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Abstract. The metric dimension of a graph is the minimum size of a set of vertices such that
each vertex is uniquely determined by the distances to the vertices of that set. Our aim is to upper-
bound the order n of a graph in terms of its diameter d and metric dimension k. In general, the bound
n ≤ dk + k is known to hold. We prove a bound of the form n = O(kd2) for trees and outerplanar
graphs (for trees we determine the best possible bound and the corresponding extremal examples).
More generally, for graphs having a tree decomposition of width w and length `, we obtain a bound
of the form n = O(kd2(2` + 1)3w+1). This implies in particular that n = O(kdO(1)) for graphs of
constant treewidth and n = O(f(k)d2) for chordal graphs, where f is a doubly exponential function.
Using the notion of distance-VC dimension (introduced in 2014 by Bousquet and Thomassé) as a
tool, we prove the bounds n ≤ (dk+1)t−1 +1 for Kt-minor-free graphs and n ≤ (dk+1)d(3·2

r+2) +1
for graphs of rankwidth at most r.
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1. Introduction. A resolving set of a graph is a set of vertices that uniquely
determines each vertex by means of the ordered set of distances to the vertices in the
resolving set. The metric dimension of the graph is the smallest size of a resolving
set. These concepts, introduced independently by Slater [29] (who called resolving
sets locating sets) and by Harary and Melter [19], have been widely studied since
then; see, for example, the papers [2, 5, 12, 20, 21, 26]. More generally, they fit
into the topic of identification or separation problems in discrete structures, such as
separating systems, distinguishing sets, and related concepts (for a few references,
see [7, 8, 11, 22]). These concepts have many applications and connections to other
areas. For example, the metric dimension can be applied to network discovery [4,
3], robot navigation [21], coin-weighing problems [26], T -joins [26], the Mastermind
game [13], or chemistry [12].

The goal of this paper is to study the relation between the order, the diameter,
and the metric dimension of graphs, in particular for graphs belonging to specific
graph classes.

Important concepts and definitions. All considered graphs are finite and
simple. We will denote by N [v] the closed neighborhood of vertex v and by N(v) its
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BOUNDING THE ORDER OF A GRAPH 903

open neighborhood N [v] \ {v}. Let dG(u, v), or simply d(u, v) if there is no ambiguity,
denote the distance between two vertices u and v in graph G. Similarly, for two sets
X and Y of vertices of G, dG(X,Y ) denotes the shortest distance between a vertex
of X and a vertex of Y .

Definition 1. A set R of vertices of a graph G is a resolving set if for each pair
u, v of distinct vertices, there is a vertex x of R with d(x, u) 6= d(x, v). The smallest
size of a resolving set of G is the metric dimension of G.

A graph is said to be chordal if it has no induced cycle of length at least 4. A
graph is planar if it has an embedding in the plane that induces no edge-crossing. It
is outerplanar if it is planar and has an embedding in the plane where each vertex lies
on the outer face. A minor of a graph is a graph obtained by a succession of vertex-
and edge-deletions and edge-contractions. We say that a graph G is H-minor-free if
H is not a minor of G. By the Graph Minor Theorem [24], any minor-closed class
of graphs (such as the classes of planar graphs, outerplanar graphs, or graphs with
treewidth at most w) is defined by a finite set of forbidden minors.

Previous work. One can easily observe that in a graph G of diameter d and
with metric dimension k and n vertices, we have the bound n ≤ dk + k [12, 21].
Indeed, given a resolving set R of size k, every vertex outside of R can be associated
to a distinct vector of length k and values ranging from 1 to d. This trivial bound,
however, is only tight for d ≤ 3 or k = 1 [20]. Nevertheless, the more precise (and

tight) bound n ≤ (b2d/3c+ 1)
k

+ k
∑dd/3e
i=1 (2i − 1)k−1 is given in [20]. It is natural

to ask for which kind of graphs a bound of this form is tight. We therefore wish to
study the following problem.

Problem 1. Given a graph class C, determine the largest possible order of a graph
in C having metric dimension k and diameter d.

This problem was considered by the third and fifth authors, together with Mertzios,
Naserasr, and Valicov [17]. These authors studied interval graphs and permutation
graphs and proved bounds of the form n = O(dk2). These bounds were shown to be
best possible (up to constant factors). In the case of unit interval graphs, bipartite
permutation graphs, and cographs, it was proved in the same paper that n = O(dk).

Surprisingly, the above problem seems to have not been studied even for trees,
despite the fact that the metric dimension of trees is well understood (see [12, 21, 29]).
In this paper, we answer this question. We extend our result for trees in two ways.
First, we give bounds involving the length and width of a tree decomposition of the
graph. Second, we study graphs that have bounded distance-VC dimension. (These
notions will be defined in the corresponding sections of the paper.)

As further recent work related to this paper, we remark that the metric dimen-
sion of t-trees has recently been investigated in [5], and the treelength of a graph has
recently been used to design algorithms to compute the metric dimension [6]. Al-
gorithms and complexity results regarding the computation of the metric dimension
of graphs belonging to graph classes considered in the present paper can be found
in [14, 16, 18].

Our results and structure of the paper. In the first part of the paper,
section 2, we study trees and generalize our method using the tool of tree decompo-
sitions. We start in section 2.1 by an exact bound of the form n = ( 1

8 + o(1))d2k for
trees of order n, metric dimension k, and diameter d, and we characterize the trees
reaching our bound. We then show in section 2.2 that a graph with a tree decom-
position of width w and length ` satisfies n = O(kd2(2` + 1)3w+1). This implies the
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904 BEAUDOU ET AL.

bound n = O(k23wd3w+3) for graphs of treewidth at most w and n = O(kd233ω−2)
for chordal graphs with maximum clique ω.

The second part of the paper, section 3, is devoted to the use of the distance-VC
dimension. We first show (using the notion of test covers) how the VC dimension of
the ball hypergraph of a graph can be used to derive a general bound on the order
using the diameter and the metric dimension. We then bound the dual distance-VC
dimension of Kt-minor-free graphs and graphs of rankwidth at most r, which implies
the bounds n ≤ (dk+1)t−1+1 and n ≤ (dk+1)d(3·2

r+2)+1, respectively. In particular,
this shows that for planar graphs, we have n ≤ (dk + 1)4; this partially answers an
open question from [17]. We then use a completely different method in section 3.4 to
prove that n = O(kd2) for outerplanar graphs, which we show to be tight.

Finally, we conclude in section 4 with some open questions.

2. Trees and graphs with specific tree decompositions. We first study
Problem 1 for graphs admitting specific types of tree decompositions. We start with
trees, which form the class of nontrivial graphs that is the simplest (with respect to
tree decompositions).

2.1. Trees. We first give the constructions of some extremal trees. See Figure 1
for illustrations.

For r ∈ N, let Lr be the rooted tree obtained from a path v0, v1, . . . , vr rooted at
v0 by attaching a path of length r − i to vertex vi for i = 1, 2, . . . , r − 1. Denote a
path of length r rooted at one of its end vertices by P ∗r . Let k ∈ N with k ≥ 2.

For even d ∈ N, we define the hairy spider HSd,k as the tree obtained from k
disjoint copies of Ld/2 and a path P ∗d/2 by identifying their roots to a vertex v. For
odd d ∈ N with d ≥ 3 and for a ∈ N with 0 ≤ a ≤ k, we define HSd,k,a as the tree
obtained from k disjoint copies of L(d−1)/2, two copies of P ∗(d−1)/2, and a path on two
vertices, u and w, by identifying the roots of a copies of L(d−1)/2 and of one copy of
P ∗(d−1)/2 with u and the roots of the remaining k − a copies of L(d−1)/2 and the root
of the other copy of P ∗(d−1)/2 with w.

Theorem 2. Let T be a tree of diameter d and metric dimension k, where k ≥ 2.
Then

|V (T )| ≤
{

1
8 (kd+ 4)(d+ 2) if d is even,

1
8 (kd− k + 8)(d+ 1) if d is odd.

v0

v1

v2

v3

v4

(a) The tree L4.

v

(b) The hairy spider HS6,2.

u w

(c) The hairy spider HS7,2,1.

Fig. 1. Extremal trees. Black vertices form optimal resolving sets.
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BOUNDING THE ORDER OF A GRAPH 905

Equality holds for even d if and only if T = HSd,k and for odd d if and only if
T = HSd,k,a for some integer a with 0 < a < k.

Proof. Let S = {x1, x2, . . . , xk} be a resolving set for T . Let C be the set of
central vertices of T , that is, the set of vertices of T that minimize the maximum
distance to all the other vertices of the tree. For i = 1, 2, . . . , k, let Pi be the shortest
path from C to xi. Let r = maxv∈V (T ) dT (v, C), so if d is even, then r = d/2 and r
is the radius of T , and if d is odd, then r = (d− 1)/2 since for odd d every vertex is
within distance (d− 1)/2 of the nearest central vertex of T . Define the subtree TS of
T by

(1) TS = T [C] ∪
k⋃
i=1

Pi.

For v ∈ V (TS), we define Tv to be the largest subtree of T containing v and no other
vertex of TS . In other words, Tv is the union of all branches of T at v not containing
any edge of TS . Possibly, Tv = K1. We first show that for every vertex v of TS ,

(2) Tv is a path with v as an end-vertex.

We first show that v is an end-vertex (that is, a leaf) of Tv. Indeed, if v had two
neighbors in Tv, then they would have the same distance to every vertex in S, and so
S would not resolve them, a contradiction. The same argument shows that no vertex
of Tv has degree greater than two. This shows (2).

Hence, T is obtained from TS by appending a path on |V (Tv)| − 1 vertices to v for all
v ∈ V (TS). We now bound the length of this path by showing that

(3) |V (Tv)| ≤ r − dT (v, C) + 1.

Let v′ be the end-vertex of Tv with v′ 6= v. Then dT (v′, v) = |V (Tv)| − 1. Hence,

r ≥ dT (v′, C) = dT (v′, v) + dT (v, C) = |V (Tv)| − 1 + dT (v, C),

and (3) follows.
From (1), we obtain

n =
∑

v∈V (TS)

|V (Tv)|

≤
∑
v∈C
|V (Tv)|+

k∑
i=1

∑
w∈V (Pi)−C

|V (Tw)|.(4)

By (3), we have |V (Tv)| ≤ r + 1 for all v ∈ C. The vertices of Pi are at distance
0, 1, . . . , `i from C in T , where `i is the length of Pi. Hence, by (3) and `i ≤ r, we get

(5)
∑

w∈V (Pi)−C

|V (Tw)| ≤
`i∑
j=1

(r − j + 1) ≤
r∑
j=1

(r − j + 1) =
1

2
r(r + 1).

In total, we obtain

(6) n ≤ |C|(r + 1) +
k

2
r(r + 1).
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906 BEAUDOU ET AL.

If d is even, then r = d
2 and C contains only one vertex. Hence,

n ≤ (r + 1) +
k

2
r(r + 1) =

kr + 2

2
(r + 1) =

(kd+ 4)(d+ 2)

8
,

and the desired bound follows in this case. If d is odd, then r = d−1
2 and C contains

exactly two vertices. Hence,

n ≤ 2(r + 1) +
k

2
r(r + 1) =

kr + 4

2
(r + 1) =

(kd− k + 8)(d+ 1)

8
,

and the desired bound follows also in this case.
Now assume that T is a tree of diameter d and metric dimension k attaining

the bound. Then equality holds also in (6) in (4)–(5). So the paths Pi share no
vertices other than central vertices, and each path has length r. Moreover, equality
in (5) implies that for the vertices v of Pi, the trees Tv have order 2, 3, . . . , r − 1,
respectively, for each i. Equality in (6) implies also that for each central vertex v, the
tree Tv has r + 1 vertices. In total, it follows that T = HSd,k if d is even and that,
if d is odd, T = HSd,k,a for some a ∈ {0, 1, . . . , k}. It is easy to see that the trees
HSd,k,0 and HSd,k,k have metric dimension k + 1, so we conclude that T = HSd,k,a
for some a ∈ {1, 2, . . . , k − 1}.

2.2. Using tree decompositions. We now generalize our result for trees to
graphs with tree decompositions of given width and length. These results also gener-
alize results of [17] for interval graphs and permutation graphs (which have treelength
at most 1 and 2, respectively [6]).

We first recall the definition of tree decomposition introduced by Robertson and
Seymour [23]. We shall copy the definition given by Dourisboure and Gavoille [15],
which is slightly lighter in terms of indices.

Definition 3 (tree decomposition [15]). Let G be a graph. A tree decomposition
of G is a tree T whose vertices, called bags, are subsets of V (G) such that the following
properties are satisfied:

(P1)
⋃
X∈V (T )X = V (G);

(P2) for every edge e of G, there exists X in V (T ) such that both ends of e are in
X;

(P3) for X,Y , and Z in V (T ), if Y lies on the path in T from X to Z, then
X ∩ Z ⊆ Y .

As mentioned in [15], property (P3) of Definition 3 implies that, for any vertex
x in V (G), the set of bags containing x induces a subtree of T . The classic width
parameter of a tree decomposition is defined as max{|X| − 1 : X ∈ V (T )}. For any
bag X in V (T ), the diameter of X is the maximum distance dG(x, y) over every pair
of vertices x and y in X. (Note that here the distance is taken in G and not in G[X].)
The length of a tree decomposition is the largest diameter of a bag over every bag X
in V (T ) [15]. The treewidth (resp., treelength) of a graph G is the minimum width
(resp., length) among all tree decompositions of G.

A tree decomposition is reduced if no bag is a subset of another bag. One may
easily check that any tree decomposition can be turned into a reduced tree decom-
position by removing the bags which are not maximal with respect to inclusion and
without altering the width and the length of the decomposition.

A cutset of a graph G is a set of vertices in G whose removal increases the number
of components. We shall prove the following theorem.
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BOUNDING THE ORDER OF A GRAPH 907

Theorem 4. Let G be a graph of order n and diameter d. Let T be a reduced
tree decomposition of G of length ` and width w. If there is a resolving set of size k
in G, then

n = O(kd2(2`+ 1)3w+1).

Proof. Let G be a graph of diameter d with a resolving set S of size k. Let T be
a tree decomposition of G with length ` and width w. The following claim is easily
derived from the definition of a tree decomposition.

Claim 4.A. Every bag X which is not a leaf in T is a cutset for G.

For an easier reading of the following proofs, let us pick an arbitrary root Xr for
T . For any bag X in V (T ), we define the subtree T (X) as the subtree of T induced
by X and all its descendants.

Claim 4.B. Let X be a bag in V (T ) such that for every bag Y in T (X), the set
Y ∩ S is included in X. Let A be the set defined as

A =
⋃

Y ∈V (T (X))

Y.

Then

|A| ≤ (d+ 1)(2`+ 1)w.

Proof of claim. For any vertex x in A, every path from x to an element of S has to
go through X (this is implied by Claim 4.A). Therefore, the distances from x to the
vertices of S are completely determined by the distances from x to the vertices of X.
Since S is a resolving set, the vertices in A must all have a different distance vector
to X. By taking a specific vertex of X as a pin point, the distance from x to this
pin is at most d, and all other distances can only differ from this distance by at most
`. There are at most w other vertices in X. Thus, the number of possible vectors is
smaller than or equal to

(d+ 1)(2`+ 1)w,

concluding the proof of Claim 4.B.

For each vertex v, we call the bag in T that contains v and is at minimum
distance from the root Xr of T the oldest bag in T containing v. We note that such a
bag is uniquely defined because of the subtree structure and the properties of a tree
decomposition T . For every vertex s in the resolving set S, we denote the oldest bag
in T containing s by Xs, and we call it the ancestor of s in T .

Let TS be the subtree of T obtained by only considering the ancestors of all s in
S and the paths from them to the root Xr. Any leaf of TS is the ancestor of some s
in S. As a direct consequence, TS has at most k leaves. A thread in a graph G is a
path all whose inner vertices have degree 2 in G.

Claim 4.C. Let P be a thread of length L in TS. Let X0 and Xl be the bags at
both ends of P . Suppose that for every inner vertex X of P , the set X ∩S is included
in X0 ∪XL. Then

L ≤ (`+ 1)(2`+ 1)2w+1 [dG(X0, Xl) + 1] .

Proof of claim. Let λ be the distance in G between the sets X0 and XL. Let
x0x1 · · ·xλ be a shortest path in G between X0 and XL (x0 is in X0, and xλ is in
XL). Note that every edge along the path x0x1 · · ·xλ must be in one of the bags
along P .
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If x is in Xi and Xi+t for some i, j along the thread, then it is in all the bags in
between Xi and Xi+t (by the connectivity condition). Notice that every path between

a vertex in
⋃i+t
z=iXz and a vertex in S has to go through Xi or Xi+t. This means that

all vertices in
⋃i+t
z=iXz must have different distance vectors to Xi ∪Xi+t.

These distances are bounded above by 2` since x is in all the bags along this
thread. The distance to x is at most `. There are at most 2w vertices different from
x in Xi ∪Xi+t. We may conclude that∣∣∣∣∣

i+t⋃
z=i

Xz

∣∣∣∣∣ ≤ (`+ 1)(2`+ 1)2w.

Since the tree decomposition is reduced, every bag Xi must contain a vertex which
is not in any Xj for j between 0 and i − 1. We derive that the number of bags is
smaller than the number of vertices:

k + 1 ≤ (`+ 1)(2`+ 1)2w.(7)

In other words, vertices cannot be in too many bags along the thread.
Now, we shall prove that L cannot be too big with respect to λ. For this, let us

denote by iq the largest index of a bag containing xq for q between 0 and λ:

iq = max{i : xq ∈ Xi}.

With the help of (7), we may say that

i0 ≤ (`+ 1)(2`+ 1)2w.

Since xqxq+1 is an edge, vertex xq+1 has to appear in a bag before index iq. By using
(7) successively, we obtain

iq ≤ (q + 1)(`+ 1)(2`+ 1)2w.

Substituting q with λ in the previous equation and noting that iλ = L, we obtain
that

L ≤ (λ+ 1)(`+ 1)(2`+ 1)2w.

Since λ = distG(X0, XL), this concludes the proof of Claim 4.C.

Let us now focus on TS . Recall that its leaves are a subset of the ancestors of
vertices of S. Let A be the set of ancestors and I be the set of inner vertices of degree
at least 3 in TS (note that I has cardinality at most k − 1 since TS has at most k
leaves). We decompose TS into (not necessarily disjoint) threads as follows. From
any vertex X in A ∪ I, consider the thread to the closest vertex that is either in I or
in A on the unique path from X to the root Xr. Each of these threads satisfies the
conditions of Claim 4.C and thus has size bounded above by (d+ 1)(`+ 1)(2`+ 1)2w.
Moreover, we have at most |A|+ |I| such threads, and |A|+ |I| is at most 2k− 1. We
can then conclude that

|V (TS)| ≤ (2k − 1)(d+ 1)(`+ 1)(2`+ 1)2w.

For each bag X in TS , we may have removed from T a part of the subtree T (X)
verifying the hypothesis of Claim 4.B. In the end, the union of all the bags cannot be
too large. We then obtain the following upper bound on the order of G:
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|V (G)| ≤ |V (TS)| (d+ 1)(2`+ 1)w

≤ (2k − 1)(d+ 1)(`+ 1)(2`+ 1)2w(d+ 1)(2`+ 1)w

= O(kd2(2`+ 1)3w+1).

This concludes the proof of Theorem 4.

We immediately obtain some corollaries of Theorem 4. The first one is due to the
fact that the treelength is trivially upper-bounded by the diameter; for graphs with
constant treewidth, it implies the upper bound n = O(kdO(1)).

Corollary 5. Let G be a graph of treewidth at most w, diameter d, and a re-
solving set of size k. Then

n = O(k23wd3w+3).

In particular, if G is K4-minor-free, then

n = O(kd9).

We have another corollary for chordal graphs, based on the following observation
and on the fact that chordal graphs have treelength 1 [15].

Observation 6. If G is a chordal graph of treewidth w and with a resolving set of
size k, then w ≤ 3k.

Proof. Let v be a vertex of G, and let x ∈ N [v]. For any vertex s in a resolving
set of size k of G, there are at most three possible distance values for the distance
d(x, s) since any two vertices in N [v] are at distance at most 2. Thus, there can be
at most 3k vertices in N [v], which proves that ∆(G) ≤ 3k. Now, a chordal graph of
treewidth w must have a clique of size w + 1 (indeed, it is well known that in any
optimal tree decomposition of a chordal graph, each bag forms a clique); thus, we
have w ≤ ∆(G).

Corollary 7. If G is a chordal graph with diameter d, treewidth w, and a re-
solving set of size k, then

n = O(kd233w+1).

Moreover,

n = O(d222
O(k)

).

We do not know whether the bounds presented in this section are tight. We note
that for interval graphs, which are chordal, it is known that a bound of the form
n = O(dk2) holds, and there are interval graphs for which n = Θ(dk2) [17]. By
Theorem 2, there are trees that satisfy n = Θ(d2k).

3. Graphs of bounded distance-VC dimension. Let H = (V, E) be a hy-
pergraph. A test cover of H is a set of edges C such that each vertex is covered by
some edge of C and for any pair x,y of vertices there is an edge of C containing exactly
one vertex among {x, y}. We denote by TC(H) the minimum size of a test cover of
H. A hypergraph is twin-free if for any two distinct vertices, there is at least one
hyperedge containing exactly one of them. One can easily check that a hypergraph
admits a test cover if and only if it is twin-free. The projection of H on a set X of
vertices is defined as H|X := {e ∩X : e ∈ E}. A set of vertices X is shattered in H if

|H|X | = 2|X|. The maximum size of a shattered set in H is the VC dimension of H,
denoted by vc(H).
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910 BEAUDOU ET AL.

A 2-shattered set in a hypergraph H is a set X such that for all X ′ ⊂ X of
size 2, there is a hyperedge e such that e∩X = X ′. The 2-VC dimension of H is the
maximum size of a 2-shattered set in H. Clealry, the 2-VC dimension of H is at least
as large as its VC dimension.

The dual hypergraph of a hypergraph H is denoted H∗: It is the hypergrah whose
vertices are the hyperedges of H, and vice versa, and where the incidence relation is
the same as in H. The dual VC dimension of H is the VC dimension of the dual and
is denoted by vc∗(H). We always have the following inequalities [1]:

log(vc∗(H)) ≤ vc(H) ≤ 2vc
∗(H).

The following standard lemma is crucial in the study of the VC dimension.

Lemma 8 (Sauer–Shelah lemma [25, 27]). If H = (V, E) is a hypergraph and X
is a subset of vertices, then |H|X | ≤ |X|vc(H) + 1.

3.1. A dichotomy theorem for test covers and VC dimension. If G is
a graph, one can define the closed neighborhood hypergraph H1(G) of G that has
vertex set V (G) and edge set the set of closed neighborhoods of vertices of G. An
identifying code of G is a test cover of H1(G), and the VC dimension of G is often
defined as the VC dimension of H1(G). A graph G is twin-free if H1(G) is twin-free.
In [9], the VC dimension and identifying codes are related by the following dichotomy
result.

Theorem 9 [9]. For every hereditary class of graphs C, either
1. for every k ∈ N, there exists a graph Gk ∈ C with more than 2k − 1 vertices

and an identifying code of size 2k, or
2. there exists ε > 0 such that no twin-free graph G ∈ C with n vertices has an

identifying code of size smaller than nε.

We show next that Theorem 9 can be extended to test covers.

Proposition 10. If H is a twin-free hypergraph, then

|V | ≤ (TC(H))vc
∗(H) + 1.

Proof. Let H∗ be the dual hypergraph of H. Let C be a test cover of H of
size TC(H). We have |H∗|C | = |V | since otherwise two vertices of V would belong

to the same set of edges of C. Then by Lemma 8, we have |H∗|C | ≤ |C|
vc(H∗) =

TC(H)vc
∗(H) + 1. Therefore, |V | ≤ TC(H)vc

∗(H) + 1.

We can also prove the converse.

Proposition 11. Let C be a class of hypergraphs that is stable by taking projec-
tions. If C has unbounded dual VC dimension, then for any integer k, there exists a
hypergraph H in C with 2k − 1 vertices and a test cover of size k.

Proof. Notice first that for any k, C contains a hypergraph with dual VC dimen-
sion exactly k. Indeed, assume that H is the hypergraph of C with the smallest dual
VC dimension k′ larger or equal to k. Then let A be a shattered set of hyperedges
of size k′. Let X be a set of vertices that shatters A (that is, for each subset of
hyperedges of A, there is a unique vertex of X belonging to this subset). Remove one
vertex x of X, and let H′ = H|X−x. Then H′ belongs to C and vc∗(H′) = k′ − 1.
Thus, by our assumptions, k′ = k.

Now consider a hypergraph of C with dual VC dimension k, and, as before, let A
be a shattered set of size k and X be a set of 2k vertices such that for each subset
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of hyperedges of A, there is exactly one vertex of X that is contained to exactly this
subset of hyperedges. Let x0 be the vertex of X that is contained in no hyperedges,
and consider the hypergraph H induced by X \ {x0}. Notice first that H belongs to
C. By construction, H has 2k − 1 vertices, and the set of hyperedges of A forms a
test cover. Furthermore, any proper subset of hyperedges is not a test cover since the
minimum size of a test cover among 2k − 1 vertices is k.

3.2. Metric dimension, VC dimension, and diameter. In contrast to test
covers, there is no direct relation between the VC dimension of G and its metric di-
mension. Indeed, consider the family of line graphs. Any line graph has VC dimension
at most 4. Nevertheless, there is a line graph with more than 2k vertices, diameter 4,
and metric dimension at most k. Indeed, consider the following graph. Take k disjoint
edges {e1, . . . , ek} and 2k − 1 disjoint edges {e′I , I ⊆ {1, . . . , k}, I 6= ∅} corresponding
to the nonempty subsets of {e1, . . . , ek}. For each edge e′I , add |I| edges between one
endpoint of e′I (always the same one) and all the endpoints of ei for i ∈ I (again,
choose always the same endpoint for ei). Let G be the line graph of this graph. The

graph G has k + 2k − 1 +
∑k
i=1 i

(
k
i

)
vertices and diameter 4. Moreover, the set S

of vertices corresponding to the edges {e1, . . . , ek} forms a resolving set. Indeed, a
vertex corresponding to an edge e′I has distance 2 to ei if i ∈ I and 4 otherwise. A
vertex corresponding to an edge between e′I and ei (with i ∈ I) has distance 1 to ei,
2 to ej when j ∈ I, and 4 otherwise. Therefore, all the edges have unique distance
vector to S.

However, there is such a relation when we consider the distance-VC dimension,
introduced by Bousquet and Thomassé [10]. The distance hypergraph of G is the
hypergraph H(G) with vertex set V and, for all `, all the balls of radius `. The
distance-VC dimension of G, dvc(G), is the VC dimension ofH(G). The dual distance-
VC dimension of G, denoted dvc∗(G), is the VC dimension of H(G)∗. Similarly,
the (dual) 2-distance VC dimension of G is the 2-VC dimension of H(G) (H(G)∗,
respectively.

We first give a relation between test covers in H(G) and the metric dimension
of G.

Proposition 12. If G is a graph of diameter d and metric dimension k, then we
have the following:

TC(H(G))− 1

d
≤ k ≤ TC(H(G)).

Proof. Let T be a test cover of H(G). Then the set of centers of the balls cor-
responding to the hyperedges of T form a resolving set. Indeed, let x, y ∈ V , and
assume without loss of generality that there exists B ∈ T such that x ∈ B and
y /∈ B. Let v be the center of B, and let r be its radius. Then v resolves {x, y} since
d(v, x) ≤ r < d(v, y). This shows that k ≤ TC(H(G)).

Now let R be a resolving set, and let T be the set of balls centered in vertices
of R for all radius from 0 to d − 1 plus any ball with radius d. Then T is a test
cover of H(G)). Indeed, let x, y ∈ V , and let z ∈ R such that d(z, x) 6= d(z, y).
Assume without loss of generality that d(z, x) < d(z, y). Then d(z, x) < d and the
ball centered in z with radius d(z, x) distinguishes x and y. Thus, since any vertex is
covered by the ball of radius d, the test cover T has size d|R|+ 1.

We deduce the following.

Proposition 13. If G is a graph of order n with diameter d and a resolving set
of size k, then

n ≤ (dk + 1)dvc
∗(G) + 1.
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912 BEAUDOU ET AL.

Proof. By Proposition 10, n ≤ (TC(H(G)))dvc
∗(G) + 1. Then, by Proposition 12,

we have TC(H(G)) ≤ kd+ 1.

Proposition 13 is useful when one can bound the dual distance-VC dimension of
a graph. The next proposition gives a relation between dvc and dvc∗.

Proposition 14. If G is a graph of diameter d, then

1

log dvc(G)
(dvc(G)− log d) ≤ dvc∗(G) ≤ d · dvc(G).

Proof. For the first inequality, let k denote dvc(G). Let S be a shattered set of
H(G) of size k. For each subset X of S, there exists a ball B such that B ∩ S = X.
Let B be the set of those balls. Among all the radii used in B, let us consider the

most used `, and let B` be the set of balls of B of radius `. We have |B`| ≥ |B|d ≥
2k

d .
Considering the hypergraph H`(G) formed by all balls of G of radius `, we have

|H`(G)|S | ≥ |B`| ≥ 2k

d , and then, by Lemma 8, 2k

d ≤ kvc(H`(G)), which implies that
k−log(d)
log(k) ≤ vc(H`(G)). Now since H` is isomorphic to its dual, we have k−log(d)

log(k) ≤
vc∗(H`) ≤ vc∗(H(G)) = dvc∗(G).

For the second inequality, let S be a shattered set of H(G)∗ of size dvc∗(G).
Let ` be the most used radius in S, and let S` be the set of balls of S of radius
`. Let H`(G) be the the hypergraph formed by all balls of G of radius `. Notice
that H`(G) is isomorphic to its dual H`(G)∗, and then vc(H`(G)) = vc(H`(G)∗).

Observe now that S` is a shattered set of H`(G)∗, and since |S`| ≥ dvc∗(G)
d , we have

dvc(G) ≥ vc(H`(G)) ≥ dvc∗(G)
d .

Bousquet and Thomass proved that graphs of bounded rankwidth1 and Kt-minor-
free graphs have bounded distance 2-VC dimension (and thus bounded distance-VC
dimension).

Theorem 15 [10]. A Kt-minor-free graph has distance 2-VC dimension at most
t− 1. The distance 2-VC dimension of a graph with rankwidth r is at most 3 · 2r + 2.

Since the distance 2-VC dimension is always larger than the distance-VC dimen-
sion and using Proposition 14, we have the following corollaries of Proposition 13.

Corollary 16. Let G be a graph of order n and diameter d and with a resolving
set of size k. If Kt is not a minor of G, then

n ≤ (dk + 1)d(t−1) + 1.

If G has rankwidth at most r, then

n ≤ (dk + 1)d(3·2
r+2) + 1.

3.3. The dual 2-distance VC dimension and Kt-minor-free graphs. In
this section, we improve the bound of Corollary 16 for Kt-minor-free graphs.

Theorem 17. If G is a Kt-minor-free graph of diameter d and order n with a
resolving set of size k, then n ≤ (dk + 1)t−1 + 1.

To prove Theorem 17, we combine Proposition 13 with the following theorem,
which is a “dual” version of Theorem 15. We denote the length of a path P by `(P ).

1We do not define this concept here since we barely use it and refer the reader to [10] instead.
Note that any graph of bounded treewidth or cliquewidth also has bounded rankwidth.
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Theorem 18. If the dual distance 2-VC dimension of a graph G is at least t,
then Kt is a minor of G.

Proof. To prove Theorem 18, we adapt the proof of [10] for distance 2-VC dimen-
sion to the dual distance 2-VC dimension and prove the following.

Let {(v1, r1), . . . , (vt, rt)} be a 2-shattered set in the dual of H(G). Then, for all
i, j, there exists xij such that

• d(xij , vi) ≤ ri;
• d(xij , vj) ≤ rj ;
• d(xij , vk) > rk if k /∈ {i, j}.

For any such xij , a path formed by a path P between vi and xij and a path P ′

between xij and vj such that `(P ) ≤ ri and `(P ′) ≤ rj is called a good ij-path. For a
path P and two vertices x, y in P , we denote by P [x, y] the subpath of P between x
and y.

Claim 18.A. If i, j, k, l are distinct and Pij, Pkl are two good paths, then Pij ∩
Pkl = ∅.

Proof of claim. Let Pi := Pij [vi, xij ] be the path from vi to xij , and let Pk :=
Pkl[vk, xkl] be the path from vk to xkl. Suppose for contradiction that there exists u ∈
Pij ∩Pkl. Assume without loss of generality that u ∈ Pi ∩Pk and that `(Pk[u, xkl]) ≤
`(Pi[u, xij ]). Then, since `(Pi) = `(Pi[vi, u]) + `(Pi[u, xij ]) ≤ ri, we have d(vi, xkl) ≤
`(Pi[vi, u]) + `(Pi[u, xkl]) ≤ ri, which is a contradiction.

Claim 18.B. If i, j, k are distinct and Pij, Pik are two good paths that intersect
in z, then xij and xik cannot both be in the part of Pij (resp., Pik) that is between vi
and z. Hence, at least one of xij ∈ Pij [z, vj ] or xik ∈ Pik[z, vk] is true.

Proof of claim. Suppose, to the contrary, that both xij and xik are between z and
vi, and assume without loss of generality that `(Pij [z, xij ]) ≤ `(Pik[z, xik]). Then we
have

d(vk, xij) ≤ `(Pik[vk, z]) + `(Pij [z, xij ])

≤ `(Pik[vk, z]) + `(Pik[z, xik]) = `(Pik[vk, xik]) ≤ rk,

contradicting the fact that d(vk, xij) > rk.

Claim 18.C. If i, j, k are distinct and Pij, Pik and Pjk are three good paths,
then Pij ∩ Pik ∩ Pjk = ∅.

Proof of claim. Let z ∈ Pij ∩ Pik ∩ Pjk. Assume without loss of generality that

`(Pij [z, xij ]) = min(`(Pij [z, xij ]), `(Pik[z, xik]), `(Pjk[z, xjk])).

Assume furthermore that xij ∈ Pij [vi, z]. By Claim 18.B, xik ∈ Pik[z, vk] and xjk ∈
Pjk[z, vj ]. Now we have

d(vk, xij) ≤ `(Pjk[vk, z]) + `(Pij [z, xij ])

≤ `(Pjk[vk, z]) + `(Pjk[z, xjk]) = `(Pjk[vk, xjk]) ≤ rk,

contradicting the fact that d(vk, xij) > rk.

For all x ∈ V , we give label i to x if there exists two good paths Pij and Pik that
intersect in x. Note that vi has label i.
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Claim 18.D. For all x ∈ V , x has at most one label.

Proof of claim. Let Pij and Pkl be two good paths containing x. By Claim 18.A,
we have {i, j} ∩ {l, k} 6= ∅. Assume without loss of generality that i = k. Assume
now that there exists a third good path Pmn containing x. We show that i ∈ {m,n}.
Suppose, to the contrary, that i 6= m and i 6= n. Since x ∈ Pij ∩Pmn, by Claim 18.A,
either m = j or n = j (say m = j). Now since x ∈ Pil ∩ Pmn, we have that n = l.
But then x ∈ Pij ∩Pil∩Pjl, which is in contradiction with Claim 18.C. So every good
path containing x is a good path from vi, and then x has only label i.

Let Ci be the set of vertices that are labeled i. Since vi has label i, Ci is nonempty.

Claim 18.E. For all i ≤ d, Ci induces a connected subgraph.

Proof of claim. We will prove that for each vertex u ∈ Ci , there exists a path in
Ci from u to vi. Assume that u ∈ Pij ∩ Pil. By Claim 18.B, either xij ∈ Pij [vi, u]
or xil ∈ Pil[vi, u]. Assume without loss of generality that xij ∈ Pij [vi, u]. By def-
inition of xil, rj < d(vj , xil) ≤ `(Pij [u, vj ]) + `(Pil[u, xil]), and since `(Pij [u, vj ]) +
`(Pij [xij , u]) ≤ rj , we have `(Pil[u, xil]) > `(Pij [xij , u]). Then, since `(Pil[vi, u]) +
`(Pil[u, xil]) = `(Pil[vi, xil]) ≤ ri, we have `(Pil[vi, u]) + `(Pij [u, xij ]) ≤ ri. Thus,
Pil[vi, u] ∪ Pij [u, xij ] ∪ Pij [xij , vj ] is a good ij-path. We conclude that all vertices of
Pil[vi, u] have label i (that is, Pil[vi, u] ⊆ Ci).

Assume now that {(v1, r1), . . . , (vt, rt)} is a 2-shattered set in the dual of H(G).
Then the sets Ci form nonempty connected disjoint sets of vertices, and there are
disjoint paths between any pair of such sets. Thus, there is a minor Kt, completing
the proof of Theorem 18.

3.4. Outerplanar graphs. Outerplanar graphs are K4-minor-free and have
treewidth at most 2. Hence, by Theorem 17, n = O(d3k3), and by Corollary 5,
n = O(d9k). We will improve these bounds using a different method.

Theorem 19. If G is an outerplanar graph with diameter d and a resolving set
of size k, then G has order at most 2kd2 − 2d2 + d+ 1 = O(kd2).

Proof. Let S be a resolving set of G of size k, and let s1 ∈ S. We consider a
circular layout of G, that is, a planar representation of G with all the vertices lying
on the boundary of a circle C (it is not difficult to see that such a layout exists;
see [28]). The vertices of G can be naturally ordered following C and starting by s1.
We denote this order by <.

Claim 19.A. Let x < y < z < t be four vertices of G. Let P1 be a path from y to
t and P2 be a path from x to z. Then P1 and P2 must intersect.

Proof of claim. Indeed, the drawing of the path P2 cuts the disk formed by C into
two disjoint components, and the vertices y and t are not in the same component.
Therefore, the drawing of the path P1 must intersect P2, and since the representation
is planar, it must be on a vertex.

For each 1 ≤ i ≤ d, we define Li to be the set of vertices at distance exactly i of
s1. The following claim is key to our proof.

Claim 19.B. Let i ∈ {1, . . . , d}. Let s ∈ S and y a vertex of Li that minimizes the
distance between s and vertices of Li. Let u and v be two vertices of Li. If y < u < v
or v < u < y, then d(s, u) ≤ d(s, v).

Proof of claim. We assume that s1 < y < u < v (the other case is symmetric).
We first prove that d(y, u) ≤ d(y, v). Let P1 be a shortest path from y to v and

P2 be a shortest path from u to s1. By Claim 19.A, P1 and P2 must intersect in some
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vertex z. Since P2 is a shortest path from u to s1, it has length i and d(z, s1) ≤ i,
and so z ∈ Lj with j ≤ i. Furthermore, we have d(z, v) ≥ i − j = d(z, u). Let P be
the path from y to u that consists of the subpath of P1 from y to z, followed by the
subpath of P2 from z to u. Since d(z, u) ≤ d(z, v), the path P is not longer than P1,
and thus d(y, u) ≤ d(y, v).

This proves the claim when s ∈ Li. Assume now that s ∈ Lj and that j < i. Let
P1 be a path formed by the union of a shortest path P1,1 from y to s and a shortest
path P1,2 from s to v. Let P2 be a shortest path from u to s1. By Claim 19.A, P1

and P2 must intersect in z, and, as before, z ∈ Lk with k ≤ i. If z belongs to P1,1,
that is, to a shortest path between y and s, then the path from s to u following
P1,1 until z and then P2 until u is shorter than P1,1 (since d(z, u) ≤ d(z, y)). Hence,
d(s, u) ≤ d(s, y), but y is minimizing the distance between s and a vertex of Li.
Therefore, d(s, y) = d(s, u) ≤ d(s, v). Otherwise, z must belong to P1,2, a shortest
path between s and v. Then the path P from s to u that follows P1,2 until z and
then P2 until u is shorter than P1,2. Indeed, since z ∈ Lk, we have d(z, u) = i−k and
d(z, v) ≥ i− k. Thus, d(s, u) ≤ d(s, v).

Assume finally that s ∈ Lj with j > i. We have d(s, y) = j− i (indeed, a shortest
path from s to s1 must pass by a vertex y′ ∈ Li and then d(s, y′) = j − i). Let P1 be
a path formed by the union between a shortest path P1,1 from y to s and a shortest
path P1,2 from s to v. Let P2 a shortest path from u to s1. Again, P1 and P2 must
intersect in z ∈ Lk with k ≤ i. Since P1,1 is a path of length j − i between Li and
Lj , all the vertices of P1,1 are in a layer Lj′ with i ≤ j′ ≤ j. It is not possible to have
z = y since in P2 there is exactly one vertex by Lj′ for j′ ≤ i, and u 6= y is this vertex
for j′ = i. Hence, z is in P2,2. It means that there is a vertex z′ ∈ Li on the path
from s to z: Indeed, when going from Lj to Lk, a path must intersect all the layers
between Lk and Lj . We choose for z′ the first vertex of Li we meet on P1,2 going
from s to v. If z′ < u < v, then as in the first case of the proof, d(z′, u) ≤ d(z′, v) and
so d(s, u) ≤ d(s, v) and we are done. Otherwise, we have s1 < y < u < z′, and there
is a path from y to z′ (the path P1 stopped in z′) that is not intersecting a path from
s1 to u, which contradicts Claim 19.A. This completes the proof of Claim 19.B.

We can now finish the proof of Theorem 19. By Claim 19.B, each vertex s 6= s1
of S partitions the vertices of Li with respect to the order < into at most 2d+ 1 parts
such that two vertices belonging to the same part have the same distance to s. Hence,
together, the vertices of S \ {s1} partition Li into at most 2d(k − 1) + 1 parts, and
the distance to S of each vertex of Li is determined by its position in the partition.
Hence, there is at most one vertex in each part, and thus |Li| ≤ 2d(k−1)+1. Finally,

the total number of vertices of G is at most 1 +
∑d
i=1 |Li| ≤ 2d2(k − 1) + d+ 1. This

completes the proof of Theorem 19.

We now show that Theorem 19 is tight, up to a constant factor. For two inte-
gers d, k ≥ 2, let Od,k be the outerplanar graph constructed as follows. First, for
some integer i, we define a graph Hi as follows. Consider a cycle C of length 2i+ 1,
where x is a distinguished vertex of C. To any vertex v of C at distance j ≥ 1 of
x in C, we attach a path of length i − j + 1 to v, and to one of the two vertices at
distance i of x in C, we attach a second leaf. Now, Od,k is built from k − 1 copies of
Hbd/2c−1 and one copy of Hdd/2e−1 identified at x, with an additional path of length
bd/2c attached to x. (Note that we may optionally add chords to the cycles in Od,k,
as long as the outerplanarity and the distances from each vertex having two leaves

attached are preserved.) The order of Od,k is d+2
2 + k(2

∑d/2
i=1 i − 1) when d is even

and 3d+3
2 + k(2

∑bd/2c
i=1 i − 1) when d is odd; this is ( 1

4 + o(1))kd2. See the graph of
Figure 2 for an illustration of O7,3 and O8,3.
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x

(a) The graph O7,3.

x

(b) The graph O8,3.

Fig. 2. The graphs O7,3 and O8,3. Dashed edges are optional. Black vertices form an optimal
resolving set.

Proposition 20. Let d, k ≥ 2 be two integers. The outerplanar graph Od,k has
diameter d, metric dimension k, and order ( 1

4 + o(1))kd2.

Proof. The values of the diameter and the order follow from the definition. To
see that the metric dimension is k, consider the k vertices that have two neighbors of
degree 1. In order for these two neighbors to be distinguished, one of them needs to
be in any resolving set. Now, we pick exactly one of them and repeat this for every
such pair; we obtain a set S of k vertices. We claim that S is a resolving set. Let
S = {s1, . . . , sk}, and let us call Ci the component of Od,k − x containing si. (There
are k + 1 components in Od,k − x, with one of them isomorphic to a path and not
containing any vertex of S.) Any two vertices u and v from different components of
Od,k − x are distinguished since at least one of them (say u) has a vertex si of S in
its component Ci and d(u, si) < d(v, si). Within a component C of Od,k − x, vertices
with distinct distances to x are distinguished by the vertices of S not in C. Finally,
vertices at the same distance of x in a component Ci are distinguished by si.

4. Conclusion. For trees and outerplanar graphs, we know that n = O(kd2),
and this is tight. We do not know whether our other bounds are tight. It would
be interesting to further study the classes of graphs of fixed treewidth w (or the
more restricted case of w-trees) and the class of chordal graphs. We have proved
that n = O(kd3w+3) for constant w (Corollary 5) and n = O(f(k)d2) for chordal
graphs, where f is doubly exponential (Corollary 7). Can these bounds be improved?
Moreover, Corollary 16 gives a bound in terms of rankwidth. Trying to get a similar
result in terms of cliquewidth seems to be a natural follow-up.

Another interesting problem is to determine the best possible bound for planar
graphs, that is, whether our n = O(d4k4) bound that follows from Theorem 17 can
be improved. Note that n = O(d2) holds when the metric dimension is 2; indeed,
in this case, we have n ≤ d2 + 2 for any graph [12, 21]. This quadratic bound is
matched by any square grid, which has metric dimension 2 and n = d2. Nevertheless,
there are planar graphs with metric dimension 3 and order Θ(d3). Such a family of
graphs can be described as follows. Pick any integer t and consider t disjoint copies
G1, G2, . . . Gt of a t× t grid. For i between 1 and t− 1, add an edge between the top
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left corners of Gi and Gi+1 and another edge between the top right corners of Gi and
Gi+1. The diameter of this graph is 4t, and its order is t3. Moreover, the top corners
of G1 together with the bottom left corner of Gt form a resolving set of size 3. We
do not know whether there are planar graphs with small metric dimension and order
Θ(d4).

For the smaller class of treewidth 2 graphs (that is, K4-minor-free graphs), we
know that n = O(d3k3) (Theorem 17) and n = O(d9k) (Corollary 5), but we doubt
that these bounds are optimal. We remark that our proof method for outerplanar
graphs does not seem to be easily generalizable to this class.
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[13] V. Chvátal, Mastermind, Combinatorica, (1983), pp. 325–329.
[14] J. Diaz, O. Pottonen, M. Serna, and E. Jan van Leeuwen, On the complexity of metric

dimension, Proceedings of the 20th European Symposium on Algorithms, ESA 2012,
Lecture Notes in Comput. Sci., 7501 (2012), pp. 419–430.

[15] Y. Dourisboure and C. Gavoille, Tree-decompositions with bags of small diameter, Dis-
crete Math., 307 (2007), pp. 2008–2029.

[16] L. Epstein, A. Levin, and G. J. Woeginger, The (weighted) metric dimension of graphs:
Hard and easy cases, Algorithmica, 72 (2015), pp. 1130–1171.

[17] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, and P. Valicov, Identifica-
tion, location-domination and metric dimension on interval and permutation graphs. I.
Bounds, Theoret. Comput. Sci., 668 (2017), pp. 43–58.

[18] F. Foucaud, G. B. Mertzios, R. Naserasr, A. Parreau, and P. Valicov, Identifica-
tion, location-domination and metric dimension on interval and permutation graphs. II.
Algorithms and complexity, Algorithmica, 78 (2017), pp. 914–944.

D
ow

nl
oa

de
d 

04
/2

4/
18

 to
 1

31
.1

72
.3

6.
29

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

918 BEAUDOU ET AL.

[19] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976),
pp. 191–195.

[20] M. C. Hernando, M. Mora, I. M. Pelayo, C. Seara, and D. R. Wood, Extremal graph
theory for metric dimension and diameter, Electron. J. Combin., 17 (2010), p. R30.

[21] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Appl.
Math., 70 (1996), pp. 217–229.
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