighbor of z is in D′, implying that z is 3-dominated by D′. Hence, the vertex u is
the only vertex dominated only by x and y′ in D′ and it is therefore located by D′. Moreover, both v and y are 1-dominated
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Fig. 2. Two bad (D,M)-matched 4-cycles A and B, where A is dependent on B via u′

A . Edges ofM are thickened. Black vertices belong toD, andwhite vertices
do not.

by D′, and are therefore located by D′ by Lemma 7. Finally, no other vertex has been affected by the removal of y from D0.
Hence, the number of D′-bad pairs is strictly less than the number of D0-bad pairs, contradicting our choice of D0. Therefore,
at most one of x and y belong to Cu.

Suppose that exactly one of x and y belongs to Cu. Renaming x and y if necessary, we may assume that x ∈ V (Cu). Then,
y ∈ X . If v ∈ X or if v ∈ V (Cu) \ {x′

}, then v would be 3-dominated by D0, a contradiction. Hence, v = x′, and so v is
M0-matched to x. Since u is 2-dominated by D0, the vertex u is adjacent to either v or y′. Since y′ belongs to a component of
G − X different from Cu, the vertex u is adjacent to v. But then u and v are closed twins, a contradiction.

Therefore, both x and y belong to X . This implies that u, x′ and y′ belong to three different components of G − X . In
particular, u is adjacent to neither x′ nor y′, implying that the third neighbor of u different from x and y is an M0-matched
vertex and therefore belongs to the set D0 by the construction of sets in DG(M0). Thus, u is then 3-dominated by D0, a
contradiction. This completes the proof of the lemma. �

Note that in any twin-free, cubic graph G, every 4-cycle is an induced 4-cycle. The following structure will play an
important role in our proof.
Definition of a bad (D,M)-matched 4-cycle. Let C : uCu′

CvCv
′

CuC be a 4-cycle in a (twin-free cubic) graph G,M amatching of
G, and D a subset of vertices of G. We say that C is a bad (D,M)-matched 4-cycle if uCu′

C ∈ M , vCv
′

C ∈ M , D∩V (C) = {u′

C , v
′

C }

and vC is adjacent to exactly two vertices of D (and so, N(vC ) ∩ D = {u′

C , v
′

C }).
Given two bad (D,M)-matched 4-cycles, A and B, we say that A is dependent on B via the vertex u′

A or v′

A if uB is adjacent
to u′

A or to v′

A, respectively. An illustration is given in Fig. 2. We note that if A is dependent on B, then uB is 3-dominated by D.
Given a set S of vertex-disjoint bad (D,M)-matched 4-cycles of a graph G, let

−→
G (S) be the digraph with vertex set S and

where (A, B) is an arc in
−→
G (S) if A is dependent on B. We remark that since G is cubic, every vertex in

−→
G (S) has out-degree

at most 2. Further by definition of a bad (D,M)-matched 4-cycle, every vertex in
−→
G (S) has in-degree at most 1.

Given a rooted tree T with root r , by an orientation of T we mean orienting every arc of T from a parent to its child.

3.2. Proof of the main result

We are now in a position to prove our main result, namely Theorem 3. Recall its statement.

Theorem 3. If G is a twin-free, cubic graph of order n, then γL(G) ≤
n
2 .

Proof of Theorem 3. Among all maximum matchings M of G and all sets D ∈ DG(M), we choose the matching M0 and
the set D0 ∈ DG(M0) so that the number of D0-bad pairs is minimum. Let X be a proper subset of vertices of G such that
(|V |+|X |−oc(G−X))/2 isminimum. The structure of the graphGwith respect to thematchingM0 and the set X is described
in Theorem 5.

We now describe the structure of D0-bad pairs:

Claim A. Every D0-bad pair {u, v} belongs to a common bad (D0,M0)-matched 4-cycle, say R. Further, there exists a set Su,v of
vertex-disjoint bad (D0,M0)-matched 4-cycles containing R such that the following holds:
(a) For every 4-cycle C ∈ Su,v and every vertex x ∈ {u′

C , v
′

C }, either x is adjacent to an M0-unmatched vertex in G, or C is
dependent on some other C ′

∈ Su,v via the vertex x.

(b)
−→
G (Su,v) is an oriented tree rooted at R.

(c) For every 4-cycle C ∈ Su,v , if both u′

C and v′

C have an M0-unmatched neighbor, then these neighbors are distinct and
{u′

C , v
′

C } ⊆ X.

Proof of Claim A. Let {u, v} be a D0-bad pair. Thus, u and v are vertices outside D0 that are not located by D0. By Lemma 7,
both u and v are 2-dominated by D0, and by Lemma 8, both u and v are M0-matched. Let u′ and v′ be the M0-matched
neighbors of u and v, respectively. Since u and v are 2-dominated by D0, we note that u′ and v′ are the two common
neighbors of u and v in D0. Thus, Cuv : uu′vv′u is a bad (D0,M0)-matched 4-cycle in G. As observed earlier, every 4-cycle
in G is an induced 4-cycle. Hence, let x, y, u′′ and v′′ be the neighbors of u, v, u′ and v′, respectively, that do not belong to
this 4-cycle Cuv . Let Du = (D0 \ {u′

}) ∪ {u} and let Dv = (D0 \ {v′
}) ∪ {v}. We proceed further with the following series of

subclaims.
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Claim A.1. The following holds.
(a) If Du ∉ DG(M0), then u′′ is an M0-unmatched vertex that is not adjacent to u.
(b) If Du ∈ DG(M0), then the only Du-bad pair that is not a D0-bad pair is {u′′, z} for some vertex z. Moreover, u′′ and z are part
of a bad (D0,M0)-matched 4-cycle C of G, and Cuv is dependent on C via the vertex u′.

Proof of Claim A.1. By definition of the sets in the family DG(M0), if Du ∉ DG(M0), then u′′ is anM0-unmatched vertex and
u′′ is not adjacent to u, proving Statement (a) of Claim A.1.

To prove Statement (b), suppose that Du ∈ DG(M0). By our choice of M0 and D0, there are at least as many Du-bad pairs
as D0-bad pairs. The only vertices that could potentially be negatively affected (in the sense that they are located by D0 but
not by Du) by removing u′ from D0 and replacing it with the vertex u are u′, u′′ and v. By Lemma 7, two vertices forming a
Du-bad pair are 2-dominated by Du. The vertex v is 1-dominated by Du, and hence it is located by Du.

Suppose that u′ is not located by Du from some other vertex outside Du. Then, this vertex must be x, the neighbor of u
not on Cuv . Considering the Du-bad pair {u′, x}, and noting that u′ and x are 2-dominated by Du, we deduce that u′′

∈ Du.
If x is M0-unmatched, then by the definition of DG(M0), we would have u ∈ D0 and u′

∉ D0, a contradiction. Hence, x is
M0-matched and its matched neighbor is in Du. Since x is 2-dominated, we have xu′′

∈ M0. We now consider the maximum
matchingM ′

= (M0 \ {uu′, vv′
}) ∪ {uv′, vu′

}, and we let D′
= (D0 \ {u′

}) ∪ {v}.
We note that u′′x ∈ M ′. Since neither u nor u′ has anM ′-unmatched neighbor, we note thatD′

∈ D(M ′). The only vertices
that could potentially be negatively affected (in the sense that they are located by D0 but not by D′) by these changes are the
vertices dominated by u′ in D0 and that do not belong to D′. The only such vertices are u and u′. By Lemma 7, if two vertices
form a D′-bad pair, then they are 2-dominated by D′. The vertex u is 1-dominated by D′, and hence it is located by D′. Thus,
the vertex u′ is not located by D′ from some other vertex outside D′. Such a vertex must be adjacent to both v and u′′, and
is therefore the neighbor of v outside Cuv , namely the vertex y. If x = y, then u and v would be open twins, a contradiction.
Hence, x ≠ y. If y is M ′-matched, since u′′x ∈ M ′ and u′v ∈ M ′, the vertex y is 3-dominated by D′, a contradiction. Hence, y
isM ′-unmatched (andM-unmatched). Then, since D0 ∈ DG(M0), the vertices y and v′ are adjacent. Hence, y is 3-dominated
by D′, a contradiction. Thus, u′ is located by Du.

Therefore, among the vertices dominated by u′ inD0, the vertex u′′ is the only vertex that was located byD0 but that is not
located by Du from some other vertex, z say, outside Du. Thus, {u′′, z} is the only pair of vertices located by D0 but not by Du.
Hence, the number of Du-bad pairs is the same as the number of D0-bad pairs (since {u, v} is not a Du-bad pair) and we can
apply Lemma 8 toDu to deduce that u′′ and z areM0-matched vertices. By Lemma 7, both u′′ and z are 2-dominated byDu. Let
w and t be theM0-matched neighbors of u′′ and z, respectively. Since u′′ and z are 2-dominated by Du and Du ∈ DG(M0), we
note that w and t are the two common neighbors of u′′ and z in Du. Thus, the 4-cycle C : u′′wztu′′ is a bad (D0,M0)-matched
4-cycle in G with u′′

= uC , w = u′

C , z = vC and t = v′

C , and Cuv is dependent on C via the vertex u′. This establishes
Statement (b) of Claim A.1. �

Interchanging the roles of u and v in the proof of Claim A.1, we have the following analogous result for the vertex v.

Claim A.2. The following holds.
(a) If Dv ∉ DG(M0), then v′′ is an M0-unmatched vertex that is not adjacent to v.
(b) If Dv ∈ DG(M0), then the only Dv-bad pair that is not a D0-bad pair is {v′′, z} for some vertex z. Moreover, v′′ and z are part
of a bad (D0,M0)-matched 4-cycle C of G, and Cuv is dependent on C via the vertex v′.

Let R denote the bad (D0,M0)-matched 4-cycle Cuv : uu′vv′u, where u = uR, u′
= u′

R, v = vR and v′
= v′

R. We now show
the existence of a set Su,v of vertex-disjoint bad (D0,M0)-matched 4-cycles containing R such that conditions (a) and (b) in
the statement of Claim A hold. If both u′ and v′ have anM0-unmatched neighbor, then we let Su,v = {R} and we are done.

Otherwise, renaming vertices if necessary, wemay assume, by Claims A.1 and A.2, that Du ∈ DG(M0) and that R is depen-
dent on a bad (D0,M0)-matched 4-cycle C via vertex u′

R. Now, since by Claim A.1(b) the number of Du-bad pairs is the same
as the number of D0-bad pairs (hence Du also minimizes the number of bad pairs), we can apply Claim A.1 and Claim A.2
to C , Du and to the Du-bad pair {uC , vC }. This shows that each of u′

C and v′

C either have an M0-unmatched neighbor, or C is
dependent on some other bad (D0,M0)-matched 4-cycle via this vertex. Repeating this process as long as possible yields
a set Su,v of bad (D0,M0)-matched 4-cycles, where for each bad (D0,M0)-matched 4-cycle in Su,v different from R there is
some other bad (D0,M0)-matched 4-cycle in Su,v that depends on it, and satisfies the properties in Claims A.1 and A.2. This
establishes Statement (a) of Claim A. Moreover we have the following.

Claim A.3. Any two distinct 4-cycles in Su,v are vertex-disjoint.

Proof of Claim A.3. Let A : uAu′

AvAv
′

A and B : uBu′

BvBv
′

B be two distinct 4-cycles of Su,v . If they have a common vertex, since
their vertices are pairwise M0-matched, they must have two vertices in common, and these vertices must be M0-matched
to each other. But then, the vertex that belongs to both A and B but does not belong to D0 must be 3-dominated by D0, a
contradiction. �

Now, consider the digraph
−→
G (Su,v), which by Claim A.3 is well-defined. The following properties hold in the digraph

−→
G (Su,v). Recall that the distance from a vertex x to a vertex y in a directed graph D is the minimum length among all di-
rected paths from x to y in D.
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Claim A.4. The following holds.

(a) R has in-degree 0 in
−→
G (Su,v).

(b) Every vertex in
−→
G (Su,v) different from R has in-degree exactly 1.

(c)
−→
G (Su,v) has no directed cycle.

Proof of Claim A.4. To see that Statement (a) holds, observe that if some bad (D0,M0)-matched 4-cycle C was dependent
on R say, on vertex uR, then uR would be 3-dominated by D0, a contradiction.

For Statement (b), we show firstly that
−→
G (Su,v) has maximum in-degree 1. Suppose to the contrary that for some bad

(D0,M0)-matched 4-cycle A in Su,v , there are two other bad (D0,M0)-matched 4-cycles B and C of Su,v that are both depen-
dent on A. Since B is dependent on A, the vertex uA is adjacent to u′

B or v′

B. Since C is dependent on A, the vertex uA is adjacent
to u′

C or v′

C . Thus, the vertex uA has degree at least 4, a contradiction. We show secondly that R is the only vertex in
−→
G (Su,v)

with in-degree 0. As observed in the paragraph immediately preceding Claim A.3, for each bad (D0,M0)-matched 4-cycle
in Su,v different from R there is some other bad (D0,M0)-matched 4-cycle in Su,v that depends on it. Therefore, every bad
(D0,M0)-matched 4-cycle in Su,v different from R has in-degree at least 1 in

−→
G (Su,v). Therefore, by our earlier observations,

every bad (D0,M0)-matched 4-cycle in Su,v different from R has in-degree exactly 1 in
−→
G (Su,v).

For Statement (c), suppose to the contrary that
−→
G (Su,v) contains a directed cycle C : C1C2 . . . CkC1 for some k ≥ 2. By

Statement (a), we know that R has in-degree 0 and therefore cannot belong to this cycle. However, there is a (directed) path
from R to every other vertex in

−→
G (Su,v). Among all vertices in the directed cycle C , let Ci be chosen so that the distance from

R to Ci in
−→
G (Su,v) is minimum where i ∈ [k]. Let P be a shortest (directed) path from R to Ci in

−→
G (Su,v) and let B be the

vertex that immediately precedes Ci on the path P (possibly, B = R). Since the distance from R to B in
−→
G (Su,v) is less than the

distance from R to Ci in
−→
G (Su,v), the vertex B does not belong to the directed cycle C . Therefore, Ci has in-degree at least 2

in
−→
G (Su,v), contradicting Statement (b). This completes the proof of the claim. �

By Claim A.4(c), if there is a cycle in
−→
G (Su,v), it cannot be an oriented cycle. But then some vertex in that cycle must have

in-degree at least 2, contradicting Claim A.4(b). Hence, Claim A.4 implies that
−→
G (Su,v) is an oriented tree rooted at R, and

we have proved Statement (b) of Claim A.
It remains to prove Statement (c) of Claim A. Let C ∈ Su,v be a bad (D0,M0)-matched 4-cycle where both u′

C and v′

C have
anM0-unmatched neighbor, u′′ and v′′ say, respectively. These neighbors are clearly distinct, since otherwise u′

C and v′

C are
open twins. By Theorem 5, the twoM0-unmatched vertices u′′ and v′′ belong to distinct odd components of G − X . Suppose
to the contrary that uC ∈ X . Then, by Theorem 5, u′

C ∉ X and u′

C belongs to an odd component of G − X that contains no
M0-unmatched vertex. However, u′

C is adjacent to the M0-unmatched vertex u′′ which implies that u′

C belongs to the same
odd component of G − X as the M0-unmatched vertex u′′, a contradiction. Hence, uC ∉ X . Analogously, vC ∉ X .

If neither u′

C nor v′

C belongs to X , then u′′ and v′′ belong to the same components of G − X , a contradiction. Hence, re-
naming u′

C and v′

C , if necessary, we may assume that v′

C ∈ X . Thus, vC belongs to an odd component of G − X that contains
no M0-unmatched vertex. If u′

C ∉ X , then vC would be in the same odd component of G − X as the M0-unmatched vertex
u′′, a contradiction. Hence, u′

C ∈ X . This establishes Statement (c) of Claim A and completes the proof of Claim A. �

An example of a subgraph of G corresponding to a set Su,v that contains six bad (M0,D0)-matched 4-cycles is illustrated
in Fig. 3(a) (where the edges of M0 are thickened, black vertices belong to D0 and white vertices do not, and square white
vertices areM0-unmatched vertices).

We now return to the proof of Theorem 3. Our strategy is to modify the set D0 in such a way that the resulting set be-
comes a locating-dominating set of G of cardinality at most one-half the order of G. Consider the set of D0-bad pairs. By
Claim A, each such D0-bad pair {u, v} belongs to a bad (D0,M0)-matched 4-cycle R and there is a set Su,v of vertex-disjoint
bad (D0,M0)-matched 4-cycles such that

−→
G (Su,v) is an oriented tree rooted at R. We note that, given twoD0-bad pairs {u, v}

and {x, y}, the trees
−→
G (Su,v) and

−→
G (Sx,y) are vertex-disjoint, and furthermore no bad (D0,M0)-matched 4-cycles of

−→
G (Su,v)

and
−→
G (Sx,y) share any vertex. Indeed, by similar arguments as in Claims A.3 and A.4, we would otherwise contradict the

definition of a bad (D0,M0)-matched 4-cycle.
Now, given a D0-bad pair {u, v}, consider any leaf C of

−→
G (Su,v). By Claim A(a), the vertices u′

C and v′

C both have a distinct
M0-unmatched neighbor, say u′′

C and v′′

C , respectively. Further, by Claim A(c), both u′

C and v′

C belong to X .

For eachD0-bad pair {u, v}, we select an arbitrary leaf C of
−→
G (Su,v) and associate the pair of vertices u′′

= u′′

C and v′′
= v′′

C
of M0-unmatched neighbors of u′

C and v′

C , respectively, with the pair {u, v}, and we write f (u, v) = {u′′, v′′
}. Let V ∗ be the

set of all M0-unmatched vertices associated with some D0-bad pair. We define the (multi)graph G∗ on the vertex set V ∗ by
adding an edge joining u′′ and v′′ for eachD0-bad pair {u, v} such that f (u, v) = {u′′, v′′

}. As remarked earlier, the vertices u′′

and v′′ are distinct, implying that G∗ has no loops (although it may havemultiple edges), no isolated vertices, and is subcubic
(that is, has maximum degree at most 3). Our aim is to add at most |V ∗

|/2 vertices to D0 and to locally modify D0 around
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(a) The structure around the D0-bad pair. (b) The oriented tree
−→
G (SuR,vR ).

(c) The modification of D0 around {uR, vR}

when associating it with the leaf C5 of
−→
G (SuR,vR ). The vertices of each circled pair
get swapped in D0 .

Fig. 3. Example of a D0-bad pair {uR, vR} with the set of bad (D0,M0)-matched 4-cycles SuR,vR = {R, C1, . . . , C5}. The edges of M0 are thickened; squared
vertices are M0-unmatched; black vertices belong to D0 .

the D0-bad pairs in order to obtain a locating-dominating set, D′, of cardinality

|D′
| ≤ α′(G) +

|V ∗
|

2
≤ α′(G) +

n − 2α′(G)

2
=

n
2
.

We now describe the construction of such a set D′. Let D∗ be a minimum dominating set of G∗. Since G∗ has no isolated
vertex, |D∗

| ≤ |V ∗
|/2. Since G∗ has maximum degree at most 3 and since every vertex outside D∗ is adjacent to at least one

vertex of D∗ in G∗, we note that G∗
− D∗ has maximum degree at most 2. We now build a locating-dominating set from D0

by adding D∗ to D0 and by propagating modifications of D0 along the oriented trees associated with all D0-bad pairs. More
precisely, we perform our propagation as follows.
Step 1:We first consider all D0-bad pairs associated with a pair of vertices of G∗ at least one vertex of which belongs to
the set D∗. Let {u, v} be such a D0-bad pair, and let u′′ and v′′ be the vertices of V ∗ such that f (u, v) = {u′′, v′′

}. Adopting our
earlier notation, let u′′

= u′′

C and v′′
= v′′

C , where C is the chosen leaf in the tree
−→
G (Su,v). Let R be the bad (D0,M0)-matched

4-cycle in Su,v containing u and v. Renaming u′′ and v′′, if necessary, wemay assume that u′′ belongs to D∗. We now consider
the unique (directed) path P of

−→
G (Su,v) joining R to C and wemodify D0 along P as follows. First, replace u′

C with uC in D0. If
B is the parent of C in

−→
G (Su,v) (and so, B is the vertex on the (R, C)-path P that immediately precedes C) and B is dependent

on C via x′

B, where xB ∈ {uB, vB}, we replace x′

B with xB in D0. We continue this process until we perform the modification in
the root R. This exchange argument in the oriented tree

−→
G (Su,v) associated with the subgraph of G corresponding to the set

Su,v illustrated in Fig. 3(a) is shown in Fig. 3(c). This process is done for all D0-bad pairs associated with a pair of vertices of
G∗ with at least one member in D∗. Let D′ be the resulting modified set D0.

Claim B. The set of (D′
∪ D∗)-bad pairs is a proper subset of the set of D0-bad pairs.

Proof of Claim B. Let {u, v} be an original D0-bad pair associated with a pair of vertices of G∗ at least one of which belongs
to the set D∗. Since at least one of u and v now belongs to D′, the pair {u, v} is not a (D′

∪D∗)-bad pair. It suffices to check the
pairs of vertices that could possibly have been affected by the exchange arguments; that is, all vertices previously dominated
by a vertex that has been removed from D0 to construct D′ (this includes all vertices removed from D0 to construct D′). A
vertex affected by the modification belongs to a bad (D0,M0)-matched 4-cycle A in the selected path of

−→
G (Su,v) for some

D0-bad pair {u, v} that is associated with a pair of vertices of G∗ at least one of which belongs to the set D∗. Let the vertex
set of A be {xA, yA, x′

A, y
′

A} with {xA, yA} = {uA, vA}, where x′

A has been replaced with xA in D′.
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It is sufficient to check that the vertices x′

A, yA and the neighbor, z say, of x′

A not in A are located by D′
∪ D∗ or belong

to D′
∪ D∗. We observe that even though D′ might not belong to D(M), the set D′ contains exactly one vertex from each

edge in M0. We note that every vertex that was removed from D0 during the exchange arguments when constructing D′ is
either adjacent to a vertex of D∗ or is adjacent to no M0-unmatched vertex. Hence, the vertices of D0 that are adjacent to
anM0-unmatched vertex that does not belong to D∗ are not removed from D0 during the exchange arguments, implying by
Lemma 6 that every M0-unmatched vertex is adjacent to at least two vertices in D′

∪ D∗ or belongs to D∗. It follows that
every vertex that is 1-dominated by D′

∪ D∗ is located by this set. In particular, irrespective of whether y = u or y = v, the
vertex yA is 1-dominated by D′

∪ D∗ and is thus located by D′
∪ D∗.

Suppose that z is anM0-unmatched vertex. Then, by construction, z ∈ D∗. In this case, x′

A is dominated by z and xA but by
no other vertex in D′

∪D∗. If another vertex w is also only dominated by z and xA from D′
∪D∗, then such a vertex cannot be

M0-unmatched because the set of M0-unmatched vertices forms an independent set. But then w is dominated by xA, z and
itsM0-matched neighbor, a contradiction. Hence, if z is M0-unmatched, then x′

A is located by D′
∪ D∗.

Suppose that z is not an M0-unmatched vertex. Thus, z belongs to another bad (D0,M0)-matched 4-cycle B of
−→
G (Su,v)

where z = uB and where A is dependent on B via x′

A (as illustrated in Fig. 2). If z ∉ D′, then both z and x′

A are 1-dominated
by D′

∪ D∗ and hence are located by D′
∪ D∗. Finally, if z ∈ D′, then x′

A is only dominated by z and xA from D′
∪ D∗. Suppose

to the contrary that some other vertex w is also only dominated by z and xA from D′
∪ D∗. Then, w must be the neighbor of

z in B that was removed from D0, namely the vertex w = u′

B (recall that z = uB). Thus, u′

B is adjacent to xA. If A = R, then
xA ∈ {u, v} and xA would be 3-dominated by D0, a contradiction. Hence, A ≠ R. If x = v, then we contradict the fact that vA
is adjacent to exactly two vertices of D0, namely to u′

A and v′

A, and therefore could not be adjacent to u′

B ∈ D. Hence, x = u.
But then B would be dependent on A via w = u′

B. However, recall that A is dependent on B via u′

A, implying that
−→
G (Su,v)

would contain a 2-cycle joining A and B, a contradiction. Hence, if z is not an M0-unmatched vertex, then once again x′

A is
located by D′

∪ D∗. This completes the proof of Claim B. �

By Claim B, the set of D′-bad pairs is a proper subset of the set of D0-bad pairs, implying that all remaining D′-bad pairs
are associated with a pair of vertices of G∗ neither of which belongs to the set D∗.
Step 2:We next consider all remaining D′-bad pairs associated with a pair of vertices of G∗ neither of which belongs to
the set D∗. For each such D′-bad pair {u, v}, we have f (u, v) = {u′′, v′′

} where {u′′, v′′
} ⊆ V ∗

\ D∗. Let C be a component of
G∗

−D∗ that contains at least one edge. As observed earlier,G∗
−D∗ hasmaximumdegree atmost 2. Thus,C is a path or a cycle.

IfC is a path, letC be given by c0c1 . . . ck−1, while ifC is a cycle, letC be given by c0c1 . . . ck−1c0 (possibly,C is a 2-cycle). We
now consider an edge cic(i+1) mod k inC, where i ∈ {0, . . . , k−2} ifC is a path andwhere i ∈ {0, . . . , k−1} ifC is a cycle. Let
{u, v} be aD0-bad pair such that f (u, v) = {ci, c(i+1) mod k}, and let B be the bad (D0,M0)-matched 4-cycle of Su,v such that one
of ci and c(i+1) mod k is adjacent to u′

B and the other to v′

B. Let ci be the neighbor of x′

B, where xB ∈ {uB, vB}. We now propagate
modifications of D′ along a path in

−→
G (Su,v) in the same way as we did in Step 1, except that we start the modifications of

D′ along the oriented tree by replacing x′

B with xB and then continuing exactly as before. The resulting modification of D′

ensures that for every vertex in C, at most one of its neighbors is removed from D0. This process is done for all D0-bad pairs
associated to a pair of vertices of G∗ neither of which belongs to the set D∗. Let D′′ be the resulting modified set D0.

Claim C. NoD0-bad pair is a (D′′
∪D∗)-bad pair. Further, the set of (D′′

∪D∗)-bad pairs is a proper subset of the set of (D′
∪D∗)-bad

pairs.

Proof of Claim C. It suffices to check as before the pairs of vertices that could possibly have been affected by the exchange
arguments; that is, all vertices previously dominated by a vertex that has been removed fromD′ to constructD′′ as well as all
vertices removed from D′ to construct D′′. The proof is the same as in the proof of Claim B, except for the vertices in G∗

−D∗.
We therefore only prove that vertices that belong to components of G∗

− D∗ that contain at least one edge are located by
D′′

∪D∗. Let c be such a vertex in G∗
−D∗. As observed earlier, such a vertex c belongs to either a path component or a cycle

component of G∗
− D∗. Further, the modifications of D′ when constructing D′′ ensure that for every vertex in G∗

− D∗, at
most one of its neighbors is removed from D0.

We show next that c was 3-dominated by D0. Suppose to the contrary that the vertex c is not 3-dominated by D0 and
therefore, by definition of D(M), is adjacent to both ends of some edge pq of M0. In this case, since c has degree at least 1
in G∗

− D∗ and therefore degree at least 2 in G∗, the edge pq must be an edge xBx′

B, where xB ∈ {uB, vB}, in a bad (D0,M0)-
matched 4-cycle B of Su,v for someD0-bad pair {u, v}. However by ClaimA(c), the vertex x′

B belongs to X . Therefore the vertex
xB, which isM0-matched to x′

B, belongs to an odd component of G− X that contains noM0-unmatched vertex. However, the
M0-unmatched vertex c , which is adjacent to xB, belongs to the same component of G − X as xB, a contradiction. Hence, the
vertex c was 3-dominated by D0.

We show now that vertex c is located by D′′
∪D∗. If c is 3-dominated by D′′

∪D∗, then this follows from the twin-freeness
of G. Hence we may assume that c is not 3-dominated by D′′

∪ D∗. Since the vertex c was 3-dominated by D0, and at most
one of its neighbors is removed from D0, this implies that the vertex c has exactly two neighbors in D′′ (and no neighbors in
D∗ in G), and is therefore 2-dominated by D′′

∪D∗. Suppose to the contrary that there is a vertex w that is not located from c
by D′′

∪D∗. Let d be a vertex in D∗ that is adjacent to c in G∗. Then there exists a D0-bad pair {u, v} such that f (u, v) = {c, d}.
Let B be the bad (D0,M0)-matched 4-cycle of Su,v such that one of c and d is adjacent to u′

B and the other to v′

B. Let c be
the neighbor of x′

B, where xB ∈ {uB, vB}. By Step 1, we know that x′

B ∈ D′′ and yB ∈ D′′. Therefore, the vertex w must be the
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(a) C3 � K2 . (b) C4 � K2 .

Fig. 4. The prisms C3 � K2 and C4 � K2 .

vertex xB. Let z be the neighbor of c in D′′ that is different from x′

B. Since the set of neighbors of c in D′′ is a subset of the set of
its neighbors in D0, we note that {x′

B, z} ⊂ D0. If xB = vB, then vB would be 3-dominated by D0, contradicting the fact that B
is a bad (D0,M0)-matched 4-cycle. Similarly, if xB = u, then uwould be 3-dominated by D0, a contradiction. Hence, xB = uB
and in Su,v there is a bad (D0,M0)-matched 4-cycle that depends on B via the vertex z. But then z has at least two neighbors
apart from c and xB, contradicting the fact that G is cubic. Therefore, the vertex c is located by D′′

∪ D∗. This completes the
proof of Claim C. �

Claim C implies that there is no (D′′
∪ D∗)-bad pair. Thus, the set D′′

∪ D∗ is a locating-dominating set of G. Therefore,

γL(G) ≤ |D| + |D∗
| ≤ α′(G) + γ (G∗) ≤ α′(G) +

|V ∗
|

2
≤ α′(G) +

n − 2α′(G)

2
=

n
2
.

This completes the proof of Theorem 3. �

3.3. Tight examples

Weremark that theprismsC3 � K2 andC4 � K2 (shown in Fig. 4(a) and (b), respectively) have location-dominationnumber
exactly one-half their order. However, it remains as an open problem to characterize all twin-free, cubic graphs G of order n
that satisfy γL(G) =

n
2 . Note that the prisms Ck � K2 for k ≥ 5 do not belong to this family.

4. Conclusion

We conclude the paper with several intriguing open problems and questions that we have yet to solve.

Problem 1. Characterize the extremal graphs that achieve equality in the bound of Theorem 3; that is, characterize the
connected twin-free, cubic graphs having location-domination number exactly one-half their order.

Problem 2. Determine whether the result of Theorem 3 can be strengthened by proving Conjecture 2 for subcubic graphs.

Problem 3. Determine whether Theorem 3 can be extended to connected cubic graphs in general (allowing twins) with the
exception of a finite set of forbidden graphs. Two such forbidden graphs are the complete graphK4 and the complete bipartite
graph K3,3, but it is possible that these are the only two exceptions. Proving this would still be weaker than proving the
conjecture of Henning and Löwenstein [9] that every cubic graph different from K4 and K3,3 has a total locating-dominating
set of size at most one-half its order.

Problem 4. Determine whether every connected twin-free, cubic graph G satisfies γL(G) ≤ α′(G). More generally,
determine classes of twin-free graphsG satisfyingγL(G) ≤ α′(G).We remark that Garijo et al. [6] proved that every nontrivial
twin-free graph G without 4-cycles satisfies γL(G) ≤ α′(G), and therefore Conjecture 2 holds for these graphs.
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