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a b s t r a c t

A tropical graph (H, c) consists of a graphH and a (not necessarily proper) vertex-colouring
c ofH . Given two tropical graphs (G, c1) and (H, c), a homomorphism of (G, c1) to (H, c) is a
standard graphhomomorphismofG toH that also preserves the vertex-colours.We initiate
the study of the computational complexity of tropical graph homomorphism problems.We
consider two settings. First, when the tropical graph (H, c) is fixed; this is a problem called
(H, c)-Colouring. Second, when the colouring of H is part of the input; the associated
decision problem is called H-Tropical-Colouring. Each (H, c)-Colouring problem is a
constraint satisfaction problem (CSP), and we show that a complexity dichotomy for
the class of (H, c)-Colouring problems holds if and only if the Feder–Vardi Dichotomy
Conjecture for CSPs is true. This implies that (H, c)-Colouring problems form a rich class
of decision problems. On the other hand, we were successful in classifying the complexity
of at least certain classes of H-Tropical-Colouring problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Unless stated otherwise, the graphs considered in this paper are simple, loopless and finite. A homomorphism h of a graph
G to a graphH is amapping h : V (G) → V (H) such that adjacency is preserved by h, that is, the images of two adjacent vertices
of Gmust be adjacent inH . If such amapping exists, we note G → H . For a fixed graphH , given an input graph G, the decision
problem H-Colouring (whose name is derived from the proximity of the problem to proper vertex-colouring) consists of
determining whether G → H holds. Problems of the form H-Colouring for some fixed graph H , are called homomorphism
problems. A classic theorem of Hell and Nešetřil [22] states a dichotomy for this problem: if H is bipartite, H-Colouring is
polynomial-time solvable; otherwise, it is NP-complete.
Tropical graphs. As an extension of graph homomorphisms, homomorphisms of edge-coloured graphs have been studied,
see for example [1,6–9]. In this paper, we consider the variant where the vertices are coloured. We initiate the study of
tropical graph homomorphism problems, in which the vertex sets of the graphs are partitioned into colour classes. Formally,
a tropical graph (G, c) is a graph G together with a (not necessarily proper) vertex-colouring c : V (G) → C of G, where C
is a set of colours. If |C | = k, we say that (G, c) is a k-tropical graph. Given two tropical graphs (G, c1) and (H, c2) (where
the colour set of c1 is a subset of the colour set of c2), a homomorphism h of (G, c1) to (H, c2) is a homomorphism of G to
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H that also preserves the colours, that is, for each vertex v of G, c1(v) = c2(h(v)). For a fixed tropical graph (H, c), problem
(H, c)-Colouring asks whether, given an input tropical graph (G, c1), we have (G, c1) → (H, c).

The homomorphism factoring problem. Brewster and MacGillivray defined the following related problem in [10]. For
two fixed graphs H and Y and a homomorphism h of H to Y , the (H, h, Y )-Factoring problem takes as an input, a graph G
together with a homomorphism g of G to Y , and asks for the existence of a homomorphism f of G to H such that f = h ◦ g .
The (H, c)-Colouring problem corresponds to (H, c, K+

|C |
)-Factoring where K+

|C |
is the complete graph on |C | vertices with

all loops (and with C the set of colours used by c). (Note that in [10], loops were not considered.)

Constraint satisfaction problems (CSPs). Graph homomorphism problems fall into a more general class of decision
problems, the constraint satisfaction problems, defined for relational structures. A relational structure S over a vocabulary
(a vocabulary is a set of pairs (Ri, ai) of relation names and arities) consists of a domain V (S) of vertices together with a set
of relations corresponding to the vocabulary, that is, Ri ⊆ V (S)ai for each relation Ri of the vocabulary. Given two relational
structures S and T over the same vocabulary, a homomorphism of S to T is a mapping h : V (S) → V (T ) such that each
relation Ri is preserved, that is, for each subset of V (S)ai of Ri in S, its image set in T also belongs to Ri. For a fixed relational
structure T , T -CSP is the decision problem asking whether a given input relational structure has a homomorphism to T .

Using this terminology, a graphH is a relational structure over the vocabulary {(A, 2)} consisting of a single binary relation
A (adjacency). Hence, H-Colouring is a CSP. Further, (H, c)-Colouring is equivalent to the problem C(H, c)-CSP, where
C(H, c) is obtained from H by adding a set of k unary relations to H (one for each colour class of the k-colouring c).

The Dichotomy Conjecture. In their celebrated paper [20], Feder and Vardi posed the following conjecture.

Conjecture 1.1 (Feder and Vardi [20]). For every fixed relational structure T , T -CSP is polynomial-time solvable or NP-complete.

Conjecture 1.1 became known as the Dichotomy Conjecture and has given rise to extensive work in this area, see for
example [11,12,15–18]. If the conjecture holds, it would imply a fundamental distinction between CSP and the whole class
NP. Indeed, the latter is known (unless P=NP) to contain so-called NP-intermediate problems that are neither NP-complete
nor polynomial-time solvable [27].

The Dichotomy Conjecture was motivated by several earlier dichotomy theorems for special cases, such as the one of
Schaefer for binary structures [29] or the one of Hell and Nešetřil for undirected graphs, stated as follows.

Theorem1.2 (Hell andNešetřil Dichotomy [22]). Let H be an undirected graph. If H is bipartite, thenH-Colouring is polynomial-
time solvable. Otherwise, H-Colouring is NP-complete.

Digraph homomorphisms. Digraph homomorphisms are also well-studied in the context of complexity dichotomies. We
will relate them to tropical graph homomorphisms. For a digraph D, D-Colouring asks whether an input digraph admits a
homomorphism to D, that is, a homomorphism of the underlying undirected graphs that also preserves the orientation of
the arcs.

While in the case of undirected graphs, the H-Colouring problem is only polynomial time for graphs whose core is
either K1 or K2, in the case of digraphs the problem remains polynomial time for a large class of digraphs which are cores.
The classification of such cores has been one of the difficulties of the conjecture. Such classifications are given for certain
interesting subclasses, see for example [2–5,14]. A proof of a conjecture in classification of general case has been announced
while this paper was under review (see [19]). This would complete a proof of the Dichotomy Conjecture as Feder and
Vardi [20] showed the following (seemingly weaker) statement to be equivalent to the Dichotomy Conjecture.

Conjecture 1.3 (Equivalent Form of the Dichotomy Conjecture, Feder and Vardi [20]). For every bipartite digraph D, D-Colouring
is polynomial-time solvable or NP-complete.

In Section 3, similarly to its above reformulation (Conjecture 1.3), we will show that the Dichotomy Conjecture has
an equivalent formulation as a dichotomy for tropical homomorphisms problems. More precisely, we will show that the
Dichotomy Conjecture is true if and only if its restriction to (H, c)-Colouring problems, where (H, c) is a 2-tropical bipartite
graph, also holds. In other words, one can say that the class of 2-tropical bipartite graph homomorphisms is as rich as the
whole class of CSPs.

For many digraphs D it is known such that D-Colouring is NP-complete. Such a digraph of order 4 and size 5 is presented
in the book by Hell and Nešetřil [23, page 151]. Such oriented trees are also known, see [24] or [23, page 158]; the smallest
such known tree has order 45. A full dichotomy is known for oriented cycles [14]; the smallest such NP-complete oriented
cycle has order between 24 and 36 [13,14]. Using these results, one can easily exhibit some NP-complete (H, c)-Colouring
problems. To this end, given a digraphD, we construct the 3-tropical graph T (D) as follows. Start with the set of vertices V (D)
and colour its vertices Blue. For each arc −→uv in D, add a path uxuxvv of length 3 from u to v in T (D), where xu and xv are two
new vertices coloured Red and Green, respectively. The following fact is not difficult to observe.

Proposition 1.4. For any two digraphs D1 and D2, we have D1 → D2 if and only if T (D1) → T (D2).
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By the above results onNP-completeD-Colouring problems and Proposition 1.4, we obtain a 3-tropical graph of order 14,
a 3-tropical tree of order 133, and a 3-tropical cycle of order between 72 and 108whose associated homomorphismproblems
are NP-complete. Nevertheless, in this paper, we exhibit (by using other reduction techniques)much smaller tropical graphs,
trees and cycles (H, c) with (H, c)-Colouring NP-complete.

List homomorphisms. Dichotomy theorems have also been obtained for a list-based extension of the class of homomor-
phism problems, the list-homomorphism problems. In this setting, introduced by Feder and Hell in [15], the input consists of a
pair (G, L), where G is a graph and L : V (G) → 2V (H) is a list assignment representing a set of allowed images for each vertex
of G. For a fixed graph H , the decision problem H-List-Colouring asks whether there is a homomorphism h of G to H such
that for each vertex v of G, h(v) ∈ L(v). Problem H-List-Colouring can be seen as a generalization of H-Colouring. Indeed,
restricting H-List-Colouring to the class of inputs where for each vertex v of G, L(v) = V (H), corresponds precisely to
H-Colouring. Therefore, if H-Colouring is NP-complete, so is H-List-Colouring. For this set of problems, a full complexity
dichotomy has been established in a series of three papers [15,17,18]. We state the dichotomy result for simple graphs
from [17], that is related to our work. (A circular arc graphs is an intersection graph of arcs on a cycle.)

Theorem 1.5 (Feder, Hell and Huang [17]). If H is a bipartite graph such that its complement is a circular arc graph, then H-List-
Colouring is polynomial-time solvable. Otherwise, H-List-Colouring is NP-complete.

Given a tropical graph (H, c), the problem (H, c)-Colouring is equivalent to the restriction of H-List-Colouring to
instances (G, L) where each list is the set of vertices in one of the colour classes of c. Next, we introduce a less restricted
variant of H-List-Colouring that is also based on tropical graph homomorphisms.

The H-Tropical-Colouring problem. Given a fixed graph H , we introduce the decision problem H-Tropical-Colouring,
whose instances consist of (1) a vertex-colouring c ofH and (2) a tropical graph (G, c2). Then,H-Tropical-Colouring consists
of deciding whether (G, c1) → (H, c).

Alternatively, H-Tropical-Colouring is an instance restriction of H-List-Colouring to instances with laminar lists, that
is, lists such that for each pair of distinct vertices v1, v2 ∈ V (G), L(v1) = L(v2) or L(v1) ∩ L(v2) = ∅. (We remark that
H-Tropical-Colouring, as well as H-List-Colouring, can also be formulated as a CSP, where certain unary relations encode
the list constraints: so-called full CSPs, see [16] for details.)

Given the difficulty of studying (H, c)-Colouringproblems, aswill be demonstrated in Section 3, the study ofH-Tropical-
Colouring problems will be the focus of the other parts of this paper. This study is directed by the following question.

Question 1.6. For a given graph H, what is the complexity of H-Tropical-Colouring?

Clearly, (H, c)-Colouring where each vertex receives the same colour, is computationally equivalent to H-Colouring.
Therefore, by the Hell–Nešetřil dichotomy of Theorem 1.2, if H is non-bipartite, H-Tropical-Colouring is NP-complete.
Furthermore, by the above formulation of H-Tropical-Colouring as an instance restriction of H-List-Colouring, whenever
H-List-Colouring is polynomial-time solvable, so is H-Tropical-Colouring.

Thus, according to Theorems 1.2 and 1.5, all problems H-Tropical-Colouringwhere H is not bipartite are NP-complete,
and all problemsH-Tropical-ColouringwhereH is bipartite and its complement is a circular-arc graph are polynomial-time
solvable. Thus, it remains to studyH-Tropical-ColouringwhenH belongs to the class of bipartite graphswhose complement
is not a circular-arc graph. This class of graphs has beenwell-studied, and characterized by forbidden induced subgraphs [30].
It is a rich class of graphs that includes all cycles of length at least 6, all trees with at least one vertex from which there are
three branches of length at least 3, and an many other graphs [30].

Observe that for any induced subgraphH ′ of a graphH , one can reduceH ′-Tropical-Colouring toH-Tropical-Colouring
by assigning, in the input colouring of H , a dummy colour to all the vertices of H − H ′. Hence, if H-Tropical-Colouring
is polynomial-time solvable, then H ′-Tropical-Colouring is also polynomial-time solvable. Conversely, if H ′-Tropical-
Colouring is NP-complete, so isH-Tropical-Colouring. Therefore, to answer Question 1.6, it is enough to considerminimal
graphs H such that H-Tropical-Colouring is NP-complete.

A first question is to study the case of minimal graphsH for whichH-List-Colouring is NP-complete; such a list is known
and it follows from Theorem 1.5. In particular, it contains all even cycles of length at least 6. In Section 4, we show that for
every even cycle C2k of length at least 48, C2k-Tropical-Colouring is NP-complete. On the other hand,for every even cycle
C2k of length atmost 12, C2k-Tropical-Colouring is polynomial-time solvable. Unfortunately, for each graphH in the above-
mentioned list that is not a cycle,H-Tropical-Colouring is polynomial-time solvable, and thus larger graphs will be needed
in the quest of a similar characterization of NP-complete H-Tropical-Colouring problems.

In Section 5, we show that for every bipartite graph H of order at most 8, H-Tropical-Colouring is polynomial-time
solvable, but there is a bipartite graph H9 of order 9 such that H9-Tropical-Colouring is NP-complete.

Finally, in Section 6, we study the case of trees. We prove that for every tree T of order at most 11, T -Tropical-Colouring
is polynomial-time solvable, but there is a tree T23 of order 23 such that T23-Tropical-Colouring is NP-complete.

We remark that our NP-completeness results are finer than those that can be obtained from Proposition 1.4, in the sense
that the orders of the obtained target graphs aremuch smaller. Similarly, we note that the results in [10] imply the existence
of NP-complete H-Tropical-Colouring problems, and H can be chosen to be a tree or a cycle. However, similarly as in
Proposition 1.4, these results are also based on reductions from NP-complete D-Colouring problems, where H is obtained
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from the digraphD by replacing each arc by a path (its length depends onD, but it is always at least 3). Thus, the NP-complete
tropical targets obtained in [10] are trees of order at least 133 and cycles of order at least 72, which is much more than the
ones exhibited in the present paper.

To improve the presentation, some results in this paper are given without proof. The full paper, containing all proofs, is
available online [21].

2. Preliminaries and tools

In this section we gather some necessary preliminary definitions and results.

2.1. Isomorphisms, cores

For tropical graph homomorphisms, we have the same basic notions and properties as in the theory of graph homomor-
phisms. A homomorphism of tropical graph (G, c1) to (H, c2) is an isomorphism if it is a bijection and it acts bijectively on the
set of edges.

Definition 2.1. The core of a tropical graph (G, c) is the smallest (in terms of the order) induced tropical subgraph (G′, c|G′ )
admitting a homomorphism of (G, c) to (G′, c|G′ ).

In the same way as for simple graphs, it can be proved that the core of a tropical graph is unique. A tropical graph (G, c)
is called a core if its core is isomorphic to (G, c) itself. Moreover, we can restrict ourselves to studying only cores. Indeed it is
not difficult to check that (G, c1) admits a homomorphism to (H, c2) if and only if the core of (G, c1) admits a homomorphism
to the core of (H, c2).

2.2. Formal definitions of the used computational problems

We now formally define all the decision problems used in this paper.

H-Colouring
Input: A (di)graph G.
Question: Does there exist a homomorphism of G to H?

H-List-Colouring
Input: A graph G and a list function L : V (G) → 2V (H).
Question: Is there a homomorphism f of G to H such that for every vertex x of G, f (x) ∈ L(x)?

(H, c)-Colouring
Input: A tropical graph (G, c1).
Question: Does (G, c1) admit a homomorphism to (H, c)?

H-Tropical-Colouring
Input: A vertex-colouring c of H , and a tropical graph (G, c1).
Question: Does (G, c1) admit a homomorphism to (H, c)?

T -CSP
Input: A relational structure S over the same vocabulary as T .
Question: Does S admit a homomorphism to T?

k-SAT
Input: A pair (X, C) where X is a set of Boolean variables and C is a set of k-tuples of literals of X , that is, variables of X
or their negation.
Question: Is there a truth assignment A : X → {0, 1} such that each clause of C contains at least one true literal?
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NAE k-SAT
Input: A pair (X, C) where X is a set variables and C is a set of k-tuples of variables of X .
Question: Is there a partition of X into two classes such that each clause of C contains at least one variable in each
class?

It is a folklore result that 2-SAT is polynomial-time solvable, a fact for example observed in [26]. On the other hand, 3-SAT
is NP-complete [25], and NAE 3-SAT is NP-complete as well [28] (even if the input formula contains no negated variables).

2.3. Bipartite graphs

We now give several facts that are useful when working with homomorphisms of bipartite graphs.

Observation 2.2. Let H be a bipartite graph with parts A, B. If φ : G → H is a homomorphism of G to H, then Gmust be bipartite.
Moreover, if G and H are connected, then φ−1(A) and φ−1(B) are the two parts of G.

Thenext proposition shows that for bipartite target graphs,wemay assume (at the cost of doubling the number of colours)
that no two vertices from two different parts of the bipartition are coloured with the same colour.

Proposition 2.3. Let (H, c) be a connected tropical bipartite graph with parts A, B, and assume that vertices in A and B are
coloured by c with colours in set CA and CB, respectively. Let c ′ be the colouring with colour set (CA × 0) ∪ (CB × 1) obtained
from c with c ′(x) = (c(x), 0) if x ∈ A and c ′(x) = (c(x), 1) if x ∈ B. If (H, c ′)-Colouring is polynomial-time solvable, then
(H, c)-Colouring is polynomial-time solvable.

Proof. Let (G, c1) be a bipartite tropical graph. We may assume G is connected since the complexity of (H, c)-Colouring
and (H, c ′)-Colouring stays the same for connected inputs. Let c ′

1 and c ′′

1 be the colourings obtained from c1 by performing
a similar modification as for c ′: c ′

1(x) = (c1(x), 0) if x ∈ A and c ′

1(x) = (c1(x), 1) if x ∈ B, and c ′′

1 (x) = (c1(x), 1) if x ∈ A and
c ′′

1 (x) = (c1(x), 0) if x ∈ B. Now it is clear, by Observation 2.2, that (G, c1) → (H, c) if and only if either (G, c ′

1) → (H, c ′) or
(G, c ′′

1 ) → (H, c ′). Since the latter condition can be checked in polynomial time, the proof is complete. □

2.4. Generic lemmas for polynomiality

Wenowprove several generic lemmas thatwill be useful to prove that a specific (H, c)-Colouringproblem is polynomial-
time solvable.

Definition 2.4. Let (H, c) be a tropical graph. A vertex of (H, c) is a forcing vertex if all its neighbours are coloured with
distinct colours.

This is a useful concept since in any mapping of a tropical graph (G, c ′) to a target containing a forcing vertex x, if a vertex
of G is mapped to x, then the mapping of all its neighbours is forced. We have the following immediate application:

Lemma 2.5. Let (H, c) be a tropical graph. If all vertices of H are forcing vertices, then (H, c)-Colouring is polynomial-time
solvable.

Proof. Choose any vertex x of the instance (G, c1), and map it to any vertex of (H, c) with the same colour. Once this choice
is made, the mapping for the whole connected component of x is forced. Hence, try all O(|V (H)|) possibilities to map x, and
repeat this for every connected component of G. The tropical graph (G, c1) is a YES-instance if and only if every connected
component admits a mapping. □

Lemma 2.6 (2-SAT ). Let (H, c) be a tropical graph and let {S1, . . . , Sk} be a collection of independent sets of H, each of size at
most 2. Assume that for every tropical graph (G, c1) admitting a homomorphism to (H, c), there exists a partitionP = P1, . . . , Pℓ of
V (G) into ℓ ≤ k sets and a homomorphism f : (G, c1) → (H, c) such that for every i ∈ {1, . . . , ℓ}, there is a j = j(i) ∈ {1, . . . , k}
such that all vertices of Pi map to vertices of Sj. Then (H, c)-Colouring is polynomial-time solvable.

Proof. We reduce (H, c)-Colouring to 2-SAT. For every set Si, if Si contains only one vertex s, s represents TRUE. If Si contains
two vertices s, s′, one of them represents TRUE, the other FALSE (note that if some vertex belongs to two distinct sets Si and
Sj, it is allowed to represent, say, FALSE with respect to Si and TRUE with respect to Sj). Now, given an instance (G, c1) of
(H, c)-Colouring, we build a 2-SAT formula over variable set V (G) that is satisfiable if and only if (G, c1) → (H, c), as follows.

For every edge xy of G, assume that in f , x is mapped to a vertex of Si and y is mapped to a vertex of Sj (necessarily if
(G, c1) → (H, c) we have i ̸= j since Si, Sj induce independent sets). Let Fxy be a disjunction of conjunctive 2-clauses over
variables x, y. For every edge uv between a vertex u in Si and a vertex v in Sj, depending on the truth value assigned to u and
v, add to Fxy the conjunctive clause that would be true if x is assigned the truth value of u and y is assigned the truth value of
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v. For example: if u = FALSE and v = TRUE add the clause (x ∧ y). When Fxy is constructed, transform it into an equivalent
conjunction of disjunctive clauses and add it to the constructed 2-SAT formula. Now, by the construction, if the formula is
satisfiable we construct a homomorphism by mapping every vertex x to the vertex of the corresponding set Si that has been
assigned the same truth value as x in the satisfying assignment. By construction it is clear that this is a valid mapping. On
the other hand, if the formula is not satisfiable, there is no homomorphism of (G, c1) to (H, c) satisfying the conditions, and
hence there is no homomorphism at all. □

As a corollary of Lemma 2.6 and Proposition 2.3, we obtain the following lemma:

Lemma 2.7. If (H, c) is a bipartite tropical graph where each colour is used at most twice, then (H, c)-Colouring is polynomial-
time solvable.

Given a set S of vertices, the boundary B(S) is the set of vertices in S that have a neighbour out of S.

Lemma 2.8. Let (H, c) be a tropical graph containing a connected subgraph S of forcing vertices such that:
(a) every vertex in B(S) is coloured with a distinct colour (let C(S) be the set of colours given to vertices in B(S)), and (b) no

colour of C(S) is present in V (H) \ S.
If (H − S)-List-Colouring is polynomial-time solvable, then (H, c)-Colouring is polynomial-time solvable.

Proof. Let S = V (H)\S. Let (G, c1) be an instance of (H, c)-Colouring. Consider an arbitrary vertex v ofGwith c1(v) = i. Then,
v must be mapped to a vertex coloured i. For every possible choice of mapping v, we will construct one instance of (H − S)-
List-Colouring. To construct an instance from such a choice, we first partition V (G) into two sets: the set VS containing the
vertices that must map to vertices in S (and their images are determined), and the set VS containing the vertices that must
map to vertices of S. We now distinguish two basic cases, that will be repeatedly applied during the construction.

Case 1: vertex v is mapped to a vertex in S. If v has been mapped to a vertex x of S, since x is a forcing vertex, the mapping
of all neighbours of v is determined (anytime there is a conflict we return NO for the specific instance under construction).
We continue to propagate the forced mapping as much as possible (i.e. as long as the forced images belong to S) within a
connected set of G containing v. This yields a connected set Cv of vertices of G whose mapping is determined, and whose
neighbourhood Nv = N(Cv) \ Cv consists of vertices each of which must be mapped to a determined vertex of S. We add Cv

to VS . We now remove the set Cv from G and repeat the procedure for all vertices of Nv using Case 2.

Case 2: vertex v ismapped to a vertex in S. We perform a BFS search on the remaining vertices inG, until we have computed
amaximal connected set Cv of vertices containing v inwhich no vertex is colouredwith a colour in C(S). Then, for every vertex
x of Cv with a neighbour y that is coloured i (i ∈ C(S)), by Property (a) we know that y must be mapped to a vertex in B(S),
and moreover the image of y is determined by colour i. Hence the neighbourhood Nv = N(Cv) \ Cv has only vertices whose
mapping is determined. We add Cv to set VS and apply Case 1 to every vertex in Nv .

End of the procedure. Once V (G) has been partitioned into VS and VS (where the mapping of all vertices in VS ∪ N(VS) is
fixed), we can reduce this instance to a corresponding instance of (H − S)-List-Colouring.

In total, (G, c1) is a YES-instance if and only if at least one of theO(|V (G)|) constructed instances of (H−S)-List-Colouring
is a YES-instance. □

The next lemma is similar to Lemma 2.8 but now the boundary is distinguished using edges.

Lemma 2.9. Let (H, c) be a tropical graph containing a connected subgraph S of forcing vertices with boundary B = B(S) and
N = N(B) \ S. Assume that the following properties hold:

(a) for every pairs xy, x′y′ of distinct edges of B × N, we have (c(x), c(y)) ̸= (c(x′), c(y′)), and
(b) for every edge xy of B × N, there is no edge in (H − S) × (H − S) whose endpoints are coloured c(x) and c(y). If (H − S)-

List-Colouring is polynomial-time solvable, then (H, c)-Colouring is polynomial-time solvable.

Proof. The proof is almost the same as the one of Lemma 2.8, except that now, while computing an instance of (H − S)-List-
Colouring, the distinction between VS and VS is determined by the edges of B × N . □

The next lemma identify some unique features of a tropical graph to simplify the problem into a list-homomorphism
problem.

Definition 2.10. A Unique Tropical Feature in a tropical graph (H, c) is a vertex or an edge of H that satisfies one of the
following conditions.

Type 1. A vertex u of H whose colour class is {u}.
Type 2. An edge uv of H such that there is no other edge in H whose vertices are coloured c(u) and c(v), respectively.
Type 3. A vertex u of H such that N(u) is monochromatic in (H, c) with colour s, and every vertex coloured s that does not

belong to N(u) has no neighbour coloured with c(u).
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Type 4. A forcing vertex u of H such that for each pair v, w of distinct vertices in N(u), there is no path v′u′w′ in H − uwith
c(v) = c(v′), c(u) = c(u′) and c(w) = c(w′).

Definition 2.11. Let (H, c) be a tropical graph and S a set of Unique Tropical Features of (H, c). S is partitioned into four
sets as S = S1 ∪ S2 ∪ S3 ∪ S4, where Si is the set of unique tropical features of type i in S. We define H(S) as follows :
V (H(S)) = (V (H) ∪ {uv|u ∈ S4, v ∈ N(u)}) \ (S1 ∪ S3 ∪ S4) and E(H(S)) = (E(H[V (H(S))]) \ S2) ∪ {uvv|u ∈ S4, v ∈ N(u)}.

In other words, H(S) is the graph obtained from H by removing unique tropical features of type 1, 2, and 3, and for each
unique tropical feature u of type 4, replacing N[u] by d(u) pending edges.

Lemma 2.12. Let (H, c) be a tropical graph and S a set of unique tropical features of (H, c). If (H(S))-List-Colouring is
polynomial-time solvable, then (H, c)-Colouring is polynomial-time solvable.

Proof. Let (G, c ′) be an instance of (H, c)-Colouring. We are going to construct a graph G′ and associate to each vertex of
G′ a list of vertices of H(S) such that there is a list-homomorphism from G′ to H(S) (with respect to these lists) if and only if
there is a tropical homomorphism of (G, c ′) to (H, c). We proceed with sequential modifications, by considering the unique
tropical features of S one by one.

First, we can see the instance (G, c ′) of (H, c)-Colouring as an instance of H-List-Colouring by giving to each vertex u
in G the list L(u) of vertex in H coloured c ′(u). If at any point in the following, we update the list of a vertex to be empty, we
can conclude that there is no tropical homomorphism between (G, c ′) and (H, c).

For each unique tropical feature u of type 1 in S, there is a colour s such that only the vertex u is coloured s in (H, c). Every
vertex in (G, c ′) coloured s must be mapped to u and has a list of size at most one. For each vertex v in (G, c ′) coloured s,
we update the list of each of its neighbours w such that L(w) becomes L(w) ∩ N(u). We can then delete v from (G, c ′) and
forget L(v) without affecting the existence of a list-homomorphism. Indeed, if a homomorphism exists, then it must map
each neighbour of v to a neighbour of u. Moreover, there is no other vertex of (G, c ′) that can be mapped to u.

For each unique tropical feature uv of type 2 in S, there is no other edge than uv in H such that the colour of its vertices
are c(u) and c(v). Every edge in (G, c ′) whose vertices are coloured c(u) and c(v) must be mapped to uv. For each edge xy in
(G, c ′) such that c ′(x) = c(u) and c ′(y) = c(v), we update the list of x and y such that L(x) becomes L(x)∩{u} and L(y) becomes
L(y) ∩ {v}. We can then delete the edge uv from (G, c ′) without changing the existence of a list-homomorphism. Indeed, if a
homomorphism exists, it must map x to u and y to v. Again, there is no other edge of (G, c ′) that can be mapped to uv.

For each unique tropical feature u of type 3 in S, N(u) is monochromatic in (H, c) of colour s and any vertex coloured s
with a neighbour coloured c(u) must belong to N(u). Let v be a vertex of G such that c(v) = c(u) and N(v) is monochromatic
in (G, c ′) of colour s. Then, we can assume that v is mapped to u. Indeed, in every tropical homomorphism of (G, c ′) to (H, c),
if v is not mapped to u, it is mapped to a vertex at distance 2 from u, and one obtains another valid tropical homomorphism
by only changing the mapping of v to u. For each such vertex v, we update the list of its neighbours w such that L(w)
becomes L(w) ∩ N(u). We can then delete v from (G, c ′) without affecting the existence of a list-homomorphism. Indeed, if
a homomorphism exists, it maps every neighbour of v to a neighbour of u. Moreover, there no other vertex of (G, c ′) can be
mapped to u.

Finally, let u be a vertex of type 4 in S. Thus, by the definition of type 4, for each v, w ∈ N(u), there is no other path v′u′w′

in H such that c(v) = c(v′), c(u) = c(u′) and c(w) = c(w′). Furthermore, since u is a forcing vertex, we have c(v) ̸= c(w) for
any two neighbours v and w of u.

Let x be a vertex of G such that c ′(x) = c(u) and such that at least two neighbours of x are of colours c(v) or c(w), one of
each. Then, as x is of type 4, any homomorphism of (G, c ′) to (H, c) mustmap all such vertices x to u. Remove all such vertices
from G and let (G′, c ′) be the remaining tropical graph. For any vertex y of G′ if it is of colour c(u), it may then either map to
another vertex of this colour, or all its neighbours must map a same neighbour of u. Let (H1, c) be a tropical graph obtained
from (H, c) by removing the vertex u, and then adding one new vertex for each vertex in NH (u) and assigning the colour c(u)
to it. It follows that (G′, c ′) admits a homomorphism to (H ′, c) if and only (G, c ′) admits a homomorphism to (H, c), proving
our claim.

In conclusion, we have built an instance (G′, L) of H(S)-List-Colouring that maps to H(S) if and only if (G, c ′) maps to
(H, c), thus proving our claim.We remark, furthermore, that these changes used to introduced (G′, L) andH(S) are compatible
even between different types of vertices, thus we may allow S to contain a combination of such vertices. However, in this
work we will only consider sets S whose elements are all of a same type. □

3. (H, c)-Colouring and the Dichotomy Conjecture

Since each (H, c)-Colouring problem is a CSP, the Feder–Vardi Dichotomy Conjecture (Conjecture 1.1) would imply a
complexity dichotomy for the class of (H, c)-Colouring problems. As we mentioned before, a proof of the conjecture has
been recently announced, thus every (H, c)-Colouring is either polynomial time solvable or it is an NP-complete problem.
Here we point out that an independent proof even on a very restricted set of (H, c) would also prove the original conjecture.

Following the construction of Feder and Vardi ([20, Theorem 10]) and based on its exposition in the book by Hell and
Nešetřil [23, Theorem 5.14], one can modify their gadgets to prove a similar statement for the class of 2-tropical bipartite
graph homomorphism problems. The proof being very similar to the proofs in [8,20,23], we skip it here and refer to our
manuscript [21] instead.
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Theorem3.1. For each CSP template T there is a 2-coloured graph (H, c) such that (H, c)-Colouring and T-CSP are polynomially
equivalent. Moreover, (H, c) can be chosen to be bipartite and homomorphic to a 2-coloured forcing path.

4. Minimal graphs H for NP-complete H-List-Colouring

Recall the dichotomy theorem for list homomorphism problems of Feder, Hell and Huang (Theorem 1.5): H-List-
Colouring is polynomial-time solvable if H is bipartite and its complement is a circular arc graph, otherwise NP-complete.
Alternatively, the latter class of graphs was characterized by Trotter and Moore [30] in terms of seven families of forbidden
induced subgraphs: six infinite ones and a finite one. One of these families is the family of even cycles of length at least 6.
The only tree in the list of forbidden graphs, which is called G1 in [17], is a claw where each edge is subdivided twice.

In fact, one can show the following result (see [21] for a proof).

Theorem 4.1. Let H be a graph in the characterization of forbidden induced subgraphs of [30] that is no an even cycle. Then,
H-Tropical-Colouring is polynomial-time solvable.

In this section, we first turn our attention to the family of even cycles of length at least 6. We show that C2k-Tropical-
Colouring is polynomial-time solvable for any k ≤ 6. On the other hand, for any k ≥ 24, C2k-Tropical-Colouring is NP-
complete.

4.1. Polynomial-time cases for even cycles

We now prove that the tropical homomorphism problems for small even cycles are polynomial-time solvable.

Theorem 4.2. For each integer k with 2 ≤ k ≤ 6, C2k-Tropical-Colouring is polynomial-time solvable.

Proof. Since C4-List-Colouring is polynomial-time solvable, C4-Tropical-Colouring is polynomial-time solvable.
We will consider all cases k ∈ {3, 4, 5, 6} separately. But in each of those cases we note that if (C2k, c) is not a core,

then the core is path, and since the Pk-List-Colouring is polynomial-time solvable for any k ≥ 1, C2k-Tropical-Colouring
would also be polynomial-time solvable. Hence in the rest of the proof we always assume (C2k, c) is a core. Furthermore, by
Proposition 2.3, we can assume that the colour sets of c in X and Y are disjoint.

First, assume k = 3. There are three vertices in each part of the bipartition of C6. If one vertex is coloured with a colour
not present anywhere else in the part, Lemma 2.12 implies again that (C6, c)-Colouring is polynomial-time solvable. Hence,
we can assume that each part of the bipartition is monochromatic. But then (C6, c) is not a core, a contradiction with our
assumption.

Suppose k = 4. There are four vertices in each part of the bipartition (X, Y ) of C8. If there is a vertex that, in c , is the only
one coloured with its colour, since Pk-List-Colouring is polynomial-time solvable for any k ≥ 1, by Lemma 2.12 (C8, c)-
Colouring is polynomial-time solvable. Hence we may assume that each colour appears at least twice, in particular each
part of the bipartition is coloured with either one or two colours. If some part, say X , is coloured with only one colour (say
Blue) then (C8, c) is not a core which again contradicts our assumption. Hence, in each part, there are exactly two vertices of
each colour. In this case we can use Lemma 2.6 with S1, S2, S3 and S4 being the four sets of two vertices with the same colour.
It follows that (C8, c)-Colouring is polynomial-time solvable.

Assume that k = 5, and let c be a vertex-colouring of C10. By similar arguments as in the proof of Theorems 5.1 and 6.1,
using Lemma 2.12 and the fact that (H, c) should not be homomorphic to a P2- or P3-subgraph, each part of the bipartition
(X, Y ) contains exactly two vertices of one colour and three vertices of another colour, say X has three vertices coloured 1
and two vertices coloured 2, and Y has three vertices coloured a and two vertices coloured b.

The cyclic order of the colours of X can be either 1− 1− 1− 2− 2 or 1− 1− 2− 1− 2 (up to permutation of colours and
other symmetries). If this order is 1− 1−1− 2−2, then the vertex of Y adjacent to the two vertices coloured 2 satisfies the
hypothesis of Lemma 2.12 and hence (C10, c)-Colouring is polynomial-time solvable. The same argument can be applied to
Y , hence the cyclic order of the colours of Y is a − a − b − a − b.

Hence, there is a unique vertex y of Y whose two neighbours are coloured 1. If c(y) = b, then the second vertex of
Y coloured b is in the centre of a 3-vertex path coloured 1 − b − 2 that satisfies the hypothesis of Lemma 2.12, hence
(C10, c)-Colouring is polynomial-time solvable. Therefore, we have c(y) = a. By the same argument, the unique vertex of
X adjacent to two vertices of Y coloured a must be coloured 1. Therefore, up to symmetries c is one of the three colourings
1− a− 1− a− 2− b− 1− a− 2− b, 1− a− 1− b− 2− a− 1− a− 2− b and 1− a− 1− b− 2− a− 1− b− 2− a (in
the cyclic order).

We are going to use the Lemma 2.6 to conclude the case k = 5. In a homomorphism to (C10, c), a vertex coloured 2 or b
can only be mapped to the two vertices in (C10, c) of the corresponding colour. A vertex v coloured 1 adjacent to at least one
vertex coloured b or a vertex coloured a adjacent to at least one vertex coloured 2 also can only bemapped to two vertices of
(C10, c) (the ones having the same properties as v). However, a vertex coloured 1 all whose neighbours are coloured a can be
mapped to three different vertices in (C10, c) (say x1, x2, x3, the vertices coloured 1, that all have a neighbour coloured a). But
at least one of x1, x2, x3, say x1, has a common neighbour coloured awith one of the two other vertices (say x2). Therefore, if
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there is a homomorphism h of some tropical graph (G, c1) to (C10, c) mapping a vertex v of G coloured 1 all whose neighbours
are coloured a to x1, we canmodify h so that v is mapped to x2 instead. In other words, there is a homomorphism of (G, c1) to
(C10, c) where none of the vertices coloured 1 all whose neighbours are coloured a is mapped to x1. Therefore such vertices
have two possible targets: x2 and x3. The same is true for vertices coloured a all whose neighbours are coloured 1. Thus,
(C10, c) satisfies the hypothesis of Lemma 2.6 and (C10, c)-Colouring is polynomial-time solvable.

Finally, assume now that k = 6. Again, using Lemma 2.12, we can assume than each part of the bipartition has at most
three colours, and each colour appears at least twice. Furthermore, if there are exactly three colours in each part, each colour
appears exactly twice and hence (C12, c)-Colouring is polynomial-time solvable by Lemma 2.6. If one part of the bipartition
has one colour and the other has at most two colours, then (C12, c) would not be a core. Therefore, the numbers of colours
of the parts in the bipartition are either one and three, two and three, or two and two.

Assume that one part, say X , is monochromatic (say Red) and the other, Y , has three colours (thus two vertices of
each colour). For the graph to be a core and not satisfy Lemma 2.12, the three colours of Y must form the cyclic pattern
x−y−z−x−y−z. In this case, considering any vertex v of colour Red in an input tropical graph (G, c1), in any homomorphism
(G, c1) → (C12, c), all the neighbours of v with the same colour must be identified. Furthermore, no Red vertex in (G, c1) can
have neighbours of three distinct colours. Therefore, the mapping of each connected component is forced after making a
choice for one vertex. Since there are two choices per vertex, we have a polynomial-time algorithm for (C12, c)-Colouring.

Assume now that one part, say X , contains two colours (a and b) and the other, Y , contains three colours (x, y and z). Note
that there are exactly two vertices of each colour in Y . We are going to use Lemma 2.6 to conclude this case. A vertex of some
input graph (G, c1) coloured x, y or z can only be mapped to two possible vertices in (C12, c). A vertex of (G, c1) coloured a
or b (say a) and having all its neighbours of the same colour, say x, might be mapped to more than two vertices of (C12, c).
However, once again, there are always two of these vertices that, together, are adjacent to all the vertices of colour x (indeed,
there are only two vertices of colour x). These two vertices are the designated targets for Lemma 2.6. A vertex coloured a
(or b) with two different colours in its neighbourhood can only be mapped to two possible vertices if there is no pattern
x − a − y − a − x − a − y in the graph (up to permutation of colours). Hence, if there is no such pattern in the graph (up to
permutation of colours), (C12, c) satisfies the hypothesis of Lemma 2.6 and (C12, c)-Colouring is polynomial-time solvable.
On the other hand, if there is a pattern x− a− y− a− x− a− y in the graph, then there is a unique path coloured a− x− b
or a − y − b in the graph and, by Lemma 2.12, (C12, c)-Colouring is polynomial-time solvable as well.

Therefore, we are left to consider the cases where there are exactly two colours in each part. We assume first that there
are two vertices coloured a and four vertices coloured b in one part, say X . If the neighbours of vertices of colour a all have
the same colour, say x, then (C12, c) is not a core because it can bemapped to its sub-path coloured a−x−b−y. We suppose
without loss of generality that the coloured cycle contains a path coloured y − a − x − b. Then, if there is no other path
coloured y−a− x−b, by Lemma 2.12 (C12, c)-Colouring is polynomial-time solvable. Therefore, there is another such path
in (C12, c). If this other path is part of a path x − a − y − a − x, then the problem is polynomial-time solvable by applying
Lemma 2.12 to the star a − y − a. Up to symmetry, we are left with two cases: y − a − x − b − . − b − . − a − . − b − . − b
or y − a − x − b − . − b − . − b − . − a − . − b (where a dot could be colour x or y). The first case must be
y−a−x−b−.−b−y−a−x−b−.−b, because otherwise, (C12, c) is not a core. Any placement of the remaining x’s and y’s yields
a polynomial-time solvable case using Lemma 2.8. Similarly, the second casemust be y−a−x−b−.−b−.−b−y−a−x−b.
Then, (C12, c)-Colouring is polynomial-time solvable because of Lemma 2.9, with a − x − b − y − a as forcing set and
x − b − . − b − . − b − y, which contains no vertex coloured a, as the other set.

Finally, we can assume, without loss of generality, that there are exactly three vertices for each of the two colours in each
part. There are three possible configurations in each part: a−a−a−b−b−b, a−a−b−b−a−b or a−b−a−b−a−b, up
to permutations of colours. If one part of the bipartition is in the first configuration, then, either we have the pattern a−x−b
or a−y−b that satisfies the hypothesis of Lemma 2.12, or we have two paths a− x−b, in which case, there is a unique path
a − y − a or b − y − b which satisfies the hypothesis of Lemma 2.12. Suppose some part of the bipartition is in the second
case. Then, if we have the pattern a− x− a− . − b− x− b− . − a− . − b− ., there is a unique path a− x− b satisfying the
hypothesis of Lemma 2.12. Otherwise, we have the pattern a − x − a − . − b − y − b − . − a − . − b − ., in which case we
can apply Lemma 2.6 in a similar way as for C10. Therefore, both parts of the bipartition must be in the third configuration.
But then every vertex is a forcing vertex and we can apply Lemma 2.5. This completes the proof. □

4.2. NP-completeness results for even cycles

We now show that C2k-Tropical-Colouring is NP-complete whenever k ≥ 24. We present a proof using a specific 4-
tropical 48-cycle. The proof holds similarly for any larger even cycle. It also works similarly for some 3-tropical cycles C2k for
k ≥ 24 and for 2-tropical cycles C2k for k ≥ 27.

We use the colour set {G, B, R, Y } (for Green, Blue, Red and Yellow).
We define Px,y to be a tropical path of length 8, with vertices x = x0, x1, . . . , x7, x8 = y where {c(x), c(y)} = {G, B},

c(x5) = R and all others are coloured Yellow. Thus, Px,y represents one of the two non-isomorphic tropical graphs from
Fig. 1. The distance of the only vertex of colour R from the two ends defines an orientation from one end to another. Thus, in
our figures, an arc between two vertices u and v is a Puv path.

Similarly, Qz,t is defined to be a tropical path of length 10 with vertices z = z0, z1, . . . , z9, z10 = t where {c(z), c(t)} =

{G, B}, c(z5) = R and all others are coloured Yellow. In this case, as the only vertex of colour R is at the same distance from
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Fig. 1. The two non-isomorphic graphs of type Pxy .

Fig. 2. A short representation of the 4-tropical 48-cycle (C48, c).

both ends, the two possible colourings of the end-vertices correspond to isomorphic graphs. Hence, in our figures, a dotted
edge will be used to represent a Q -type path between two vertices.

The following lemma is easy to observe.

Lemma 4.3. The following is true.

1. Px,y admits a tropical homomorphism to Pu,v if and only if c(x) = c(u) and c(y) = c(v).
2. Qz,t admits a tropical homomorphism to Pu,v both in the case where c(z) = c(u) and c(t) = c(v), and in the case where

c(z) = c(v) and c(t) = c(u).

By Lemma 4.3, in our abbreviated notation of arcs and dotted edges, a dotted edge can map to a dotted edge or to an arc
as long as the colours of the end-vertices are preserved. However, to map an arc to another arc, not only the colours of the
end-vertices must be preserved, but also the direction of the arc.

With our notation, the tropical directed 6-cycle of Fig. 2 corresponds to a 4-tropical 48-cycle, (C48, c).
Our aim is to show that NAE 3-SAT reduces (in polynomial time) to (C48, c)-Colouring.

Theorem 4.4. For any k ≥ 24, C2k-Tropical-Colouring is NP-complete.

Proof. We prove the statement when k = 24 and observe that the same reduction holds for any k ≥ 24. Indeed, one can
make Px,y and Qz,t longer while still satisfying Lemma 4.3.

(C48, c)-Colouring is clearly in NP. To show NP-hardness, we show that NAE 3-SAT can be reduced in polynomial-time
to (C48, c)-Colouring.

Let (X, C) be an instance of NAE 3-SAT. To partition X into two parts, it is enough to decide, for each pair of elements of
X , whether they are in a same part or not. Thus, we are expected to define a binary relation among variables which satisfies
the following conditions.

1. Xp ∼ Xq ∧ Xq ∼ Xr ⇒ Xq ∼ Xr (Partition)
2. Xp ≁ Xq ∧ Xq ≁ Xr ⇒ Xp ∼ Xr (Partition into two parts).

To build our gadget, we start with a partial gadget associated to each pair of variables of X . To each pair xi, xj ∈ X , we
associate the 4-tropical 6-cycle (Cxixj , c) of Fig. 3. Here, UG (coloured Green) is a common vertex of all such cycles, but all
other vertices are distinct.

We are interested in possiblemappings of this partial gadget into our tropical 48-cycle, (C48, c) of Fig. 2. By the symmetries
of (C48, c), we assume, without loss of generality, that UG maps to g0. Having this assumed, we observe the following crucial
fact.

Claim 4.5. There are exactly two possible homomorphisms of (Cxixj , c) to (C48, c).

1. A mapping σ given by σ (UG) = g0, σ (b0xixj ) = b0, σ (g1
xixj ) = g1, σ (b1xixj ) = b1, σ (g2

xixj ) = g2 and σ (b2xixj ) = b2
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Fig. 3. (Cxixj , c).

Fig. 4. Tree connecting b1xpxq , b
2
xpxr and b2xqxr .

2. A mapping ρ give by ρ(UG) = g0, ρ(b0xixj ) = b0, ρ(g1
xixj ) = g1, ρ(b1xixj ) = b0, ρ(g2

xixj ) = g1 and ρ(b2xixj ) = b0.

Themain idea of our reduction lies in Claim 4.5. After completing the description of our gadgets, wewill have a 4-tropical
graph containing a copy of Cxixj for each pair xi, xj of variables. If we find a homomorphism of this graph to (C48, c), then its
restriction to Cxixj is either a mapping of type σ , or of type ρ. A σ -mapping would correspond to assigning xi and xj to two
different parts, and a ρ-mapping would correspond to assigning them to a same part of a partition of X .

Observation 4.6. It is never possible to map b2xixj to b1 or to map b1xixj to b2.

To enforce the two conditions, partitioning X into two parts by a binary relation, we add more structures. Consider the
three partial gadgets (Cxpxq , c), (Cxqxr , c) and (Cxpxr , c). Considering b1xpxq of (Cxpxq , c), we choose vertices b2xpxr and b2xqxr from
(Cxpxr , c) and (Cxqxr , c) respectively, and connect them by a tree as in Fig. 4. The internal vertices of these trees are all new
and distinct.

We build similar structures on (b1xpxr , b
2
xqxr , b

2
xpxq ) and on (b1xqxr , b

2
xpxq , b

2
xpxr ), where the order corresponds to the structure.

Let (Cxpxqxr , c) be the resulting partial gadget (see Fig. 5).

Claim4.7. In anymapping of (Cxpxqxr , c) to (C48, c), an oddnumber of (Cxixj , c) ismapped to (C48, c) by aρ-mapping. Furthermore,
for any choice of an odd number of (Cxixj , c) (that is either one or all three of them), there exists a mapping of (Cxpxqxr , c) to (C48, c)
which induces a ρ-mapping exactly on our choice.

Proof of claim. Indeed, each (Cxixj , c) can be mapped to (C48, c) only by σ or ρ, which implies that there are eight ways
to map the union of (Cxpxq , c), (Cxpxr , c) and (Cxqxr , c) to (C48, c). Of these eight ways, four map an odd number of (Cxixj , c) to
(C48, c) by a ρ-mapping. The four remainingways are tomap all (Cxixj , c) to (C48, c) by a σ -mapping, or to choose one of them
tomap by a σ -mapping and tomap the two others by a ρ-mapping. One can check easily that the union of (Cxpxq , c), (Cxpxr , c),
(Cxqxr , c) and the tree of Fig. 4 has six ways to be mapped to (C48, c). Indeed, it is no longer possible to map all (Cxixj , c) by σ
nor to map (Cxpxr , c) by σ and (Cxpxq , c) and (Cxqxr , c) by ρ. By symmetry, this implies Claim 4.7. □

Finally, to complete the gadget, what remains is to forbid the possibility of a ρ-mapping for all three of (Cxpxq , c), (Cxpxr , c)
and (Cxqxr , c) in the case where (xpxqxr ) is a clause in C . This is done by adding a b1xpxqb

2
xqxr -path shown in Fig. 6.

Let f (X, C) the final gadget we have just built. Assuming that there are v variables and c clauses, the 4-tropical graph
f (X, C) has 1 + 53 × v2

+ 132 × v3
+ 33 × c vertices. To complete our proof we want to prove the following.

(X, C) is a YES instance of NAE 3-SAT if and only if the 4-tropical graph f (X, C) admits a homomorphism to (C48, c).
It follows directly form our construction that if f (X, C) → (C48, c), then (X, C) is a YES instance of NAE 3-SAT. We need

to show that if (X, C) is a YES instance, then there exists a homomorphism of f (X, C) to (C48, c).
Let (X, C) be a YES instance of NAE 3-SAT. There exists a partition p : X → {A, B} such that every clause in C is not fully

included in A or B. We build a homomorphism of f (X, C) to (C48, c) in the following way. UG is mapped to g0. For each pair of
variables xi, xj ∈ X , we map Cxixj by a ρ-mapping if and only if p(xi) = p(xj), and by a σ -mapping otherwise. For every triple
of variable xp, xq, xr ∈ X , there is an odd number of pairs xi, xj of variables in {xp, xq, xr} such that p(xi) = p(xj). It follows
from Claim 4.7 that one can extend the mapping to any Cxpxqxr . Moreover, as two such structures only intersect on Cxixj , we
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Fig. 5. Cxpxqxr .

Fig. 6. Partial clause gadget.

can extend the mapping to every Cxpxqxr . It only remains to map the b1xpxqb
2
xqxr -path added for the clause, shown in Fig. 6. If

(xp, xq, xr ) is a clause in C , then p(xp) ̸= p(xq) or p(xq) ̸= p(xr ). It follows that Cxpxq or Cxqxr is mapped by a σ -mapping, in
which case the b1xpxqb

2
xqxr -path shown in Fig. 6 can also be mapped. We have shown that there is a homomorphism of f (X, C)

to (C48, c). This concludes the proof. □

We observe that the proof could be slightly modified to obtain variations of Theorem 4.4.

Remark 4.8.

1. In the reduction from Theorem 4.4, Red vertices are never in the same part of the bipartition as Blue and Green vertices.
It follows that one could colour every Red vertex Blue, and Theorem 4.4 would still hold, for 3-tropical cycles.

2. The idea of this proof can also be extended for a 2-tropical 54-cycle. To do this we first insert a Red vertex between
x5 and x6 in Pxy and a Red vertex between z5 and z6 in Qzt . We observe that the proof follows similarly. However in
this case all blue vertices are in one part and all green vertices are on the other part of the bipartition. Thus, as in the
previous claim, we can kill off two colours now and use the natural bipartition to distinguish two sets of colours for
each colour class.

5. Bipartite graphs of small order

In this section, we show that for each graph H of order at most 8, H-Tropical-Colouring is polynomial-time solvable. On
the other hand, there is a graph H9 of order 9 such that H9-Tropical-Colouring is NP-complete.

Theorem 5.1. For any bipartite graph H of order at most 8, H-Tropical-Colouring is polynomial-time solvable.

Proof. It suffices to prove that for each bipartite graph H of order at most 8 and each colouring c of H , (H, c)-Colouring
is polynomial-time solvable. In fact, by Proposition 2.3 it suffices to show the statement for colourings of H such that the
colour sets in the two parts of the bipartition are disjoint. To prove that (H, c)-Colouring is polynomial-time solvable it is
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enough to prove it for the core of S(H, c), it is also enough to prove it for each connected component of (H, c). Thus in the
rest of the proof we always assume that (H, c) is connected core. Let (X, Y ) be the bipartition of H .

Since the only graphs of order atmost 8 in the characterization ofminimal NP-complete graphsH withH-List-Colouring
NP-complete are the cycles C6 and C8 [17], by Theorem 1.5, if H does not contain an induced 6-cycle or an induced 8-cycle,
then H-List-Colouring is polynomial-time solvable and therefore H-Tropical-Colouring is polynomial-time solvable.
Therefore H contains an induced 6-cycle or an induced 8-cycle.

If H contains an induced copy of C8, then H is isomorphic to C8 itself and hence we are done by Theorem 4.2. Therefore,
we can assume that H contains an induced copy of C6. Again by Theorem 4.2, if H is isomorphic to C6, we are done.

Now, assume that H is a bipartite graph of order 7 or 8 with an induced copy of C6. If one part, say X , is of order 3, then
all its vertices belong to each 6-cycle of H . Hence, for each x ∈ X , (H − x)-List-Colouring is polynomial-time solvable. Thus,
if X is not monochromatic, we can apply Lemma 2.12 and (H, c)-Colouring is polynomial-time solvable. Therefore we may
assume X is monochromatic, say Blue. If Y contains at most two colours, then (H, c) contains as a subgraph the path on three
vertices where the central vertex is Blue and the other vertices are coloured with the colours of Y . But then (H, c) maps
to this subgraph and, therefore, it is not a core, a contradiction. Hence, Y contains at least three colours. If |Y | = 4, then Y
contains two colours that are the unique ones colouredwith their colour. Moreover, (H−{x, y})-List-Colouring contains no
6-cycle and, therefore, by Lemma 2.12 (H, c)-Colouring, is polynomial-time solvable. Hence we can assume that |Y | = 5.
If Y contains at least four colours, by the same argument we are done, therefore, we assume that Y contains exactly three
colours. If (H, c) contains a star with a Blue centre and a three leaves of different colours, then (H, c) is not a core. Therefore
the neighbourhood of each vertex of X contains at most two colours. Assume that the three vertices y1, y2, y3 of Y in the
6-cycle have three different colours. Let y4, another element of Y be of the same colour as yi. By the previous observation,
y4 can only be adjacent to neighbours of yi. But then mapping y4 to y1 is a homomorphism which means (H, c) is not a core.
Therefore, we can assume that c(y1) = c(y2) = 1 and c(y3) = 2. Then, the vertex coloured 3 has degree 1 and is adjacent to
the common neighbour of y1 and y2. But then again, (H, c) is not a core.

Therefore, H is a bipartite graph of order 8 and |X | = |Y | = 4. If there are at least three colours in one part of the
bipartition (say X), then two vertices x1, x2 in X form two colour classes of size 1. Moreover, H − {x1, x2} has no 6-cycle
and therefore, by Lemma 2.12, (H, c)-Colouring is polynomial-time solvable. We may then assume that each part of the
bipartition contains at most two colours. If one part, say X , contains exactly one colour (say Blue), then (H, c) contains a path
on three vertices with every colour of c (the central vertex is Blue) and is not a core, a contradiction. Therefore each part of
the bipartition contains exactly two colours. If in each part, each colour has exactly two vertices, we can apply Lemma 2.6 to
show that (H, c)-Colouring is polynomial-time solvable. Therefore, we can assume that there is a colour, say Blue, where
exactly three vertices of one part, say x1, x2, x3 from part X , coloured Blue (x4 is coloured Green). IfH−x4 contains no induced
6-cycle (it cannot contain an 8-cycle since it has order 7), then (H − x4)-List-Colouring is polynomial-time solvable and we
can use Lemma 2.12 and (H, c)-Colouring is polynomial-time solvable. Hence we may assume H − x4 contains an induced
6-cycle C . Note that C must contain three vertices of X and therefore contains all three of x1, x2, x3. If the three other vertices
y1, y2 an y3 of C are coloured with the same colour, then (H, c) is not a core, a contradiction. Therefore assume, without loss
of generality, that c(y1) = c(y2) = 1 and c(y3) = 2. Then, in order for (H, c) to be a core, we cannot have both x1 and y1
(respectively, y2 and x3) of degree 3. More precisely, either d(y1) = d(x3) = 2 and d(x1) = d(y2) = 3, or d(y1) = d(x3) = 3
and d(x1) = d(y2) = 2. In both cases, we have d(y3) = 2, for otherwise (H, c) contains a 4-cycle with all four colours, and
(H, c) is not a core. If c(y4) = 1, then (H, c) contains a path on four vertices coloured 2-Blue-1-Green; moreover there is no
edge in (H, c) whose endpoints are coloured Green and 2, therefore (H, c) is homomorphic to the above path and is not a
core. If c(y4) = 2, then (H, c) contains a 4-coloured 4-cycle and again (H, c) is not a core, a contradiction. As no such tropical
graph exists, we have shown that for all possible cases the (H, c)-colouring problem is polynomial-time solvable. □

Denote by H9 the graph obtained from a 6-cycle by adding a pendant degree 1-vertex to three independent vertices (see
Fig. 7).

Theorem 5.2. H9-Tropical-Colouring is NP-complete.

Proof. We show that (H9, c)-Colouring is NP-complete, where c is the 4-colouring of H9 illustrated in Fig. 7. We describe a
reduction from C6-List-Colouring, which is NP-complete [17]. We label the vertices in C6 from 1 to 6 sequentially. We also
do that in the C6 included inH9. We assumewithout loss of generality that the vertex adjacent to the Red vertex is labelled 1,
and the one adjacent to the Green one is labelled 3. It follows that the vertex adjacent to the Yellow vertex is labelled 5.

Let (G, L) be an instance of C6-List-Colouring, where L is the list-assignment function. If G is not bipartite, then G has no
homomorphism to C6, so we can assume that G is bipartite. Since G and C6 are bipartite, we may assume that ∀u ∈ V (G),
either L(u) ⊆ {1, 3, 5}, or L(u) ⊆ {2, 4, 6}. Thus |L(u)| ≤ 3.

From (G, L), we build an instance f (G, L) of (H9, c)-Colouring as follows. First, we consider a copy G′ of G, we let
G′

⊂ f (G, L) and colour every vertex of G′ Black. We call u′ the copy of vertex u in G′. Then, for each vertex u of G, we
add a gadget Hu to f (G, L) that is attached to u′. The gadget is described below and depends only on L(u).

• If L(u) = {1} (respectively, {3} or {5}), thenHu is a single Red (respectively, Green or Yellow) vertex of degree 1 adjacent
only to u′.
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Fig. 7. The 4-tropical graph H9 .

• If L(u) = {2} (respectively, {4} or {6}), then Hu consists of two 2-vertex path: a Red–Black path and a Green–Black path
(respectively, a Green–Black path and a Yellow–Black path or a Yellow–Black path and a Red–Black path) whose Black
vertex is of degree 2 and is adjacent to u′ (the other vertex is of degree 1).

• If L(u) = {2, 4} (respectively, {4, 6} or {2, 6}), then Hu is a 2-vertex Green–Black (respectively, Yellow–Black or Red–
Black) path whose Black vertex is of degree 2 and adjacent to u′ (the other vertex is of degree 1).

• If L(u) = {1, 3} (respectively, {3, 5} or {1, 5}), then Hu is a 5-vertex Red–Black–Black–Black–Green path (respectively,
Green–Black–Black–Black–Yellow or Yellow–Black–Black–Black–Red) whose middle Black vertex is of degree 3 and
adjacent to u′ (the endpoints of the path are of degree 1 and the other two vertices have degree 2).

• If L(u) = {1, 3, 5}, then Hu is a 3-vertex Black–Black–Red path with the black leaf adjacent to u′.
• If L(u) = {2, 4, 6}, then Hu is a 4-vertex Black–Black–Black–Red path with the black leaf adjacent to u′.

Let us prove that G has a homomorphism to C6 that fulfils the constraints of list L, if and only if f (G, L) → (H9, c).
For the first direction, consider a list homomorphism h of G to C6 with the list function L. We build a homomorphism h′

of f (G, L) to (H9, c) as follows. First of all, each copy v′ of a vertex v of Gwith h(v) = i is mapped to i in (H9, c). It is clear that
this defines a homomorphism of the subgraph G′ of f (G, L) to the Black 6-cycle in (H9, c). It is now easy to complete h′ into
a homomorphism of f (G, L) to (H9, c) by considering each gadget Hu independently.

For the converse, let hT be a homomorphism of f (G, L) to (H9, c). Then, we claim that the restriction of hT to the vertices
of the subgraph G′ of f (G, L) is a list homomorphism of G to C6 with list function L. Indeed, let u′ be a vertex of G′. If Hu has
one vertex (say a Red vertex), then L(u) = {1}. Then necessarily u′ is sent to a neighbour of a vertex coloured Red in (H9, c).
Since the only such neighbour is vertex 1, u′

∈ hT (u). All the other cases follow from similar considerations. □

6. Trees

We now consider the complexity of tropical homomorphism problems when the target tropical graph is a tropical tree. It
follows from the results in Section 4 that for every tree T of order at most 10, T -Tropical-Colouring is polynomial-time
solvable. Indeed, such a tree needs to contain a minimal tree T of order at most 10 for which T -List-Colouring is NP-
complete, and the only such tree is G1, which has order 10 [17]. We proved in Theorem 4.1 that G1-Tropical-Colouring
is polynomial-time solvable. With some efforts, one can extend this to trees of order at most 11. The proof is tedious and we
omit it here, see [21] for details.

Theorem 6.1. For every tree T of order at most 11, T -Tropical-Colouring is polynomial-time solvable.

Let T23 be the tree of order 23 shown in Fig. 8.

Theorem 6.2. T23-Tropical-Colouring is NP-complete.

Proof. We give a reduction from 3-SAT to (T23, c)-Colouring, where c is the colouring of Fig. 8. Given an instance (X, C) of
3-SAT, we construct an instance f (X, C) = (GX,C , cX,C ) of (T23, c)-Colouring.

To construct the graph GX,C , we first define the following building blocks. See Fig. 9 for illustrations.

• The block S1,2 is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7} where a BlackCross leaf
is attached to vertices x1 and x7, a RedDot leaf is attached to vertices x2 and x6, and a GreenDot leaf is attached to vertex
x4.
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Fig. 8. The 7-tropical tree (T23, c).

(a) The blocks S1,2 , S1,T and S2,T .

(b) The variable gadget of x, essentially a NOT-block. (c) The A-block and its representation as an arrow.

Fig. 9. The building blocks of GX,C .

• The block S1,T is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7} where a BlackCross leaf
is attached to vertices x1 and x7, a RedDot leaf is attached to vertices x2 and x6, and a RedCross leaf is attached to vertex
x4.

• The block S1,T is a graph built from a 7-vertex black-coloured path with vertex set {x1, . . . , x7} where a BlackCross leaf
is attached to vertices x1 and x7, a GreenDot leaf is attached to vertices x2 and x6, and a GreenCross leaf is attached to
vertex x4.

• The NOT-block is depicted in Fig. 9b.
• The A-block is depicted in Fig. 9c.

Illustrations of these blocks can be found in Fig. 9.
We now define gadgets for each variable of X and each clause of C . The graph GX,C is formed by the set of all variable and

clause gadgets.

• For a variable x ∈ X , the variable gadget of x consists of the four vertices x0, x1, x̄0 and x̄1, coloured respectively BlackDot,
BlackCross, BlackDot and BlackCross, joined by a NOT-block as described in Fig. 9b. The image of x0 and x1 in (T23, c)
correspond to the truth-value of the litteral x. Similarly, the image of x̄0 and x̄1 correspond to the truth-value of the
litteral x̄. For a litteral l, we use the notation l0 (resp. l1) to describe either x0 (resp. x1) when l = x with x ∈ X , or x̄0

(resp. x̄1) when l = x̄with x ∈ X .
• For each clause c = (l1, l2, l3) ∈ C , there is a clause gadget of c (as drawn in Fig. 10) connecting vertices l01, l

0
2 and l03.

We now show that GX,C → (T23, c) if and only if (X, C) is satisfiable.
Assume first that there is a homomorphism h of GX,C to (T23, c). We first prove some properties of h.
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Fig. 10. Example of a clause gadget of clause (l1, l2, l3). The full details of the A-blocks and S1,2-blocks are represented in Fig. 9.

Claim 6.3. The homomorphism h satisfies the following properties.

(1) For each literal l of a variable of X, vertices l0 and l1 are mapped to the two vertices of one of the pairs T , F1 or F2. The same
holds for the extremities of the blocks S1,2, S1,T , S2,T and A.

(2) The two extremities of each block S1,2 are both mapped either to the vertices of T , or to vertices of F1 ∪ F2.
(3) The two extremities of each block S1,T are both mapped either to the vertices of F2, or to vertices of F1 ∪ T .
(4) The two extremities of each block S2,T are both mapped either to the vertices of F1, or to vertices of F2 ∪ T .
(5) For each variable x of X, exactly one of x0 and x̄0 is mapped to a vertex of T , and the other is mapped to a vertex of F1 or F2.
(6) In any A-block, either some extremity is mapped to T (then the other extremity can be mapped to any of F1, F2 or T ), or the

left extremity is mapped to F2 and the right extremity, to F1.

Proof of claim. (1) This is immediate since the only pairs in (T23, c) consisting of two adjacent BlackDot and BlackCross
vertices are the ones of T , F1 and F2.

(2)–(4) We only prove (2), since the three proofs are not difficult and similar. By (1), the extremities of S1,2 are mapped
to vertices of T ∪ F1 ∪ F2. If one extremity is mapped to T , the remainder of the mapping is forced and the claim follows. If
one extremity is mapped to F1 ∪ F2, one can easily complete it to a mapping where the other extremity is mapped to either
F1 or F2.

(5) By (1), x0 and x̄0 must bemapped to a vertex of T∪F1∪F2.Without loss of generality,we can assume that x0 corresponds
to the left extremity of the NOT-block Nx connecting x0 and x̄0. First assume that x0 and x̄0 are mapped to the vertex of T
coloured BlackDot. Then, considering the vertices ofNx from left to right, themapping is forced and the degree 3-vertex ofNx
at distance 2 both of a RedDot and a RedCross vertexmust bemapped to the vertex c of T23. But then, continuing towards the
right ofNx, x̄0 cannot bemapped to a vertex of T . Therefore, wemay assume that both x0 and x̄0 aremapped to the BlackCross
vertices of F1 ∪ F2. If x0 is mapped to the BlackCross vertex in F1, then again going through Nx from left to right the mapping
is forced; the central vertex of Nx must be mapped to a vertex of F2, and x̄0 must be mapped to a vertex of T , a contradiction.
The same applied when x0 is mapped to the BlackCross vertex in F2, completing the proof of (5).

(6) An A-block is composed of two parts: the upper part and the lower part. Observe that if the left extremity of an A-block
is mapped to F1, then using (2) and (4), the mapping of the upper part of the A-block is forced and the right extremity has to
be mapped to T . Similarly, if the left extremity is mapped to F2, by (2) and (3) the right extremity cannot be mapped to F2.
On the other hand, for all other combinations of mapping the extremities to T , F1 or F2 the mapping can be extended. □

We are ready to show how to construct the truth assignment A(h). If h(l0) ∈ T for some literal l, we let l be True and if
h(l0) ∈ F1 ∪ F2, we let l be False. By Claim 6.3(5), this is a consistent truth assignment for X . For any clause c = (l1, l2, l3), in
the clause gadget of c , we have three A-blocks forming a directed triangle. Hence, by Claim 6.3(6), there must be one of the
three extremities of this triangle mapped to a vertex of T . Therefore, by Claim 6.3(2), at least one of the vertices l01, l

0
2 and l03

is mapped to T . This shows that A(h) satisfies the formula (X, C).
Reciprocally, if there is a solution for (X, C), one can build a homomorphism of GX,C to (T23, c) bymapping, for each literal

l, the vertices l0 and l1 to one of the vertex pairs F1, F2 and T of (T23, c) corresponding to the truth value of l (if l is False, we
may choose one of F1 and F2 arbitrarily). Then using Claim 6.3 one can easily complete this to a valid mapping. □

7. Conclusion

We have shown that the class of (H, c)-Colouring problems has a very rich structure, since they fall into the classes of
CSPs for which a dichotomy theoremwould imply the truth of the Feder–Vardi Dichotomy Conjecture. Hence, we turned our
attention to the class of H-Tropical-Colouring problems, for which a dichotomy theoremmight exist. Despite some initial
results in this direction, we have not been able to exhibit such a dichotomy, and leave this as the major open problem in this
paper.

Towards a solution to this problem, we propose a simpler question. All bipartite graphs H that we know with problem
H-Tropical-Colouring being NP-complete contain, as an induced subgraph, either an even cycle of length at least 6 (for
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example cycles themselves or H9), or the graph G1, that is, a claw with each edge subdivided twice (this is the case for T23).
Hence, we ask the following. (A bipartite graph is chordal if it contains no induced cycle of length at least 6.)

Question 7.1. Is it true that for any chordal bipartite graph H with no induced copy of G1, H-Tropical-Colouring is polynomial-
time solvable?

Note that Question 7.1 is not an attempt at giving an exact classification, since G1-Tropical-Colouring and C2k-Tropical-
Colouring for k ≤ 6 are polynomial-time solvable.

Another interesting question would be to consider the restriction of H-Tropical-Colouring to 2-tropical graphs. Recall
that by Remark 4.8(2), one can slightly modify the gadgets from Theorem 4.4 and the colouring of the cycle, to obtain a
2-colouring c of C54 such that (C54, c)-Colouring is NP-complete.

Finally, we relate our work to the (H, h, Y )-Factoring problem studied in [10] and mentioned in the introduction. Recall
that (H, c)-Colouring corresponds to (H, c, K+

|C |
)-Factoring where K+

|C |
is the complete graph on |C | vertices with all loops,

andwithC the set of colours used by c. In [10], the authors studied (H, h, Y )-Factoringwhen Y has no loops. Using reductions
from NP-complete D-Colouring problems where D is an oriented even cycle or an oriented tree, they proved that for any
fixed graph Y which is not a path on atmost four vertices, there is an even cycle C and a tree T such that (C, hC , Y )-Factoring
and (T , hT , Y )-Factoring are NP-complete (for some suitable homomorphisms hC and hT ). Note that C and T here are fairly
large. We can strengthen these results as follows. Consider our reduction of Theorem 4.4 showing in particular that C48-
Tropical-Colouring is NP-complete. As noted in Remark 4.8(1), the given colouring c of C48 can easily be made a proper
colouring by separating the red vertices into two classes, according to which part of the bipartition of C48 they belong to.
Then, one can observe that c is in fact a homomorphism to a tree T1 obtained from a clawwhere one edge is subdivided once
(the three vertices of degree 1 are coloured Blue, Black and Green, and the two other vertices are the two kinds of Red). Thus,
for any graph Y containing this subdivided claw as a subgraph, we deduce that (C48, c1|T1 , Y )-Factoring is NP-complete.
We can use a similar approach for our result of Theorem 6.2, that T23-Tropical-Colouring is NP-complete. Note that the
colouring c2 we give is in fact a homomorphism to a tree T2 which is obtained from a star with five branches by subdividing
one edge once. Thus, for any graph Y containing T2 as a subgraph, (T23, c2|T2 , Y )-Factoring is NP-complete. Of course we can
apply this argument by replacing T1 and T2 by the underlying graph of any loop-free homomorphic image of (C48, c1) and
(T23, c2), respectively.
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