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a b s t r a c t

A graph is diameter-2-critical if its diameter is 2 but the removal of any edge increases
the diameter. A well-studied conjecture, known as the Murty–Simon conjecture, states
that any diameter-2-critical graph of order n has at most ⌊n2/4⌋ edges, with equality if
and only if G is a balanced complete bipartite graph. Many partial results about this
conjecture have been obtained, in particular it is known to hold for all sufficiently
large graphs, for all triangle-free graphs, and for all graphs with a dominating edge.
In this paper, we discuss ways in which this conjecture can be strengthened. Extending
previous conjectures in this direction, we conjecture that, when we exclude the class of
complete bipartite graphs and one particular graph, the maximum number of edges of a
diameter-2-critical graph is at most ⌊(n−1)2/4⌋+1. The family of extremal examples is
conjectured to consist of certain twin-expansions of the 5-cycle (with the exception of
a set of thirteen special small graphs). Our main result is a step towards our conjecture:
we show that the Murty–Simon bound is not tight for non-bipartite diameter-2-critical
graphs that have a dominating edge, as they have at most ⌊n2/4⌋ − 2 edges. Along the
way, we give a shorter proof of the Murty–Simon conjecture for this class of graphs, and
stronger bounds for more specific cases. We also characterize diameter-2-critical graphs
of order n with maximum degree n− 2: they form an interesting family of graphs with
a dominating edge and 2n − 4 edges.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called diameter-d-critical if its diameter is d, and the deletion of any edge increases the diameter. Diameter-
d-critical graphs and their extremal properties have been studied since at least the 1960s, see for example the few selected
Refs. [4,5,7,21,24–26].

The case of diameter-2-critical graphs (D2C graphs for short), being the simplest nontrivial case, has been the focus of
much work. Many famous and beautiful graphs are D2C. Such examples are: complete bipartite graphs; the 5-cycle (more
generally, the set of Moore graphs of diameter 2, the others being the Petersen graph, the Hoffman–Singleton graph, and
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Fig. 1. The infinite family C+

5 of expanded 5-cycles: we have |X2| ∈ {⌊
n−3
2 ⌋, ⌈ n−3

2 ⌉}.

a hypothetical graph of order 3250 [20]); the Wagner graph; the Chvátal graph; the Grötzsch graph; the Clebsch graph...
When the order is at least 3, D2C graphs coincide with minimally triangle-saturated graphs, see [22].

In the 1960s and 1970s, Ore, Murty, Pleśnik and Simon independently stated the following conjecture, generally known
under the name of Murty–Simon conjecture (see [5,24,25]). A complete bipartite graph is balanced if the sizes of the two
parts differ by at most 1.

Conjecture 1. Any D2C graph of order n has at most
⌊
n2/4

⌋
edges, with equality if and only if G is a balanced complete

bipartite graph.

Many partial results towards Conjecture 1 have been obtained. The best general upper bound is due to Fan [8], who
showed that any D2C graph of order n has less than 0.2532n2 edges. In the same paper, Fan also proved the conjecture
for graphs of order at most 24 and 26. On the other hand, using the Regularity Lemma, Füredi [9] proved Conjecture 1
for graphs with order n > n0, where n0 is a gigantic number: roughly a tower of 2’s of height 1014.

It is not difficult to observe that any bipartite graph of diameter 2 must be a complete bipartite graph. Thus,
Conjecture 1 restricted to bipartite graphs is well-understood; when studying D2C graphs, we can consider only
non-bipartite graphs.

Hanson and Wang observed in [11] that a non-bipartite graph is D2C if and only if its complement is 3-total domination
critical. This launched a fruitful research path that led to many results around Conjecture 1: see the papers [1,12–15,17–19]
and the survey [16].

Conjecture 1 holds for triangle-free graphs: this is exactly Mantel’s theorem [23], which states that a triangle-free
graph of order n has at most ⌊n2/4⌋ edges, with equality if and only if G is a balanced complete bipartite graph. It is not
difficult to observe that a graph is both D2C and triangle-free if and only if it is maximal triangle-free [3] (and equivalently,
triangle-free with diameter 2). Maximal triangle-free graphs are widely studied, see for example [2,6,10,22].

It is known that no triangle-free non-bipartite D2C graph has a dominating edge [1] (a dominating edge is a pair of
adjacent vertices that have no common non-neighbour). Thus, another case of interest is the set of D2C graphs with a
dominating edge.2 A non-bipartite D2C graph has a dominating edge if and only if its complement has diameter 3 [11]
(note that the complement of a non-bipartite D2C graph has diameter either 2 or 3 [19]). Conjecture 1 was proved for
D2C graphs with a dominating edge in the series of papers [11,13,14,27].

It has been observed that the bound of Conjecture 1 might be strengthened. Such a claim was made by Füredi in the
article [9] containing his proof of the conjecture for very large graphs. In the conclusion of [9] (Theorem 7.1), he claimed,
without proof, that his method can be extended to show the following: any sufficiently large non-bipartite D2C graph of
order n has at most ⌊(n−1)2/4⌋+1 edges, with equality if and only if the graph is obtained from an even-order balanced
complete bipartite graph by subdividing an edge once. Such a graph is also obtained from a 5-cycle by replacing two
adjacent vertices by two same-size independent sets of twins (vertices with the same open neighbourhood). Nevertheless,
one might perhaps need to consider Füredi’s claim with caution, as it appears to be partly false. Indeed, it was observed
in [1] that one can also obtain a D2C graph with the same number of edges by replacing three vertices x1, x2, x3 of a
5-cycle by three independent sets X1, X2, X3 of twins, under the following conditions: (1) x1, x2 and x3 are consecutive on
the 5-cycle; (2) |X2| ∈ {⌊

n−3
2 ⌋, ⌈ n−3

2 ⌉}, where n is the number of vertices of the obtained graph. Let us call C+

5 , the family
of these ‘‘expanded 5-cycles’’ that satisfy (1) and (2): the construction is depicted in Fig. 1.

The authors of [1], unaware of Füredi’s claim, focused their attention on the case of non-bipartite D2C graphs without
a dominating edge (recall that this class includes all non-bipartite D2C triangle-free graphs).3 They conjectured that, for
this class, the corrected version of Füredi’s claim is true:

Conjecture 2 (Balbuena, Hansberg, Haynes, Henning [1]). Let G be a non-bipartite D2C graph without a dominating edge. Then,
G has at most

⌊
(n − 1)2/4

⌋
+ 1 edges. For sufficiently large n, equality holds if and only if G belongs to C+

5 .

Conjecture 2 was proved in [1] for triangle-free graphs without the restriction on the order (the first part of the
statement was also proved independently for triangle-free graphs in [3]).

2 Equivalently, the set of D2C graphs with total domination number 2.
3 Note that the terminology used in [1] is the equivalent one of total domination criticality for the complement of the graphs.
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Fig. 2. The graph H5 , a D2C graph with a dominating edge (in bold).

Fig. 3. The thirteen non-bipartite D2C graphs of order n ≤ 11 with ⌊(n− 1)2/4⌋+ 1 edges that are not in the family C+

5 . Bold edges are dominating.
Only the graphs (d), (e) and (f) have no dominating edge.

One non-bipartite D2C graph that does not satisfy the bound ⌊(n − 1)2/4⌋ + 1 is known: it is the graph H5 of Fig. 2
(which has six vertices, eight edges, and a dominating edge). This fact was observed in [3,12]; the authors of [3] asked
whether this graph is the only exception to the bound.

We have performed a computer search on all graphs of order up to 11. This search has found exactly thirteen non-
bipartite D2C graphs that are not members of C+

5 but nevertheless reach the bound ⌊(n − 1)2/4⌋ + 1 (see Fig. 3).4 These
graphs have order 7, 8 or 9: there are no examples of order 10 and 11. Only three of these graphs have no dominating
edge.

Closer scrutiny and the aforementioned computer search suggest that H5 could well be the only small non-bipartite
D2C exception to the bound of Conjecture 2 (this was also suggested in [3]). Moreover, it seems likely that only the
thirteen graphs not in C+

5 from Fig. 3 reach this bound. This leads us to propose a stronger version of Conjecture 2, as
follows.

4 Note that the complete list of D2C graphs of order at most 7 was given in [22]; Graph (m) is studied in [26] as a planar D2C graph with every
edge in a triangle.
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Conjecture 3. Let G be a non-bipartite D2C graph of order n. If G is not H5, then G has at most
⌊
(n − 1)2/4

⌋
+ 1 edges, with

equality if and only if G belongs to C+

5 or is one of the thirteen graphs from Fig. 3.

In this paper, we focus on the case of non-bipartite D2C graphs with a dominating edge. Note that the graphs in C+

5
do not have a dominating edge. As a piece of evidence towards Conjecture 3, our main theorem shows that the bound of
Conjecture 1 is not tight for this case:

Theorem 4. Let G be a non-bipartite D2C graph with n vertices having a dominating edge. If G is not H5, then G has at most⌊
n2/4

⌋
− 2 edges.

Along the way, we will also give some stronger bounds for special cases. Our proof technique is an extension of
the technique introduced by Hanson and Wang in [11], where the bound of Conjecture 1 was proved for graphs with
a dominating edge. The full statement of Conjecture 1 was later proved for this case in the papers [13,14,27] using a
different method, but the proof is quite involved. As a side result, our new approach also gives a simpler and shorter
proof of Conjecture 1 for graphs with a dominating edge.

We also study non-bipartite D2C graphs with maximum degree n − 2 (note that the only D2C graphs with maximum
degree n − 1 are stars). It turns out that these graphs can be described precisely, and they all have a dominating edge.

We prove Theorem 4 (and a stronger version for special cases) in Section 2 and obtain, in passing, a shorter proof
of Conjecture 1 for graphs with a dominating edge. We then characterize D2C graphs with maximum degree n − 2 in
Section 3. Finally, we conclude in Section 4.

2. Conjecture 1 and beyond for graphs with a dominating edge

In this section, we further develop a proof technique of Hanson and Wang [11], who showed the bound of Conjecture 1
for D2C graphs having a dominating edge. Their result was extended (using a different technique) by Haynes et al. and
Wang (see the series of papers [13,14,27]) to prove the full conjecture for this class. Nevertheless, it turns out that when
excluding bipartite graphs, the Murty–Simon bound is not tight for this class of graphs. To show this, we use the original
idea of Hanson and Wang [11] and extend it by a finer analysis. To demonstrate the potential strength of this technique,
we give, along the way, a shorter proof of Conjecture 1 for graphs with a dominating edge.

In order to have a smoother presentation, we split this section into several parts. We start with establishing the general
setting of the proof technique in Section 2.1. Then, we prove some general lemmas in Sections 2.2 and 2.3. We use some of
these lemmas to give our new proof of Conjecture 1 for graphs with a dominating edge in Section 2.4. Then, in Section 2.5,
we prove a stronger bound than the one of Theorem 4 for some special cases. Finally, in Section 2.6, we conclude the
proof of Theorem 4.

2.1. Preliminaries: notations and setting for the proofs

Let us first fix our notation. Given a vertex x from a graph G, we denote by N(x) and N[x] the open and closed
neighbourhoods of x, respectively. An edge between vertices x and y is denoted xy, while a non-edge between x and
y is denoted xy. An oriented graph is a graph where edges have been given an orientation; oriented edges are called arcs.
If x is oriented towards y, we denote the arc from x to y by −→xy . In an oriented graph, we denote by N+(x), N+

[x], N−(x)
and N−

[x] the out-neighbourhood, closed out-neighbourhood, in-neighbourhood, and closed in-neighbourhood of vertex
x. In an oriented graph, a directed cycle is a cycle such that all arcs are oriented in the same cyclic direction. We say that a
source is a vertex s with N−(s) = ∅ and N+(s) ̸= ∅ while a sink is a vertex t with N+(t) = ∅ and N−(t) ̸= ∅ (we consider
that an isolated vertex is neither a source nor a sink). A triangle on an oriented graph is transitive if it induces a subgraph
with a source and a sink.

We start with the following definition, which is fundamental to our study.

Definition 5. Let G be a D2C graph. An edge uv ∈ E(G) is critical for a pair of vertices {x, y} if the only path of length 1
or 2 from x to y uses the edge uv.

The following observation is easy but important.

Observation 6. An edge xy in a D2C graph is critical for a pair {x, z} with z ∈ N[y] \ {x} or {y, z} with z ∈ N[x] \ {y}.

We are ready to describe the setting for the proofs of this section. Let G(V , E) be a D2C graph with n vertices and m
edges, and let uv be a dominating edge of G. We split the other vertices of G into four sets (see Fig. 4 for an illustration):

1. Puv = {x | uv is critical for the pair {x, v} or {x, u}}
2. Suv = {x | x ∈ N(u) and x ∈ N(v)}
3. Su = {x | x ∈ N(u) \ (Puv ∪ Suv)}
4. Sv = {x | x ∈ N(v) \ (Puv ∪ Suv)}
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Fig. 4. The structure of a D2C graph with the dominating edge uv (the only edges that are depicted are those incident with u or v). Lemma 7 allows
us to represent all vertices in Puv as adjacent to u.

We have the following fact.

Lemma 7. Either Puv ∩ N(u) = ∅, or Puv ∩ N(v) = ∅ (or both).

Proof. Let x ∈ Puv ∩ N(u), and assume by contradiction that there is y ∈ Puv ∩ N(v). We have xy ̸∈ E since uv is
critical for the pairs (u, y) and (v, x). Thus, x and y have a common neighbour z. However, since uv is a dominating edge,
z ∈ N(u)∪ N(v). Suppose without loss of generality that z ∈ N(u), then there are two paths of length 2 between u and y:
one going through v and one going through z. Thus, the edge uv is not critical for the pair {u, y}, a contradiction. □

Because of Lemma 7, in the whole section, without loss of generality, we will always assume that Puv ∩ N(v) = ∅. We
next prove the following lemma.

Lemma 8. The following properties hold.

(a) There is no edge between Puv and N(v) \ {u}.
(b) If Puv = ∅, then Suv = ∅.
(c) If Suv = ∅, then every vertex in Su (resp. Sv) has a neighbour in Sv (resp. Su).
(d) If Puv = ∅, then every vertex in Su (resp. Sv) that has at least one neighbour in Su (resp. Sv) has a non-neighbour in Sv

(resp. Su).

Proof. (a) Let x ∈ Puv and assume by contradiction that there is y ∈ N(v) \ {u} such that xy ∈ E. Then there are two paths
of length 2 between x and v: one going through u and one going through y. Thus, the edge uv is not critical for the pair
{v, x}, a contradiction.

(b) If Puv = ∅, then the edge uv can only be critical for the pair {u, v}. This implies that u and v have no common
neighbour, that is, Suv = ∅.

(c) Assume by contradiction that there is a vertex x ∈ Su (without loss of generality) such that N(x) ∩ Sv = ∅. Then
N(x)∩N(v) = {u} since Suv = ∅. This implies that the edge uv is critical for the pair {x, v}, and thus x ∈ Puv , a contradiction.

(d) Assume by contradiction that there is a vertex x ∈ Su (without loss of generality) such that Sv ⊂ N(x). Then, the
edge ux is not critical. Indeed, it cannot be critical for the pair {u, x} since x has a neighbour in Su. It cannot be critical for
a pair {x, y} with y ∈ Su: since Puv = ∅ we have Suv = ∅ by (b), and by (c), y has a neighbour in Sv . So, there is a path of
length 2 from x to y going through Sv . Finally, it cannot be critical for a pair {u, y} with y ∈ N(x) since every neighbour
of x is either in Su (thus, a neighbour of u) or in Sv (and a neighbour of v). Observation 6 ensures that we considered all
the cases, and reached a contradiction which proves the claim. □

Following the proof of Hanson and Wang [11], we will next partition the vertices of G into two parts X and Y , and
prove that every edge within X or within Y can be assigned injectively to a non-edge between X and Y . This will prove
that G has at most as many edges as the complete bipartite graph with parts X and Y .

We define the partition as follows:

1. X := {v} ∪ Su ∪ Puv ∪ Suv
2. Y := {u} ∪ Sv

Lemma 9. For every edge ab ∈ E(X) (resp. E(Y )), there exists c ∈ Y (resp. X) such that ab is critical for either the pair {a, c}
or the pair {b, c}.

Proof. Assume without loss of generality that a, b ∈ X . This implies that both a and b are neighbours of u. Then, the edge
ab cannot be critical for the pair {a, b}. Without loss of generality, we assume ab it is critical for {b, c}, where c ∈ N(a)\N(b).
However, if c ∈ X , then b and c are neighbours of u, and then the edge ab is not critical for this pair. Hence, c ∈ Y . □
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Fig. 5. The construction of the function f . The edge e = ab is critical for the pair {b, c}, thus f (e) = bc.

We use Lemma 9 to define a function f assigning the edges of E(X) and E(Y ) to non-edges between X and Y , as follows.
For every edge e ∈ E(X) (resp. E(Y )), we select one vertex c ∈ Y (resp. X) such that e is critical for the pair {b, c}, where
b ∈ e (such vertex c exists by Lemma 9). We let f (e) = bc. Note that f is well-defined, since e is critical for the pair {b, c}
and thus bc ̸∈ E. This construction is depicted in Fig. 5.

Lemma 10. The function f is injective.

Proof. Assume by contradiction that f is not injective. Without loss of generality, let bc be the non-edge between X and
Y such that there are two edges e and e′ in E(X) ∪ E(Y ) verifying f (e) = f (e′) = bc .

By definition of f , both e and e′ are critical for the pair {b, c}. This implies that e and e′ form the unique path of length 2
from b to c. Thus, one of e or e′ is in X × Y , a contradiction. □

We saw in Lemma 10 that f is injective. Moreover, we will show later that, if G is not bipartite, then f is not surjective.
We call any non-edge in X × Y that has no preimage by f , an f -free non-edge. We also let free(f ) be the number of f -free
non-edges.

Lemma 11. We have m =

⌊
n2−∥X |−|Y∥

2

4

⌋
− free(f ) ≤

⌊
n2/4

⌋
− free(f ).

Proof. By the injectivity of f (Lemma 10) and the definition of free(f ), there are exactly free(f ) more non-edges between
X and Y than edges inside X and inside Y . Thus, G has exactly |X ||Y | − free(f ) edges.

Without loss of generality, we assume that |X | ≤ |Y | and we pose ∆ = ∥X |−|Y∥. By the above paragraph, we have
m = |X ||Y | − free(f ) = |X |(n− |X |)− free(f ). Since |X | + ∆ = |Y | = n− |X |, this implies that |X | =

n−∆
2 . In particular, we

now have:

m = |X |(n − |X |) − free(f )

=
n − ∆

2

(
n −

n − ∆

2

)
− free(f )

=
(n − ∆)(n + ∆)

4
− free(f )

=
n2

− ∆2

4
− free(f )

Because m and free(f ) are integers, we have m =

⌊
n2−∆2

4

⌋
− free(f ). Moreover, since ∆ ≥ 0, we obtain that

m ≤
⌊
n2/4

⌋
− free(f ). □

Lemma 11 implies that G has at most
⌊
n2/4

⌋
edges: this is the result of Hanson and Wang [11]. It will require some

more effort to prove the whole Conjecture 1: our aim will be to show that free(f ) has at least a certain size. First, we will
prove some general lemmas.

2.2. Preliminaries for the case Puv ̸= ∅

We now prove a useful lemma about Puv , which is illustrated in Fig. 6.

Lemma 12. Let p be a vertex in Puv , and let Sv(p) be the set of vertices x ∈ Sv such that the non-edge px is not f -free. Then,
for each vertex x ∈ Sv(p), there is a vertex m(x) in Su ∩ N(p) such that f (pm(x)) = px. Denote by Su(p) the set of vertices y of
Su such that y = m(x) for some vertex x of Sv(p). Then, the following holds.

(a) We have |Su(p)| = |Sv(p)| (that is, m is injective).
(b) The only edges in Su(p) × Sv(p) are those of the form xm(x).
(c) For any two vertices x, y of Sv(p), if one of the edges xy or m(x)m(y) exists, then one of the non-edges xm(y) and ym(x)

is f -free. If both edges xy and m(x)m(y) exist, then both non-edges xm(y) and ym(x) are f -free.
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Fig. 6. Illustration of Lemma 12. We have f (pm(x)) = px and f (pm(y)) = py. Each edge in Su(p) and Sv(p) induces an f -free non-edge between the
two sets (f -free non-edges are depicted in bold).

Fig. 7. The f -orientation is constructed from the function f : we orient all edges within Su and Sv , and an edge ab is oriented from a to b if f (ab) = bc.

(d) We have |Su| ≥ |Sv| − free(f ).

Proof. Let x ∈ Sv(p). By Lemma 8(a), p has no neighbour neither in Sv nor in Suv . Thus, p and x have a common neighbour,
q, in Su, and f (pq) = px. We let q = m(x). Now, if for some pair x, y of distinct vertices of Sv(p), we had m(x) = m(y),
then one of the non-edges px and py would be f -free (since both can only be assigned to pq by f ), a contradiction. Thus,
|Su(p)| = |Sv(p)| and (a) is true.

Moreover, there is no edge xm(y) for two distinct vertices x, y in Sv(p), since otherwise p and xwould have two common
neighbours (m(x) and m(y)), contradicting the fact that f (pm(x)) = px. Thus, (b) holds.

Finally, assume that there is an edge xy in Sv(p) (the proof is the same for the edge m(x)m(y)). Then, both non-edges
xm(y) and ym(x) can only be assigned to the edge xy, so one of them is f -free. If we have both edges xy and m(x)m(y),
then both endpoints of xm(y) and ym(x) have two common neighbours, so both are f -free, and (c) is true.

To prove (d), we let free(Puv, f ) be the number of f -free non-edges incident with a vertex of Puv . Let p be some vertex
p of Puv . By the previous parts of the lemma, we have:

|Su| ≥ |Su(p)| = |Sv(p)| ≥ |Sv| − free(Puv, f ) ≥ |Sv| − free(f ),

which completes the proof of (d). □

2.3. Preliminaries for the case Puv = ∅: the f -orientation and related lemmas

In this section, we gather some lemmas about the structure of G and f when Puv = ∅. They will be useful to our proofs
but we feel that they could perhaps be used again. So we assume from here on in this section that G is a D2C graph with
Puv = ∅. Observe that, by Lemma 8, Suv = ∅.

We will use f to define an orientation, called f -orientation, of the edges induced by Su and by Sv , as follows. Let ab be
an edge within Su or within Sv with f (ab) = bc . Then, we orient a towards b and we denote the resulting arc by

−→
ab . This

construction is shown in Fig. 7. Since f is injective (Lemma 10), each edge of Su and Sv receives exactly one orientation.
From now on, all arcs considered are those of this f -orientation. We denote by N+(x), N+

[x], N−(x) and N−
[x] the out-

neighbourhood, closed out-neighbourhood, in-neighbourhood, and closed in-neighbourhood of vertex x with respect to
the f -orientation, while N(x) and N[x] continue to denote the neighbourhood and closed neighbourhood of x in G.

We will now study the properties of the f -orientation. The first important lemma is the following (see Fig. 8 for an
illustration).

Lemma 13. Let x, y ∈ Su (resp. Sv) be two vertices such that −→xy is an arc of the f -orientation. If neither x nor y is
incident with an f -free non-edge, then there exists a vertex t ∈ Sv (resp. Su) such that N(x) ∩ Sv = (N(y) ∩ Sv) ∪ {t} (resp.
N(x) ∩ Su = (N(y) ∩ Su) ∪ {t}).
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Fig. 8. Illustration of Lemma 13: if x and y are two vertices in Su (resp. Sv) such that −→xy is an arc of the f -orientation and neither x nor y is incident
with an f -free non-edge, then the neighbourhood of x in Sv (resp. Su) is exactly the neighbourhood of y in Sv (resp. Su) plus one vertex.

Proof. Assume without loss of generality that x, y ∈ Su. First, if there exists a vertex z of N(y)∩ Sv that is not adjacent to
x, then z and x have y as a common neighbour and thus the non-edge xz could only be assigned by f to xy, contradicting
the f -orientation of xy. Thus, we have N(y) ∩ Sv ⊆ N(x) ∩ Sv . Now, by the f -orientation of xy, there exists a vertex t of Sv

with f (xy) = ty. Assume now, for a contradiction, that there exists another vertex t ′ in Sv that is adjacent to x but not to y.
Then, t ′ and y have x as a common neighbour, so the non-edge t ′y can only be assigned by f to xy. This is a contradiction
and proves the claim. □

The next lemma states that directed cycles in G yield many f -free non-edges.

Lemma 14. Let
−→
C be a cycle of G that is directed with respect to the f -orientation. Then, there are at least |

−→
C | f -free

non-edges incident with the vertices of
−→
C .

Proof. Let
−→
C = x0, x1, . . . , xk−1 be a cycle of G that is directed with respect to the f -orientation (with the arc −−→xixi+1 for

each i in {0, . . . , k − 1}). Without loss of generality,
−→
C is in X . In this proof, we consider the addition modulo k.

By definition of the f -orientation, for all i ∈ {0, . . . , k − 1}, there exists a vertex yi ∈ Y such that f (xixi+1) = xi+1yi.
Note that we may have yi = yj for some i ̸= j.

Let i ∈ {0, . . . , k − 1}, and let xj be the first predecessor of xi in the cyclic order of
−→
C such that xjyi ̸∈ E. This clearly

happens at some point since xi+2yi /∈ E. Note that we have j ̸= i+ 1, since otherwise xi+1 and y would have two common
neighbours: xi and xi+2, a contradiction since f (xixi+1) = xi+1yi implies that xi is the unique common neighbour of yi and
xi+1.

We now prove that xjyi is f -free. Assume by contradiction that it is not f -free. Then, there exists an edge e such that
f (e) = xjyi. However, since xj and yi have a common neighbour which is xj+1, we necessarily have e = xjxj+1. But by
definition of

−→
C , we already have the vertex yj ∈ Y such that f (xjxj+1) = xj+1yj, and thus yi ̸= yj. This is a contradiction,

which implies that xjyi is f -free. This is illustrated in Fig. 9.
Finally, we prove that any two f -free non-edges found with this method are distinct. Assume by contradiction that

there are two vertices xi1 , xi2 in
−→
C with i1 < i2 which lead to the same f -free non-edge xjy (with y = yi1 = yi2 ). Then,

this means that xj is the first predecessor of xi2 such that xjy ̸∈ E. In particular, since i1 < i2, this implies that xi1+1y ∈ E,
which contradicts the fact that f (xi1xi1+1) = xi1+1y.

Thus, there are at least k f -free non-edges incident with the vertices of
−→
C . □

We now show that transitive triangles also induce f -free non-edges.

Lemma 15. Let x, y, z ∈ Su (resp. Sv) be three pairwise adjacent vertices such that −→xy , −→xz and −→yz are oriented edges. Then
there is an f -free non-edge incident with x.

Proof. Without loss of generality, assume that x, y, z ∈ Su. Assume by contradiction that there is no f -free non-edge
incident with x. By Lemma 8(c), x has a neighbour w1 in Sv , and by definition of the f -orientation, we can assume that
f (xy) = yw1. Similarly, there is a vertex w2 of Sv adjacent to y with f (yz) = zw2 (clearly w1 ̸= w2). Then neither z nor
w2 is adjacent to w1 since x is the unique common neighbour of y and w1. Now similarly, x and w2 cannot be adjacent,
the only common neighbour of z and w2 is y. But then the non-edge xw2 is assigned to xy by f , which contradicts the
injectivity of f . This is illustrated in Fig. 10. □

The next two lemmas state that each source and each sink of G has an f -free non-edge in its closed neighbourhood.
Recall that we do not consider isolated vertices as sources or sinks.

Lemma 16. Let x be a sink of the f -orientation. Then, there is at least one f -free non-edge incident with the vertices of N−
[x].

Proof. Let x ∈ Su (without loss of generality) be a sink of the f -orientation, and let a1, . . . , ak be the in-neighbours of x
(recall that they all belong to Su).
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Fig. 9. Illustration of the proof of Lemma 14: xj is the first predecessor of xi in the cycle such that xjyi /∈ E. The non-edge xjyi is then f -free.

Fig. 10. Illustration of the proof of Lemma 15: there is an f -free non-edge incident with the ancestor in a transitive triangle.

Fig. 11. If x is a sink, then its closed in-neighbourhood is incident with f -free non-edges: among all the bolded non-edges, only one can have a
preimage by the function f , this preimage being yt .

By Lemma 8(c), x has a neighbour y ∈ Sv . Let ai be an in-neighbour of x. If ai is not adjacent to y, then the non-edge
aiy is f -free, since otherwise we should have f (xai) = aiy and the arc −→tai , a contradiction since x is a sink. Thus, from now
on we may assume that all in-neighbours of x are adjacent to y, for otherwise the statement of the claim holds.

Like every edge, the edge xy is critical. It cannot be critical for the pair {x, y}, since (by the previous paragraph) these
two vertices have all vertices in N−(x) as common neighbours. It also cannot be critical for a pair consisting of y and a
neighbour z of x: if z ∈ Su then z is an ai; and if z ∈ Sv ∪ {u} then v ∈ N(y) ∩ N(z). Hence, xy must be critical for a pair
{x, t} with t a neighbour of y. Since N(x) ∩ N(t) = {y}, we necessarily have t ∈ Sv , and tai /∈ E for every ai. However,
among all the non-edges ait and the non-edge xt , all but one are f -free: their only possible preimage by the function f if
yt . This is depicted in Fig. 11. Since at least one ai exists, there is at least one f -free non-edge incident with N−

[x], and
the claim follows. □

Lemma 17. Let x be a source of the f -orientation. Then, there is at least one f -free non-edge incident with the vertices of
N+

[x].
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Proof. Let x ∈ Su (without loss of generality) be a source of the f -orientation, and let b1, . . . , bk be the out-neighbours
of x (recall that they all belong to Su). Assume by contradiction that no f -free non-edge is incident with N+

[x].
By Lemma 8(d), x has a non-neighbour y ∈ Sv . Lemma 13 ensures that no bi is adjacent to y. The non-edge xy has a

preimage by the function f , and this preimage is necessarily an arc −→zy with z ∈ Sv , since the bi are the only neighbours
of x in Su and none of those are adjacent to y.

Let i ∈ {1, . . . , k}. If biz ∈ E, then z ∈ N(y) ∩ N(bi), and since no non-edge incident with a bi is f -free we necessarily
have f (zy) = biy, a contradiction to the fact that f (zy) = xy. Thus, biz is a non-edge incident with N+

[x], thus it has a
preimage by the function f . This preimage is necessarily the edge xbi.

Furthermore, by Lemma 8(c), bi has a neighbour w ∈ Sv . Lemma 13 ensures that xw ∈ E. Now, the edge xw is critical.
It cannot be critical for the pair {x, w} since those vertices share bi as a common neighbour. It cannot be critical for a
pair {x, t} with t ∈ Sv since by definition of critical edges we would have bit /∈ E, and one of the two non-edges xt , bit
would be f -free, a contradiction. Thus, there is a bj ∈ N+(x) such that f (xbj) = bjw. However, Lemma 13 ensures that
N(bj) ∩ Sv = (N(x) ∩ Sv) \ {z}, which implies that bjw ∈ E. This is a contradiction, which proves the claim. □

2.4. Proof of Conjecture 1 for graphs with a dominating edge

We are now ready to re-prove Conjecture 1 for graphs with a dominating edge. The proof only uses the content
of Sections 2.1 and 2.2 and Lemma 13. More specifically, we will prove the following lemma. Observe that, to prove
Conjecture 1, we may assume that G is non-bipartite (for otherwise the conjecture is true for G by Lemma 11). We use
the f -orientation that was defined in Section 2.3.

Lemma 18. If G is a non-bipartite D2C graph with a dominating edge, then free(f ) ≥ 1.

Proof. We assume by contradiction that free(f ) = 0. We distinguish two cases.

Case 1: Puv is nonempty. Note that Su ̸= ∅, for otherwise G must be a star. Since free(f ) = 0, by the definition of Sv(p) (see
Lemma 12) we have Sv = Sv(p) for each vertex p of Puv , and |Su| ≥ |Sv| by Lemma 12(d). By Lemma 11, if ∥X |−|Y∥ ≥ 3,
G has at most

⌊
(n2

− 1)/4
⌋

− 2 edges, and we are done. Thus, we may assume that ∥X |−|Y∥ ≤ 2. This leaves several
possibilities depending on the structure of G:

1. First, if Suv is nonempty, then |Suv| = 1, Puv = {p}, and |Su| = |Sv|. Thus, Su = Su(p), Sv = Sv(p) and the only edges
between Su and Sv are of the form xm(x). This implies that p is adjacent to all vertices of Su and that the vertex
in Suv cannot be adjacent to any vertex x ∈ Su (otherwise the edge ux would not be critical). It follows that the
endpoints of any non-edge in Su(p)×Sv(p) have no common neighbour, which is not possible. Thus, there is no such
non-edge, which implies by Lemma 12 that |Su| = |Sv| = 1; but then the graph is H5 which has exactly

⌊
n2/4

⌋
− 1

edges, a contradiction. Thus, we can assume that Suv is empty.
2. Now, if |Su| = |Sv| (that is, Su = Su(p) for every p ∈ Puv), then for any x ∈ Su, the edge ux is not critical, a

contradiction.
3. Thus, there exists exactly one vertex z in Su\Su(p) and exactly one vertex p in Puv . Since free(f ) = 0, by Lemmas 12(c)

and (d), Su(p) and Sv(p) are independent sets. If |Su| = 2 (which implies |Sv| = 1), then by Lemma 8(c) z is adjacent
to the vertex in Sv . But then, the edge between u and the vertex of Su(p) is not critical, a contradiction. Thus,
|Su(p)| ≥ 2. Let x, y be two distinct vertices of Sv(p). If zm(x) /∈ E, then the non-edge m(x)y has no preimage by f ,
and thus it is f -free, a contradiction. Hence, zm(x) ∈ E and f (zm(x)) = m(x)y, which implies that z is adjacent to
every vertex in Su(p) and in Sv(p). However, the edges between u and Su(p) are not critical, a contradiction.

This study covers all possible cases, and we always reach a contradiction. This finishes the proof of Case 1.

Case 2: Puv is empty. Note that Suv = ∅ by Lemma 8(b). Furthermore, there is at least one edge in Su (without loss of
generality) since otherwise the graph is bipartite, a contradiction. We prove the following statement:

Claim. Let −→xy be an arc in Su. For every vertex t ∈ N(y) ∩ Sv , the edge yt is critical for a pair {z, t} with z an out-neighbour
of y.

To prove the claim, observe first that the edge yt cannot be critical for the pair {y, t}, since by Lemma 13 (which we
can apply since we assume that free(f ) = 0) we have N(y)∩Sv ⊂ N(x)∩Sv , and so y and t have x as a common neighbour.

Assume by contradiction that the edge yt is critical for a pair {y, w} with w ∈ Sv (note that w is an out-neighbour of
t). We have xw /∈ E since otherwise y and w would have two common neighbours, a contradiction. Thus, we have the
non-edge xw. This non-edge has a preimage by the function f , but this preimage can only be tw since t ∈ N(w) ∩ N(x).
This implies that one of the two non-edges xw, yw is f -free, a contradiction.

Thus, the edge yt is critical for a pair {z, t}, and since free(f ) = 0 we necessarily have f (yz) = zt and so z is an
out-neighbour of y by definition of the f -orientation. Hence, the claim follows. □

Now, take a maximal directed path −−−−−−→x1, . . . , xk of vertices in Su. By Lemma 8, xk has a neighbour t ∈ Sv . By the above
claim, the edge xkt is critical for a pair {y, t} with y an out-neighbour of xk. We cannot have y = xi for i ∈ {1, . . . , k − 2}
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since otherwise we would have a directed cycle, and by Lemma 14 we would have k − i + 1 f -free non-edges incident
with vertices in the cycle, a contradiction. Thus, the directed path −−−−−−→x1, . . . , xky is a directed path in Su with more vertices
than −−−−−−→x1, . . . , xk, a contradiction.

Hence, we have proved that if free(f ) = 0 then we reach a contradiction, and the statement of the lemma follows. □

Hence, Lemma 18 confirms Conjecture 1 for D2C graphs with a dominating edge, i.e. we obtain a new proof of the
following theorem.

Theorem 19 ([11,13,14,27]). Any D2C graph G of order n with a dominating edge has at most ⌊n2/4⌋ edges, with equality if
and only if G is a balanced complete bipartite graph.

2.5. A stronger theorem when Puv = ∅

In this section, we use the lemmas of Section 2.3 to prove the following.

Theorem 20. Let G be a non-bipartite D2C graph with a dominating edge uv such that Puv = ∅, and let f be the associated
injective function. Let

−→
D be the graph induced by Sx (x ∈ {u, v}) and oriented with respect to the f -orientation. Let C ∪ S be

a collection of vertex-disjoint subgraphs of
−→
D satisfying the following conditions:

1. C consists of directed cycles;
2. S consists of transitive triangles and graphs with a universal vertex that is either a sink or a source in

−→
D .

Then, G has at most
⌊
n2/4

⌋
−

∑
C∈C |C | − |S| edges.

Proof. By Lemmas 14–17, we have free(f ) ≥
∑

C∈C |C | + |S|. Thus, the bound follows from Lemma 11. □

Observe that each connected component of
−→
D contains either a directed cycle, or a source. Thus, by Lemmas 14 and

17, we have free(f ) ≥ c , where c is the number of nontrivial connected components of
−→
D . This implies, by Lemma 11,

that G has at most
⌊
n2/4

⌋
− c edges. But in fact, we can prove the following stronger result, which is crucial for the proof

of Theorem 4.

Theorem 21. Let G be a non-bipartite D2C graph with a dominating edge uv such that Puv = ∅, and let f be the associated
injective function. Let

−→
D be the graph induced by Sx (x ∈ {u, v}) and oriented with respect to the f -orientation, and let

c1 (resp. c2) be the number of nontrivial connected components of diameter 2 (resp. at least 3) in
−→
D . Then, G has at most⌊

n2/4
⌋

− c1 − 2c2 edges.

Proof. Without loss of generality, we assume that
−→
D is the oriented graph induced by Su. Note that every nontrivial

component in
−→
D contains either a directed cycle or a source and a sink. Thus, there is at least one f -free non-edge with

one endpoint in C , which proves that there are at most
⌊
n2/4

⌋
− c1 − c2 edges in G. We now assume that C has diameter

at least 3 in
−→
D . We must show that G contains at least two f -free non-edges with one endpoint in C , which will prove

the theorem.
If there is a directed cycle in C , we are done by Lemma 14. Thus, we assume that

−→
D [C] is acyclic. This implies that

there is at least one source and at least one sink in C . Let S and T be the sets of sources and sinks of C , respectively. We
assume by contradiction that there is at most one f -free non-edge incident with C .

We recall that C is acyclic and thus both S and T are nonempty. By Lemmas 16 and 17, each source and each sink are
at distance at most 1 from a vertex r of C incident with an f -free non-edge (this implies that there is exactly one f -free
non-edge incident with C). Thus each vertex of (S ∪ T ) \ {r} is adjacent to r; if r ∈ S then S = {r}; if r ∈ T then T = {r}.
By Lemma 15, if r /∈ (S ∪ T ), there is no arc from any source to any sink.

We now prove a more constrained structure on r and T .

Claim 1. Either r ∈ T , or N−(t) = {r} for all t ∈ T .

By contradiction, assume that r /∈ T but that some sink t ∈ T has two in-neighbours r and x. By Lemma 15, r /∈ N+(x),
otherwise we have two f -free non-edges incident with C (in particular, x /∈ S). By definition of the f -orientation, there is
a vertex y ∈ Sv such that f (xt) = yt . Furthermore, by Lemma 8(c), t has a neighbour in Sv , which we will call p. We have
py /∈ E and xp ∈ E by Lemma 13.

Assume first that r ∈ N−(x). Then ry /∈ E, since N(t) ∩ N(y) = {x}. If ry had a preimage by the function f , it would be
the edge xr and we would have the arc −→xr , a contradiction. Thus, ry is the only f -free non-edge in G. This is depicted in
Fig. 12. Now, the edge tp is critical. It is not critical for the pair {t, p} since x ∈ N(t) ∩ N(p). It is not critical for a pair
{p, z} with z ∈ Su since otherwise we would have the arc −→zt (since t is a sink) and thus the non-edge zp would be f -free,
a contradiction. It is not critical for a pair {t, z} with z ∈ Sv , since this would imply that xz /∈ E and thus one of the two
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Fig. 12. If r ∈ N−(x), then the non-edge ry (depicted in bold), is the only f -free non-edge in G. By studying all possibilities for the criticality of the
edge tp, we then reach a contradiction.

Fig. 13. If r /∈ N(x), then the non-edge rp (depicted in bold), is the only f -free non-edge in G. By studying all possibilities for the criticality of the
edge wy, we then reach a contradiction.

non-edges tz, xz would be f -free (their only possible preimage by the function f would be pz), a contradiction. Thus, tp
is not critical; this contradiction implies that r /∈ N(x).

The edge xp is critical. It is not critical for the pair {x, p} since t ∈ N(x)∩N(p). It is not critical for a pair {x, z} with z ∈ Sv

since otherwise we would have tz /∈ E and thus one of the two non-edges xz, tz would be f -free, a contradiction. Thus, it
is critical for a pair {w, p} with w ∈ N+(x). In particular, we necessarily have wy ∈ E (since otherwise the non-edge wy
would be f -free since its only possible preimage by the function would be xw which is already assigned, a contradiction).

Now, let us reexamine the edge tp, which is critical. By the same reasoning that the one we held just above, it is
critical for a pair {p, z} with z ∈ Su. Since t is a sink, the non-edge zp is f -free (since otherwise we would have an arc −→tz ,
a contradiction with the fact that t is a sink), and thus z = r and zr is the only f -free non-edge in G. Note that if N(t)∩ Sv

contains more than one vertex, then we can repeat the argument and find other f -free non-edges, a contradiction. Thus,
N(t) ∩ Sv = {p}. The construction we obtain is depicted in Fig. 13.

The edge wy is critical. It is not critical for the pair {w, y} since x ∈ N(w)∩N(y). It is not critical for a pair {w, z} with
z ∈ Sv since otherwise we would have xz /∈ E and thus one of the two non-edges xz, wz would be f -free, a contradiction.
Thus, it is critical for a pair {y, z} with z ∈ Su. If z ∈ N−(w) then zy is f -free, which implies that z = r , but since y ̸= p
we have two f -free non-edges incident with C , a contradiction. Thus, z ∈ N+(w) and zp /∈ E (since otherwise this would
contradict the fact that f (xw) = wp). By Lemma 8(c), z has a neighbour y′

∈ Sv . Recall that N(t) ∩ Sv = {p} and thus
ty′ /∈ E. Furthermore, by Lemma 13, x has exactly one neighbour in Sv that is not a neighbour of t . This neighbour is y,
which implies that xy′ /∈ E. By applying the same argument, we also get wy′ /∈ E. But, since we have the arc −→

wz, the
non-edge wy′ is f -free, a contradiction.

Thus, such an x does not exist, which proves the claim. □
We can now prove that there is exactly one source in C .

Claim 2. |S| = 1.

Assume by contradiction that there are two sources s1, s2 ∈ S. By Lemma 17, if the vertex r is not in N+(s1)∩N+(s2) then
there is an f -free non-edge incident with one vertex that is not r , a contradiction. Thus, s1 and s2 are both in-neighbours
of r . By definition, there are two distinct vertices y1, y2 ∈ Sv such that f (s1r) = ry1 and f (s2r) = ry2. Furthermore, s1y2
and s2y1 cannot be edges, and since r is not a source, these non-edges have to be assigned by f . The non-edge s1y2 cannot
be assigned to an edge s1x with x a neighbour of s1 in Su since s1 is a source and x would be an in-neighbour of s1.

First, assume that we have two distinct vertices z1, z2 ∈ Sv such that f (y1z1) = s2y1 and f (y2z2) = s1y2. The vertices z1
and z2 cannot be adjacent to r since they are neighbours with respectively y1 and y2. But since s1 is adjacent to z2 and s2
to z1, both non-edges rz1, rz2 are f -free, a contradiction.

Thus, there is a vertex z ∈ Sv such that f (y1z) = s2y1 and f (y2z) = s1y2. By the same argument, z cannot be adjacent
to r , and the non-edge rz is f -free. This construction is depicted in Fig. 14.
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Fig. 14. The vertices s1 and s2 are sources, and rz is the only f -free non-edge in G.

Fig. 15. If there are two sources in C , then G has at least two f -free non-edges incident with C . Here, these two f -free non-edges are rz and ry4 .

Now, by Lemma 8(c), r has a neighbour y3 in Sv . The vertex y3 is adjacent to s1 and s2 since otherwise the non-edges
would be f -free. Now, the edge ry3 is critical (note that it is not critical for the pair {r, y3} since they share s1 and s2
as common neighbours). Assume it is critical for a pair {r, y4} with y4 ∈ Sv . The vertex y4 cannot be z since r and z
already have two common neighbours, and it cannot be y1 or y2 since this would contradict f (s1r) = ry1 and f (s2r) = ry2.
However, this implies that y4 is not adjacent to both s1 and s2, and the non-edges s1y4 and s2y4 are f -free, a contradiction.

Thus, the edge ry3 is critical for a pair {t, y3} with t ∈ Su. Moreover, t ∈ T since t is an out-neighbour of r . By Claim 1,
r is the unique in-neighbour of t . Now, by Lemma 8(c), t has a neighbour in Sv . It cannot be y1 or y2 since s1 and s2 are
the unique common neighbours of those and r . It cannot be z since this would imply f (y1z) = y1t and f (y2z) = y2t , a
contradiction with f (y1z) = s2y1 and f (y2z) = s1y2.

Now, the non-edge ty1 has a preimage by the function f . This preimage cannot be an edge xt with x ∈ Su since t only
has r as an in-neighbour, and ry1 /∈ E. So there exists a vertex y4 ∈ Sv such that f (y1y4) = ty1. By our previous discussion,
y4 /∈ {y2, y3, z}. But now r and y4 cannot be adjacent since r and y1 have s1 as unique common neighbour, which implies
that the non-edge ry4 is f -free, a contradiction that completes this proof. The construction is depicted in Fig. 15. □

Now, by Claim 2, there is a unique source s in C . By Claim 1, s ̸= r , and furthermore, since C has diameter at least 3,
s has an out-neighbour x that is not r .

By Lemma 8(d), s has a non-neighbour y1 in Sv . Since s ̸= r , the non-edge sy1 has a preimage by the function f . This
preimage cannot be an edge sz with z a neighbour of s in Su: indeed, since s is a source, z would be an out-neighbour of
s, but then sy1 would be f -free. Thus, we have sy1 = f (y1y2), for some in-neighbour of y1 in Sv . Note that, by Lemma 13,
we have N(x) ∩ Sv = (N(s) ∩ Sv) \ {y2}. In particular, xy1, xy2 /∈ E.

Now, the non-edge xy1 has a preimage by the function f . This preimage cannot be an edge y1z with z ∈ Sv , since
otherwise we would have sz ∈ E and thus sy1 would be f -free, a contradiction. Thus, there exists z ∈ Su an in-neighbour
of x such that f (zx) = xy1. In particular, we have z ̸= r (since otherwise s, r and x induce a transitive triangle, and
Lemma 15 implies that an f -free non-edge is incident with s, a contradiction). This construction is depicted in Fig. 16.

However, Lemma 13 implies that no successor of s and predecessor of r can be adjacent to y1.5 But since s is the only
source in C (by Claim 2) and r is the only in-neighbour of all sinks in C (by Claim 1, z is a successor of s and a predecessor
of r . Since zy1 ∈ E, we reach a contradiction.

5 A predecessor of a vertex a is a vertex b such that there is a directed path from b to a. Similarly, a successor of a is a vertex b such that there
is a directed path from a to b.



A. Dailly, F. Foucaud and A. Hansberg / Discrete Mathematics 342 (2019) 3142–3159 3155

Fig. 16. The structure of C is very constrained: there is a unique source s, which has an out-neighbour x distinct from r . The snake-like arcs represent
a directed path of any length: z is an in-neighbour of r and an out-neighbour of s due to the fact that C is acyclic.

Fig. 17. If the only nontrivial component in Su has diameter at most 2, one of the two bolded non-edges is f -free. Applying the same construction
for x2 gives us again one of two non-edges which are f -free.

Thus, there are at least two f -free non-edges incident with vertices of C , which completes the proof. □

2.6. Proof of Theorem 4

We are now ready to prove Theorem 4, which we recall here.

Theorem 4. Let G be a non-bipartite D2C graph with n vertices having a dominating edge. If G is not H5, then G has at most⌊
n2/4

⌋
− 2 edges.

Proof. Consider the function f defined previously. We have seen in Section 2.4 that free(f ) ≥ 1. We need to prove that
free(f ) ≥ 2. Thus, by contradiction, let us assume that free(f ) = 1.

Case 1: Puv is empty. By Lemma 8(b), Suv = ∅. Since G is non-bipartite, there must be at least one edge inside Su or
Sv . Without loss of generality, assume it is in Su. Let

−→
D be the graph induced by Su and oriented with respect to the

f -orientation; it has at least one nontrivial connected component. If there are more than one nontrivial components, then
the desired bound follows from Theorem 20. Hence, we assume that there is exactly one nontrivial component C in

−→
D .

If C has diameter at least 3, then the desired bound follows from Theorem 21. Thus, we assume that C has diameter at
most 2.

Since C is nontrivial, there is at least an arc −→x1x2 in C . Let f (x1x2) = x2y1 for some vertex y1 ∈ N(x1)∩Sv . By Lemma 8(c),
the vertex x2 has also a neighbour y2 ∈ Sv . Now, the edge ux1 is critical. It cannot be critical for the pair {u, x1} since u
and x1 have x2 as a common neighbour, or for a pair {u, x} for x ∈ Su since ux ∈ E, or for a pair {u, y} for y ∈ Sv since u
and y have v as a common neighbour, or for a pair {x, y} with y ∈ Sv because uy /∈ E. So there is a vertex x3 ∈ Su such
that ux1 is critical for the pair {x1, x3}. Furthermore, we have x3 ̸∈ C since otherwise x1 and x3 would be at distance at
most 2, which is not possible by the criticality of ux1. So x3 is independent in Su. Applying the same reasoning, we get a
vertex x4 ∈ Su, independent in Su, such that N(x2) ∩ N(x4) = {u} (note that we can have x3 = x4).

Since N(x1) ∩ N(x3) = {u} and x3 is independent in X , x3y1 /∈ E and x3 and y1 have a common neighbour y3 ∈ Sv . But
now at least one of the two non-edges x1y3 and x3y1 is f -free. Indeed, otherwise we would have two distinct edges e and
e′ such that f (e) = x1y3 and f (e′) = x3y1, which would imply that e = y1y3 = e′, a contradiction. This construction is
depicted in Fig. 17. Applying the same reasoning, we get a vertex y4 ∈ Sv as common neighbour of x4 and y2 (note that
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we can have y3 = y4), and at least one f -free non-edge among x2y4 and x4y2. Since all four non-edges are distinct (this is
because x1 ̸= x2, x1 ̸= x4, x2 ̸= x3, y1 ̸= y2, y1 ̸= y3 and y2 ̸= y4), we have two f -free non-edges in G, a contradiction.

Case 2: Puv is nonempty. Since free(f ) = 1, by Lemma 12(d), |Su| ≥ |Sv| − 1. As in the proof of Lemma 12, we let
free(Puv, f ) be the number of f -free non-edges incident with a vertex of Puv (here free(Puv, f ) ∈ {0, 1}). We consider the
following subcases.
Case 2.1: Suppose first that the unique f -free non-edge is incident with a vertex p of Puv , say it is pt for some vertex
t ∈ Sv . Consider the sets Su(p) and Sv(p) and the function m as defined in Lemma 12; by Lemma 12(c), Su(p) and Sv(p)
are independent sets. By Lemma 11, if ∥X |−|Y∥ ≥ 2, then G has at most

⌊
n2/4

⌋
− 2 edges, and we are done. Thus, we

assume that ∥X |−|Y∥ ≤ 1. Recall that by Lemma 12(d), we have |Su| ≥ |Sv| − 1. Then

|X | = |Su| + |Suv| + |Puv| + 1 ≥ |Sv| + |Suv| + |Puv| = |Y | − 1 + |Suv| + |Puv|.

Since ∥X |−|Y∥ ≤ 1, it follows that |Suv| + |Puv| ∈ {1, 2}, and thus either |Suv| = |Puv| = 1 or Suv = ∅ and |Puv| ∈ {1, 2}.
We distinguish between these cases.

1. Suppose that |Suv| = |Puv| = 1. Then Puv = {p} and |Su| = |Sv|−1. The latter implies Su = Su(p), and again (as in the
case free(f ) = 0) the vertex in Suv cannot be adjacent to any vertex in Su. Thus, for any non-edge xy in Su(p)×Sv(p),
the only possible common neighbour of x and y is t . Thus, if |Su(p)| = |Sv(p)| ≥ 2, t must be adjacent to all vertices
in Su(p) and Sv(p). Observe that, if vt is critical for the pair {s, t} with Suv = {s}, then s has no neighbour in Sv (since
t is adjacent to every other vertex in Sv), and thus all but one of the non-edges between s and Sv are f -free (their
only possible preimage by f is sv). But this is the only pair for which the edge vt can be critical, thus we reach a
contradiction. Furthermore, if |Su(p)| = |Sv(p)| = 1, then the vertices in Sv cannot be adjacent to the vertex in Suv
since otherwise the edges between v and Sv would not be critical, and the graph has at least two free non-edges
(pt and one of the non-edges between Sv and Suv , which can both only be assigned to the unique edge between v

and Suv), a contradiction. Since Su(p) = Su ̸= ∅, we have finished this case.
2. Suppose that Suv = ∅. If Su = Su(p), then, as in the case free(f ) = 0, for any x ∈ Su, the edge ux would not be

critical, a contradiction. Thus, we can assume that there is a vertex w ∈ Su \ Su(p). Then Puv = {p} and |Su| = |Sv|.
If |Su| = 2, then the vertex in Su(p) is adjacent to t (since p and t are at distance 2 and pt is f -free). However, by
Lemma 8(c), w has a neighbour in Sv . Thus, w and the vertex in Su(p) have two common neighbours (u and a vertex
in Sv), and thus the edge between u and the vertex in Su(p) is not critical, a contradiction. This implies that there
are at least two vertices in Su(p). Furthermore, pw /∈ E (since otherwise this edge would not be critical). Since pt is
f -free, there is a vertex m(x) ∈ Su(p) (for a certain x ∈ Sv(p)) such that m(x)t ∈ E (since otherwise, either G would
have diameter 3, or N(t) ∩ N(p) = {w}, two contradictions). Assume first that there exists a vertex m(y) ∈ Su(p)
(for a certain y ∈ Sv(p)) such that m(y)t /∈ E. Then the non-edge m(y)t must have a preimage by the function f ,
and there are two possibilities. First, if either f (yt) = m(y)t or f (m(x)m(y)) = m(y)t , then by Lemma 12(c) the
non-edge m(x)y is f -free, a contradiction. Now, if f (m(y)w) = m(y)t then wy ∈ E (since otherwise it would be an
f -free non-edge) and yt /∈ E. This implies that the non-edge m(x)y, which is not f -free, can only have m(x)w as a
preimage by f (since Su(p) and Sv(p) are independent sets), and thus wx ∈ E (since otherwise it would be an f -free
non-edge). However, all this implies that the non-edge m(y)x is f -free, a contradiction. Thus, t is adjacent to all
vertices in Su(p). However, t is adjacent to no vertex in Sv(p) (since otherwise the edge vt would not be critical),
and thus we necessarily have f (m(x)w) = m(x)y for all non-edges m(x)y ∈ Su(p) × Sv(p), which in turn implies
that w is adjacent to all vertices in Su(p) and Sv(p). Furthermore, wt ∈ E (since otherwise it would be an f -free
non-edge: Su(p) ⊆ N(w) ∩ N(t) and |Su(p)| ≥ 2). However, wt is not critical, a contradiction.

Hence, we have shown that the f -free non-edge is not incident with p.
Case 2.2: Suppose that the unique f -free non-edge is incident with a vertex of Suv . Then, Suv ̸= ∅ and free(Puv, f ) = 0.
Thus, by Lemma 12(d), we have |Su| ≥ |Sv|. But then, ∥X |−|Y∥ = (|Su| + |Puv| + |Suv|) − |Sv| ≥ 2, and by Lemma 11, we
deduce that G has at most ⌊n2/4⌋ − 2 edges, a contradiction.
Case 2.3: Finally, assume that the unique f -free non-edge is in Su × Sv . Then, since free(Puv, f ) = 0, by Lemma 12(d), we
deduce that Sv = Sv(p), and |Su| ≥ |Sv|. By Lemma 12(c), Sv = Sv(p) is an independent set. Once again, if ∥X |−|Y∥ ≥ 2, by
Lemma 11, G has at most ⌊n2/4⌋−2 edges, and we are done. Thus, there is no vertex in Su \ Su(p), Puv = {p}, and Suv = ∅.
Since the f -free non-edge is in Su × Sv , we know that |Su(p)|, |Sv(p)| ≥ 2. But now all the edges ux with x ∈ Su(p) are not
critical, since any two vertices of Su have both u and p as common neighbours. This is a contradiction.

The above study covers all possible cases, and we always reach a contradiction. Thus, if Puv ̸= ∅, then there are at least
two f -free non-edges, a contradiction which completes the proof of Theorem 4. □

3. Characterizing D2C graphs of order n with maximum degree n − 2

It is not difficult to observe that the only D2C graphs of order n with maximum degree n−1 (likewise, with minimum
degree 1) are stars. The D2C graphs with maximum degree n− 2 turn out to be interesting, as they form a precise family
of graphs; they all have 2n − 4 edges and a dominating edge. We will see that the graph H5 from Fig. 2 is the smallest
member of this family (indeed it has six vertices and a vertex of degree 4).
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Fig. 18. The two D2C graphs T2k+2 and T2k+3; A and B are independent sets, and the bold edges are dominating.

We first describe a family T of twin-free D2C graphs with order n ≥ 6 and maximum degree n−2. (Recall that twins are
non-adjacent vertices with the same neighbours.) When n = 2k+2 is an even integer (k ≥ 2), we let V (Tn) = A∪B∪{u, v},
where A = {a1, . . . , ak} and B = {b1 . . . , bk}. The edges of Tn are defined as follows: for every i with i ≤ 1 ≤ k, we have
the edge aibi, the edges uai, ubi and vbi. For odd n (n = 2k+ 3 and k ≥ 2), Tn is obtained from Tn−1 by adding a vertex w
adjacent to u and v. See Fig. 18 for an illustration.

We will extend the family T to graphs that have twins. But first, we will need the following theorem of MacDougall
and Eggleton [22].

Theorem 22 (MacDougall and Eggleton [22, Theorem 2]). Let G be a D2C graph with a vertex v of G. The graph G′ obtained
from G by adding a twin of v is D2C if and only if for every vertex w ̸= v such that v and w are in a common triangle, there
exists a non-neighbour x of v in G such that N(x) ∩ N(v) = {w}.

We observe the following.

Observation 23. In the graph Tn, the only vertices satisfying the conditions of Theorem 22 are the ones of A ∪ {v, w}.

Nevertheless, adding a twin to v would result in a graph of order n with maximum degree at most n − 3. Thus, we
define the family of graphs T ′ extending T in the following way. T ′ contains all graphs obtained from a graph in T by
replacing an arbitrary (possibly empty) subset of vertices of A ∪ {w} by any number of twins. Note that for any graph G
in T ′, the edge ubi is dominating for every i with 1 ≤ i ≤ k. If w exists in G, then also the edge uw is dominating.

Next, we show that the graphs in T ′ are D2C. Note that T6 is isomorphic to the graph H5 of Fig. 2. The graph obtained
from T6 by adding a twin to any vertex of A is isomorphic to the graph of Fig. 3(a).6 The graph T7 is isomorphic to the
graph of Fig. 3(c).

Proposition 24. Any graph of order n in T ′ is D2C and has 2n − 4 edges.

Proof. Recall that G is obtained from T2k+2 or T2k+3 (k ≥ 2) by expanding any (possibly empty) subset of vertices of
A ∪ {w} into twins.

It is clear that T2k+2 has 4k = 2n − 4 edges. When we add w to obtain T ′

2k+3, we add one vertex and two edges.
Similarly, when adding a twin of a vertex of A∪ {w} to T2k+2 or T2k+3, we always add one vertex and two edges, thus the
resulting number of edges is always 2n − 4.

It remains to show that G is D2C. It is clear that G has diameter 2. Assume first that G has no twins. Let 1 ≤ i, j ≤ k
such that i ̸= j. The edges uai and ubi are critical for all the pairs {ai, bj} and {bi, aj}, respectively. The edge aibi is critical
for {ai, v}. Each edge vbi is critical for the pair {v, bi}. The edges wu and wv are critical for the pairs {w, ai} and {w, v},
respectively.

When G has twins, we apply Observation 23 and Theorem 22. □

We now show that the graphs of T ′ are the only non-bipartite D2C graphs with maximum degree n − 2.

Theorem 25. Any non-bipartite D2C graph on n vertices and maximum degree n − 2 belongs to T ′.

Proof. Let G be a non-bipartite D2C graph on n vertices and maximum degree n− 2. By Observation 23 and Theorem 22,
we may assume that G is twin-free; thus we need to prove that G belongs to T .

6 Similarly, the graph obtained from T6 by adding a twin to v is isomorphic to the graph of Fig. 3(b), but it has maximum degree n− 3 and thus
does not belong to T ′ .
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Let u be a vertex of degree n − 2 in G, and let v be its unique non-neighbour. First of all, we claim that N(v) forms an
independent set. Indeed, if x, y are two adjacent vertices of N(v), the edge xy cannot be critical, a contradiction.

Next, we claim that every vertex x of N(u) \ N(v) has exactly one neighbour in N(v). First, if x has no neighbour in
N(v), then x and v would be at distance 3, a contradiction. Second, if x had two distinct neighbours y and z in N(v), then
the edges xy and xz could not be critical, a contradiction. Denote by f (x) the unique neighbour of x in N(v).

We now show that N(u) \N(v) is an independent set. Indeed, if we had two adjacent vertices x1 and x2 in N(u) \N(v),
since both x1 and x2 have a neighbour in N(v), the edge x1x2 cannot be critical, a contradiction.

We now show that if x1, x2 are two distinct vertices of N(u) \N(v), then f (x1) ̸= f (x2). Indeed, if we had f (x1) = f (x2),
then x1 and x2 would be twins, a contradiction.

Thus, the subgraph induced by N(u) is a collection of disjoint edges. Hence, there can be at most one vertex in N(v)
that has no neighbour in N(u) (if there are two they would be twins).

Thus, we let A = N(u) \ N(v), B = {y ∈ N(v) | y = f (x) andx ∈ A}, and if (B \ N(v)) ̸= ∅, we let w be the only vertex of
B \ N(v). It is now clear that G is isomorphic to Tn. □

4. Conclusion

Conjecture 3 postulates that there is a linear gap in the set of possible numbers of edges of D2C graphs of order n
when we exclude the well-understood class of complete bipartite graphs: from ⌊n2/4⌋ to ⌊(n− 1)2/4⌋ + 1. The bound of
Theorem 4 only shows a constant gap for graphs with a dominating edge, which leaves room for further improvements.
We hope that our method can be further used to improve the gap by a function of n (ideally linear), towards Conjecture 3.
As witnessed by Theorems 20 and 21, in order to do so, one should first focus on the case when Puv is nonempty. When
Puv is empty, the first case to improve is the one considered in Theorem 21, especially when there is a unique connected
component in both Su and Sv , and the f -orientation is acyclic.

Recall that the infinite family C+

5 of extremal graphs for Conjecture 3 contains only graphs with no dominating edge.
Moreover, among graphs of order at most 11, there are only ten non-bipartite D2C graphs with a dominating edge (all of
order at most 9) and ⌊(n−1)2/4⌋+1 edges. Thus we suspect that, for this class of D2C graphs, the bound of Conjecture 3
is actually not tight, and ask the following.

Question. What is the largest possible number of edges of a non-bipartite D2C graph of order n and with a dominating edge?

Towards this question, one possibility to obtain a D2C graph with a dominating edge is to start with the graph T7
defined in Section 3 and depicted in Fig. 3(c), and expand the vertices v and w into two equal-size sets of twins. The
resulting graph is D2C, has (n−2)2+15

4 edges, and the edge uw is dominating.
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