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a b s t r a c t

We study the exact square chromatic number of subcubic planar graphs. An exact square
coloring of a graph G is a vertex-coloring in which any two vertices at distance exactly 2
receive distinct colors. The smallest number of colors used in such a coloring of G is its
exact square chromatic number, denoted χ [♯2](G). This notion is related to other types of
distance-based colorings, as well as to injective coloring. Indeed, for triangle-free graphs,
exact square coloring and injective coloring coincide. We prove tight bounds on special
subclasses of planar graphs: subcubic bipartite planar graphs and subcubic K4-minor-free
graphs have exact square chromatic number at most 4. We then turn our attention to
the class of fullerene graphs, which are cubic planar graphs with face sizes 5 and 6.
We characterize fullerene graphs with exact square chromatic number 3. Furthermore,
supporting a conjecture of Chen, Hahn, Raspaud and Wang (that all subcubic planar
graphs are injectively 5-colorable) we prove that any induced subgraph of a fullerene
graph has exact square chromatic number at most 5. This is done by first proving that
a minimum counterexample has to be on at most 80 vertices and then computationally
verifying the claim for all such graphs.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study exact distance coloring problems for graphs. The celebrated Hadwiger–Nelson problem asking
or the ‘‘chromatic number of the plane’’ falls into this category of problems: there, one wishes to assign a color to each
oint of the Euclidean plane, such that two points at distance exactly 1 receive distinct colors. A recent breakthrough
esult on this problem, showing that at least five colors are necessary, appeared in [19] (it is long known that seven
olors suffice [21]). Similar problems are studied for other metric spaces, see [28]. In the graph setting, for a positive
nteger p, an exact p-distance coloring of a graph G is an assignment of colors to the vertices of G, such that two vertices at
distance exactly p receive distinct colors [34, Section 11.9]. The exact p-distance chromatic number of G, denoted χ [♯p](G),
is the smallest number of colors in an exact p-distance coloring of G and the study of this parameter is gaining growing
attention, see [8,25,28,37]. Denoted G[♯p], the exact distance-p-power of G, is a graph obtained by taking vertices of G and
adding an edge between any two distinct vertices at distance exactly p in G. We have χ [♯p](G) = χ (G[♯p]). Thus, for p = 1
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this notion coincides with the usual chromatic number. Similarly denote by ω[♯p](G) and α[♯p](G), respectively, the clique
number and the independence number of G[♯p], that is ω[♯p](G) = ω(G[♯p]) and α[♯p](G) = α(G[♯p]).

Exact distance p-powers of graphs were first studied by Simić [39], see also [4,9] for more recent works. Exact
p-distance colorings have first been studied for graphs of bounded expansion. For a fixed graph class C of bounded
expansion (for example, the class of planar graphs), the exact p-distance chromatic number is bounded by an absolute
constant for graphs in C when p is odd [25,34], where the constant is determined by the class C and p, and by a linear
function of the maximum degree when p is even [25] where the coefficients of the linear function are determined by
the class C and p. Exact p-distance colorings have been studied in specific graph classes: trees [8], graphs of bounded
tree-width [25], chordal graphs [37], graphs of bounded genus [25,37].

Distance-based colorings of graphs have been extensively studied since the first papers on the subject were published
in the 1960s by Kramer and Kramer [29,30]. In their setting, for a positive integer p, a p-distance coloring of a graph G
is an assignment of colors to the vertices of G, such that two vertices at distance at most p receive distinct colors. The
smallest possible number of colors used in such a coloring is denoted by χp(G) (see [1,24,41,42] for some important
results). The problem of 2-distance coloring subcubic and cubic planar graphs is already far from trivial, and the focus of
many research works: see [7,17,23,24,41]. Notably, a special case of a conjecture by Wegner [42], recently solved in [41],
states that χ2(G) ≤ 7 for every subcubic planar graph G.

The goal of the present paper is to study exact p-distance colorings with a focus on the special case p = 2 and for
subclasses of planar graphs. Given a graph G, the graph G[♯2] is called the exact square of G. Similarly, an exact 2-distance
coloring of G is called an exact square coloring of G, and χ [♯2](G) is the exact square chromatic number of G.

What makes the study of exact distance coloring rather more difficult, is that χ [♯p] is not necessarily monotone with
respect to taking subgraphs. Indeed Kn is exact p-distance 1-colorable for every p ≥ 2. However, if restricted to exact
square coloring (p = 2), then χ [♯2] is monotone with respect to taking induced subgraphs. On the other hand, the
parameter χ [♯2] is unbounded even for trees, indeed for the star K1,t with t leaves, (K1,t )[♯2] is isomorphic to the disjoint
union of the complete graphs Kt and K1, and hence χ [♯2](K1,t ) = t . Thus, it is natural to restrict the study of exact square
colorings to graphs with no induced K1,t . For triangle-free graphs, this turns out to be the same as bounding the maximum
degree. Thus, the class of subcubic graphs will be a focus of this study.

A related notion is the one of injective coloring, introduced in [22] and well-studied since then, see for example
[10,14,32]. An injective coloring of a graph G is a vertex-coloring where any two vertices that are joined by a path of
length 2 receive distinct colors. The smallest number of colors used in an injective coloring of G is its injective chromatic
number, denoted χi(G).

From these definitions, we have the following inequalities for any graph G:

χ [♯2](G) ≤ χi(G) ≤ χ2(G).

Moreover, whenever G is triangle-free, we have χ [♯2](G) = χi(G), since in G, vertices joined by a path of length 2
must also be at distance 2. Since many of our results are for triangle-free graphs, they can be re-interpreted as results on
injective colorings. For a subcubic graph G, the maximum degree of G[♯2] is at most 6 and thus χ [♯2](G) ≤ 7. In fact, the
bound χi(G) ≤ 7 is also true [22]. Equality in the latter is shown to hold if and only if G is the Heawood graph [14,22], and
using the arguments of [14,22], the same holds for the exact square chromatic number. Thus, for every subcubic planar
graph G, we have χi(G) ≤ 6. A stronger bound was conjectured as follows.

Conjecture 1 ([14]). If G is a subcubic planar graph, then χi(G) ≤ 5.

Note that there is a subcubic planar graph G (with triangles) satisfying χi(G) = 5 [14], so if true, the conjectured
bound would be tight. However, we do not know of any subcubic planar graph with exact square chromatic number 5.
Conjecture 1 was generalized to arbitrary values of the maximum degree [14,31], in the spirit of a well-studied conjecture
by Wegner [42] on the (non-exact) square chromatic number. Conjecture 1 was proved for K4-minor-free graphs [14] (and
it follows from [6] that χ [♯2](G) ≤ 5 for any K4-minor-free graph G). Furthermore, the bound was improved to four colors
for outerplanar subcubic graphs [33]. If G is a subcubic graph with girth at least 19 (resp. 10) then χi(G) ≤ 3 (resp.
χi(G) ≤ 4) [32]. If G has girth at least 6, then χi(G) ≤ 5 [10]. Similar (but larger) bounds are known for χ2(G), see [7,17].

Exact square colorings also appear in another, more general, context: the one of L(p, q)-labelings. Given two non-
negative integers p and q, an L(p, q)-labeling of a graph G is an assignment ℓ of non-negative integers to the vertices of G,
such that for any two vertices u and v, we have |ℓ(u) − ℓ(v)| ≥ p if u and v are adjacent, and |ℓ(u) − ℓ(v)| ≥ q if they are
at distance 2. The first (and most) studied case is when p = 2 and q = 1 [20]; see the survey [13]. Thus, for any graph
G, there is a 1-to-1 correspondence between: (a) L(1, 0)-labelings and classic vertex-colorings of G, (b) L(1, 1)-labelings
and (non-exact) square colorings of G, and (c) L(0, 1)-labelings and exact square colorings of G. However, it seems that
L(0, 1)-labelings are rarely studied, see [6,13] for a few references.

We first prove some results for specific classes of subcubic planar graphs in Section 2, filling some gaps from the
literature. Let G be a subcubic graph. We show that χ [♯2](G) ≤ 4 if G is K4-minor-free. We also show that if G is planar
and bipartite, then its exact square is planar, thus χi(G) = χ [♯2](G) ≤ 4. Moreover these bounds are tight: there exist
bipartite subcubic K4-minor-free graphs with exact square chromatic number 4. In passing we also show that the exact
square of every subcubic bipartite outerplanar graph G is outerplanar, thus χi(G) = χ [♯2](G) ≤ 3. This is tight since for
every tree T with a vertex of degree 3, χ [♯2](T ) ≥ 3.
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Fig. 1. Some extremal examples of cubic graphs having high exact square chromatic number.

The main focus of our paper (Section 3) is on fullerene graphs, which are cubic planar graphs where every face has
length 5 or 6. They form an important and interesting class of cubic graphs, whose definition arises from chemistry: indeed
they correspond to the structure of fullerene molecules. Their graph-theoretic properties are well-studied, in particular,
in relation with colorings. See the survey [3]. For instance since it is known that fullerene graphs have girth 5, any exact
square coloring of a fullerene graph is also an injective coloring, and so our results for this class apply to both settings.
We first characterize in Section 3.1 those fullerene graphs with exact square chromatic number 3. It turns out that these
fullerene graphs are a special class of so-called (6, 0)-nanotubes [2,26] which we call drums. Then, in Section 3.2, we prove
onjecture 1 for fullerene graphs. The proof is computer-assisted: we first consider a potential minimum counterexample,
nd prove that it cannot have more than 80 vertices. We then use a computer program to check the list of fullerene graphs
f order up to 80, which is available online and certified complete [11,12,18].
We conclude in Section 4.

. Generalities

We now recall some facts from the literature and prove a few new results.

.1. Preliminaries

Given a vertex v, we denote by d(v) the degree of v and we say that v is a k-vertex if d(v) = k. For a planar graph
ith a given planar embedding, we call a k-face a face of length k.
A thread in a graph G is a path all of whose internal vertices are 2-vertices. We will use the following lemma.

emma 2 ([35]). Any planar graph G of girth at least 5d + 1 (d ≥ 1) contains a vertex of degree 1 or a thread with at least d
nternal vertices.

bservation 3. For any graph G, G[♯2] is a subgraph of G (the complement of G). If G has diameter 2, then G[♯2] is isomorphic
to G.

The two following results were formulated in the context of injective coloring [14,22], but the same arguments hold
for exact squares.

Theorem 4 ([14,22]). If G is a connected graph of maximum degree ∆ = k+ 1, then ω[♯2](G) ≤ k2 + k+ 1. Moreover, equality
may only happen if G is the incidence graph of a projective geometry of order k, in which case G[♯2] is isomorphic to two copies
f Kk2+k+1.

Using Brook’s theorem, the following can be deduced for the special case k = 2.

orollary 5 ([14]). Let G be a connected subcubic graph. Then, χ [♯2](G) ≤ 6, unless G is the Heawood graph (in which case
[♯2] is isomorphic to two disjoint copies of K7).

It is not difficult to find general subcubic graphs whose exact square contains a 5-clique (e.g. the Petersen graph1) or
6-clique (e.g. the triplex graph, a cubic graph of girth 5 and order 12, depicted in Fig. 1(a)).

1 If G has diameter 2, then G[♯2] is isomorphic to G and if G has girth 5, then α(G[♯2]) = 2.
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Another interesting graph G with χ [♯2](G) = 6 is the subcubic bipartite graph of order 22 built in a similar fashion as
he Heawood graph, see Fig. 1(c). This graph is also the incidence graph of the 113 geometric configuration number 31
escribed in [36]. Each connected component of its exact square is isomorphic to the (non-exact) 3-distance power of
he 11-cycle C11. It has maximum degree 6, clique number 4, chromatic number 6 and is thus an extremal example for
eed’s conjecture stating that χ (G) ≤

⌈
ω(G)+∆(G)+1

2

⌉
, for every graph G [38].

The following lemma is interesting to observe.

Lemma 6. Let G be a subcubic planar graph and let I be an independent set of G. Then, G[♯2]
[I] is planar.

roof. Let G′ be the graph built on I as follows: for each vertex x ∈ V (G) \ I , delete x and join all its neighbors in I .
Observe that, as x has at most three neighbors in G, and by considering a plane embedding of G, the new graph G′ is
planar. However this graph may have multiedges (when two vertices of I are in a 4-cycle). By removing all but one edge
from any group of parallel edges we get G[♯2]

[I]. □

We deduce the following from Lemma 6.

Proposition 7. For any subcubic planar graph G, we have ω[♯2](G) ≤ 4.

Proof. Let K be a clique in G[♯2]. In G, K is an independent set. Thus, by Lemma 6, G[♯2]
[K ] is a planar complete graph,

which implies that |K | ≤ 4, as desired. □

The bound of Proposition 7 is sharp, as we see next.

Proposition 8. There exist bipartite subcubic K4-minor-free graphs G of girth 6 with ω[♯2](G) = 4.

Proof. Consider the graph G consisting of two vertices connected with three vertex-disjoint paths of length 3. Then G[♯2]

contains two disjoint copies of K4. □

2.2. Bipartite planar graphs

We deduce the following from Lemma 6.

Theorem 9. Let G be a connected bipartite planar subcubic graph. Then, G[♯2] consists of two planar connected components,
each induced by one part of the bipartition of G. Moreover, if G is outerplanar, then these two components are outerplanar.

Proof. From Lemma 6 it follows that each part of G induces a planar graph in G[♯2]. That each part induces a connected
subgraph of G[♯2] is a consequence of G being connected. Indeed if x and y are in the same part of G, an x− y path P in G
will induce an x − y path in G[♯2] based on the vertices of P that are in the same part as x and y.

For the second part, suppose that G is outerplanar with bipartition (X, Y ). Recall that G[♯2] consists of two connected
components: the one induced by X and the one induced by Y . It suffices to prove that each biconnected component of
G[♯2] is outerplanar.

If G has a bridge, then the two vertices of this bridge are cut-vertices in G[♯2]. Since they belong to two different
connected components of G[♯2], each component contains a cut-vertex. Since we consider biconnected components of
G[♯2], we may assume in the following that G has no bridge.

Since G is cubic, we conclude that G is biconnected. Consider an outerplanar embedding of G and let C = v1v2v3 . . . v2k
be the facial cycle of this embedding. Then X = {v1, v3, . . . , v2k−1} and Y = {v2, v4, . . . , v2k} is the bipartition of G. As G
is bipartite, vi is not adjacent to vi+2 (where the sum in the indices is taken (mod 2)). Therefore, CX = v1v3 . . . v2k−1 is a
Hamiltonian cycle of the component of G[♯2] induced by X and CY = v2v4 . . . v2k is a Hamiltonian cycle of the component
of G[♯2] induced by Y . We show that CX can be the outer cycle of a planar embedding of the two components of G[♯2]

induced by X and Y . (The claim for CY is analogous.) The edges of CX can be presented on the outer face of G following
the cyclic order of C . If a vertex vi ∈ X is adjacent to a vertex vj, j ̸∈ {i − 1, i + 1}, (i.e., vivj is a chord of C), then we
draw two edges along the paths vivjvj−1 and vivjvj+1. We observe that, since G is bipartite, vj ∈ Y and this operation only
applies to vi. Furthermore, since G is subcubic, these newly drawn edges would not cross. This embedding then is clearly
an outerplanar embedding, with CX being its outer face. It remains to show that it has all the edges of G[♯2] induced by
the X part of G. Let vk and vl be two vertices of X with a common neighbor vp (thus vp ∈ Y ). Since G is cubic, vp is either
a neighbor of vk on C or a neighbor of vl on C (otherwise vp is of degree at least 4). If it is a common neighbor of both of
them, then vk and vl are consecutive vertices of CX and adjacent in our embedding. Otherwise, without loss of generality,
we may assume that vp is next to vk in C and that vpvl is a chord of C . Then we have drawn an edge along the path
vlvpvk. □

Theorem 9, together with the Four-Color Theorem, implies that the exact square of a bipartite subcubic planar graph
G is 4-colorable. If G is, furthermore, assumed to be outerplanar, then its exact square, being outerplanar, is 3-colorable.
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Fig. 2. An outerplanar graph with ∆ = 3 and χ [♯2](G) = 4 [33].

.3. K4-Minor-free graphs

A nested ear decomposition of a graph G is a partition of the edges of G into E1, . . . , Ek (the ears), such that the following
onditions hold.

(i) For every ear Ei, only the two end-vertices might be the same (thus Ei induces a path or a cycle).
(ii) For every ear Ei with i > 1, there is an ear Ej with j < i such that the two endpoints of Ei belong to Ej (we say that

Ei is nested in Ej, and the sub-path of Ej between the two endpoints of Ei is the nest interval of Ei).
(iii) Apart from the endpoints of Ei, for every j < i, no other vertex of Ei belongs to Ej.
(iv) If two ears Ei and Ei′ are both nested in Ej, then their nest intervals are either disjoint or one is contained in the

other.

This concept was defined in [16]. It is known that in any K4-minor-free graph, every biconnected component has a
ested ear decomposition. Indeed, a graph is K4-minor-free if and only if every biconnected component is two-terminal
eries–parallel [5], and every biconnected two-terminal series–parallel graph has a nested ear decomposition [16].

heorem 10. If G is a subcubic K4-minor-free graph, then χ [♯2](G) ≤ 4. Furthermore, this bound is tight on subcubic bipartite
4-minor free graphs of girth at least 6, and on outerplanar graphs.

roof. Let G be a minimum counterexample, that is, G is subcubic and K4-minor-free, χ [♯2](G) > 4 and the exact square
f every smaller subcubic K4-minor-free graph is 4-colorable.

laim 10.A. G is 2-connected.

roof of claim. Suppose that G has a cut-vertex v. Since G is subcubic, then it has a bridge xy. The case where one of the
wo vertices (say x) has degree 1 is easy, since any exact square 4-coloring of G − x would extend to G.

So assume that both x and y are vertices of degree at least 2. We remove the edge xy from G: this creates two
omponents. We add a degree 1 neighbor y′ to x and a degree 1 neighbor x′ to y. Let Gx and Gy be the components
ontaining x and y, respectively. Now, let φ be a k-coloring of G[♯2]

x and G[♯2]
y .

Suppose first that we have φ(x) = φ(y′) and φ(x′) = φ(y). Then, we interchange the colors φ(x) and φ(y) in Gy. This
ew coloring induces a valid k-coloring of G[♯2].
Similarly, if φ(x) ̸= φ(y′) and φ(x′) ̸= φ(y), we permute the colors of vertices of Gy so that φ(x) = φ(x′) and φ(y) = φ(y′).

gain this yields a valid k-coloring of G[♯2].
Finally, suppose that φ(x) = φ(y′) but φ(x′) ̸= φ(y) (the symmetric case is handled similarly). Since k ≥ 4, there is one

ree color cf among the neighbors of x (in G). We now permute the colors in Gy such that φ(x′) = φ(x) and φ(y) = cf .
gain this yields a valid k-coloring of G[♯2]. □

laim 10.B. G contains no 2-vertex lying on a k-cycle, with k ∈ {3, 4}.

roof of claim. Suppose v is a 2-vertex in G lying on a k-cycle (k ∈ {3, 4}) and consider G′
= G−v. Then χ [♯2](G′) ≤ 4 by

inimality of G. Now, since v is part of a k-cycle in G, it is easy to see that the distance in G′ between any pair of vertices
, y is the same as their distance in G. Thus an exact square coloring of G′ is valid in G. Since G is subcubic and v is lying
n k-cycle, we conclude that v has degree at most 3 in G[♯2]. Therefore v can be colored and we are done. □
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Claim 10.C. G contains no pair of adjacent 2-vertices.

Proof of claim. The proof is similar to the one of the previous claim. Suppose u, v are two adjacent 2-vertices in G and
consider G′

= G − {u, v}. Then χ [♯2](G′) ≤ 4 by minimality of G. It is easy to see that if the exact distance between two
vertices of V (G′) in G is 2, then this distance is preserved in G′. Thus an exact square coloring of G′ is valid in G and since
u, v have degree at most 3 in G[♯2], they can be colored and we are done. □

By Claim 10.A, G is 2-connected. Since G is K4-minor free, it has a nested ear decomposition E1, . . . , Ek where E1 is
a cycle. Moreover, by Claim 10.C, G has no pair of adjacent 2-vertices. Thus, there must be at least two ears in the
decomposition. We consider a subsequence of E1, . . . , Ek defined as follows: Ei1 = E1; given Eij , the next ear Eij+1 is
chosen (freely) among the ears nested on Eij whose length of nest is as small as possible. Since our sequence is finite,
this subsequence ends in an ear, say, El. By the minimality of the length of the nest of El, the vertices on its nest are all
of degree 2. Since l was the last element of the sequence, there is no ear nested on it, and all its internal vertices are of
degree 2 (in G). Since G has no pair of adjacent 2-vertices, El and its nest each has at most one internal vertex. Thus El
together with its nest induce a cycle of length at most 4. However, if the length is 3 or 4, then there must be a degree
2-vertex on this cycle, contradicting Claim 10.A. Otherwise Ej is nothing but a parallel edge, which is not possible since
ur graph is assumed to be simple.
For the tightness of the bound, in Proposition 8 we have presented a bipartite K4-minor-free graph of girth 6 whose

xact square is the disjoint union of two K4’s. For the class of outerplanar graphs we have the example of Fig. 2, given
n [33] in the context of injective coloring of outerplanar graphs. □

. Fullerene graphs

We now turn our attention to a special class of cubic planar graphs, namely fullerene graphs. They are the skeletons
f cubic 3-dimensional convex polyhedra, each of whose faces is either a pentagon or a hexagon. As the skeleton of
convex polyhedron, a fullerene graph must be 3-connected and most authors consider this condition as part of the
efinition. However, we rather define a fullerene graph as a ‘‘cubic plane graph each of whose faces is of size either 5 or
". The following can then be proved as an exercise.

roposition 11 (Folklore). Every fullerene graph has girth 5 and is 3-connected.

As any 3-connected graph admits a unique plane embedding, we may refer to a fullerene graph as a planar graph
ather than a plane graph. Further results on their structure were proved, and we give here a few of them which we will
se in the proofs of this section. Recall that a graph G is cyclically k-edge-connected if any edge-cut separating two cycles

of G has at least k edges. Došlić proved the following.

Theorem 12 ([15]). Every fullerene graph is cyclically 5-edge-connected.

Using this theorem, one can easily classify all possible small cycles of fullerene graphs. More precisely, we have the
following (perhaps folklore) fact; we refer to [27, Lemma 4.1] for a proof.

Lemma 13. Given a fullerene graph G, every non-facial cycle of G is of length at least 9. Moreover, the only cycles of length
9, if any, are the cycles around a vertex incident with 5-faces only.

Note that χ [♯2](G) ≥ 3 for any fullerene graph G. We first characterize those fullerene graphs whose exact square is
-colorable. Then, we prove χ [♯2](G) ≤ 5 for any fullerene graph G, thus proving Conjecture 1 for this class of graphs.

.1. Characterizing exact square 3-colorable fullerene graphs

We first need to define a special class of fullerene graphs, that we call drums.

efinition 14. A drum is a fullerene graph with two specific 6-faces F and F ′, each of which is a neighbor with six 5-faces
uch that all these twelve 5-faces are distinct. A drum where F and F ′ are at facial distance k + 1 is called a k-drum.

For an example, the 1-drum and 3-drum are depicted in Fig. 3. In the literature, drums are known as a specific type
of so-called nanotubes, more precisely, following the terminology from [2,26], they are exactly one of the five types of
(6, 0)-nanotubes.

We will show next that there exists a unique k-drum up to isomorphism.

Proposition 15. Given a k-drum G, all faces at distance ℓ ≤ k from F are of a same length.
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Fig. 3. Examples of drums.

Proof. We consider a planar embedding of G. Let v1, v2, . . . , v6 be the six vertices of F in the cyclic order of vertices, and
et u1, u2, . . . , u6 be the six vertices of F ′ in the cyclic order of vertices, see Fig. 3(a) for the labeling of the 1-drum.

Observe that, since G is cubic, each vertex vi has a unique neighbor in G \ F , we call it v′

i . Similarly, each neighbor of
ui not in F ′ is called u′

i . Observe that each pair of edges viv′

i and vi+1v
′

i+1 (addition in indices here and in the rest of the
proof are taken modulo 6) is a pair of parallel edges of a 5-cycle.

To prove the claim of the proposition, for ℓ = 1, by the definition, all faces at distance 1 from F are 5-faces. For ℓ = 2
we show that if one of the faces is a 5-face, then they are all 5-faces. So assume a face f at distance 2 from F is a 5-face.
Then, as there are only twelve 5-faces, f must be incident to F ′ and since the 5-faces incident to F ′ are distinct from
those of F , the vertices of f furthest away from F form an edge of F ′. Thus, we may label the vertices of f , without loss of
generality, u1u′

1v
′

2u
′

2u2. But then, the two faces incident to u1u′

1 and u2u′

2 are 5-faces next to F ′; by continuing this process,
e conclude that all faces at distance 2 from F are the 5-faces incident to F ′.
This completes the proof for ℓ = 1, 2 with any value of k, which is exhaustive for k ≤ 2. For the remaining cases, we

pply induction on k. Assume that the claim is true for k and all values of ℓ, ℓ ≤ k. Consider a (k+ 1)-drum (k ≥ 2). Thus,
ll faces at distance 2 from F are 6-faces. In each of these 6-faces, one of the vertices is already labeled v′

i , noting that
ifferent faces correspond to different v′

i ’s. Label xi the common neighbor of v′

i and v
′

i+1 (see Fig. 4). Thus, xi−1v
′

ixi form
part of a 6-face. On this face, label the neighbor of xi by yi. Finally, label the common neighbor of yi and yi−1 by zi. Let G′

be the graph obtained from G by deleting all the edges yizi+1 and then contracting edges ziyi and yixi. We claim that G′ is
a (k− 1)-drum where faces at distance ℓ from F in G are at distance ℓ− 1 from F in G′. This would complete the proof by
induction. To see that G′ is a fullerene graph, observe that from the construction it is 3-regular. Each face of G containing
a path ziyizi+1 becomes a face of the same size on the path xiv′

i+1xi+1, and all other faces remain the same. Hence, we only
have 5-faces and 6-faces in G′, so we are done. □

Our goal in this section is to characterize drums as the only fullerene graphs which are exact square 3-colorable. To this
end, in the next lemma, we present two planar subcubic graphs that are not exact square 3-colorable, thus they cannot
be induced subgraphs of an exact square 3-colorable graph.

Lemma 16. Neither of the two graphs of Fig. 5 admits an exact square 3-coloring.

Proof. We will repeatedly use the fact that in a proper 3-coloring of a K−

4 (that is, the complete graph on four vertices
minus one edge), the nonadjacent vertices must receive a same color. Applying this observation to the exact square of
the graphs of Fig. 5, we conclude that in a hypothetical 3-coloring of each of them, vertices v5, t2, u3 and w4 must receive
a same color (red or diamond shaped in the figure). This is already a contradiction in the graph of Fig. 5(a), as vertices
w and v are at distance 2.
4 5
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Fig. 4. The neighborhood of face F in a drum.

Fig. 5. The forced precolorings from the proof of Lemma 16.

To complete the proof for the graph of Fig. 5(b), observe that for the same reason, vertices u1, t3 and v4 must also get
same color, and this color must be distinct from red because u3 and v4 are at distance 2. We suppose this color to be
reen (pentagon shaped in the figure). Furthermore, vertices v2 and t6 are colored by the third color (blue or hexagon
haped), because each of them sees both other colors at distance 2. Moreover, since w5 must receive the same color as
6, we conclude that w5 must be colored blue.

Now, we know that v1 sees both blue and green at distance 2, and thus it must be colored red. Repeating the K−

4
rgument, we conclude that t4 and then u4 must be colored red as well. This is a contradiction, as u4 is at distance 2 from
he vertex v5, colored red. □

Similarly, we show in the next lemma, that the graph of Fig. 6, while admitting an exact square 3-coloring, has limits
n its possible 3-colorings.

emma 17. In an exact square 3-coloring of the graph G of Fig. 6, vertices x and y must receive distinct colors.
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Fig. 6. A 5-cycle surrounded by three consecutive 5-cycles.

Proof. By contradiction, suppose φ is an exact square 3-coloring of G with φ(x) = φ(y) = 1. Then, without loss of
enerality, we can assume that φ(v1) = 2 and φ(v3) = 3. Therefore, we have φ(v5) = 2. But then, φ(u2) = 2 because u2
ees v1 and y at distance 2. Similarly, φ(u4) = 2. This is a contradiction since u2 and u4 see each other at distance 2. □

emma 18. If G is a fullerene graph which is not the 1-drum and contains the graph of Fig. 6 as a subgraph, then χ [♯2](G) ≥ 4.

roof. Let G be an exact square 3-colorable fullerene graph which contains the graph of Fig. 6 as a subgraph. Moreover,
et φ be its exact square 3-coloring. By Lemma 17 and without loss of generality, we may assume that φ(x) = 1 and
(y) = 2. Hence, φ(u3) = φ(v3) = 3 and {φ(u2), φ(v2)} = {1, 3} and {φ(u4), φ(v4)} = {2, 3}. By the symmetry along the
dge xy, we may assume that φ(u2) = 3, which then implies φ(v2) = 1, φ(u4) = 2 and φ(v4) = 3. Therefore, we have
(u1) = φ(v1) = 2 and φ(u5) = φ(v5) = 1.
Next, noting that G is a 3-regular graph, we consider the remaining neighbors of degree 2 vertices of this subgraph.

et a, b, c, d, e, f be, respectively, the neighbors of u1, u3, u5, v5, v3, v1. The coloring extends uniquely to these six vertices
s follows: φ(a) = φ(b) = 1, φ(c) = φ(f ) = 3, and φ(d) = φ(e) = 2. Since G is planar and cubic, vertices a and b are
ying on the same face. Moreover, since G can have only 5-faces and 6-faces, we conclude that a and b (which are colored
ith the same color) must be adjacent. Similarly, we conclude that e and d must be adjacent. On the other hand, b and c
annot be adjacent, as otherwise b and u5 would be at distance 2 while both having the same color. Hence, b and c have
common neighbor, say b′, and thus we get a 6-face u5u4u3bb′cu5, which we name F . Similarly, vertices e and f have
common neighbor, say e′, thus we get a 6-face v1v2v3ee′f v1 and we name it F ′. Now, vertices a and f must lie on the
ame face, which can be either a 5-face or a 6-face. Observe also that the third neighbor of a, say a′, distinct from u1 and
must be colored 3. Therefore, since f is colored 3, vertex a′ cannot be at distance 2 from f and thus we conclude that a
nd f are lying on a 5-face au1v1fa′a. Symmetrically, we get that vertices c and d are lying on a 5-face as well: dv5u5cc ′d
where c ′ is the common neighbor of c and d).

In summary, starting from the graph of Fig. 6, with xy being the central edge, we concluded that the neighboring
tructure is forced. But we now have other isomorphic copies of the graph of Fig. 6 inside G, for example one centered
round u1u2 and another one centered around v4v5. Thus, the same local neighborhood structures should exist around
hese edges. The 6-faces in these structures are already given (F and F ′). Thus, we conclude that e′, e, d, c ′ are lying on
5-face. Similarly, a′, a, b, b′ are lying on a 5-face as well. This forces a graph where all but two vertices have degree 3,
he other two vertices being of degree 2. To complete this to a 3-connected cubic graph, we then join these two vertices
nd obtain the 1-drum. □

emma 19. The graph of Fig. 7 does not admit an exact square 3-coloring.

roof. To prove the lemma, we claim that in any possible exact square 3-coloring of this graph, vertices x and y must
eceive a same color. Considering the symmetry of edges xy and xz, the same argument then would apply to x and z. This
ould lead to a contradiction, since y and z cannot be colored the same.
To prove the claim, assume φ is an exact square 3-coloring of the graph of Fig. 7, and without loss of generality, assume

hat φ(y) = 1, φ(u) = 2 and φ(v) = 3. Then, φ(s) = 3 and φ(t) = 2. This in turn implies φ(x) = 1, which is the color of
. □
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Fig. 7. The graph of Lemma 19.

Fig. 8. The graph of Lemma 20.

emma 20. The graph of Fig. 8 does not admit an exact square 3-coloring.

roof. By contradiction, suppose φ is a 3-coloring of the exact-square of this graph. We first claim that φ(x2) = φ(y2). If
ot, then we may assume φ(x2) = 1 and φ(y2) = 2, then φ(y1) = φ(y3) = 3, which in turn implies that φ(t1) = φ(t2) = 1
ut t1 and t2 are at distance 2. Note that this proof is based solely on the three faces around y2, so similarly, if a vertex
as two 5-faces and one 6-face around it, then its color must be the same as the color of its neighbor on the 5-faces.
pplying this to our graph we have: φ(x3) = φ(y3), φ(z3) = φ(y4).
Suppose φ(x2) = φ(y2) = 2, then as y3 is at distance 2 from y2, and by the symmetry of other colors, we have

(x3) = φ(y3) = 3, then φ(z2) = 1 and since z3 is at distance 2 from both z2 and x3 we have φ(z3) = φ(y4) = 2. This in
urn implies that φ(t3) = 1, but then t2 sees all three colors at distance 2, that is y2 for color 2, y3 for color 3 and t3 for
olor 1. □

We can now state the main theorem of this section.

heorem 21. A fullerene graph is exact square 3-colorable if and only if it is a k-drum, for a positive integer k.

roof. First, we show that every drum is exact square 3-colorable. Given a k-drum, consider its 6-face F surrounded by
ix 5-faces. Color the vertices of F with 1, 2, 3, 1, 2, 3 in a clockwise orientation of F . Observe that, by Proposition 15, for
≤ l ≤ k, there are six faces of the same length at distance l from F . If we consider the subgraph Gl induced by faces at
istance at most l from F , its outer face is a 12-cycle. The 3-coloring of F is then uniquely extended to a 3-coloring of Gl,
here the 12 vertices of the outer face are colored consecutively 1, 2, 3 in the counterclockwise orientation with respect
o F .

Similarly, if we start from the face F ′ of the k-drum, and color the vertices of F ′ with 1, 2, 3 in the counterclockwise
rientation (of F ′), then the coloring extends uniquely to any subgraph obtained by faces at distance at most k− l from F ′.
n such a coloring, vertices of the outer 12-face are colored consecutively 1, 2, 3 with clockwise orientation with respect
o F ′. As this orientation of the outer 12-face matches its counterclockwise orientation with respect to F , we can choose
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Fig. 9. Graph of Lemma 22, where L(x) = {1, 2, 3, 4, 5}.

a proper rotation of colors on F ′, so that we can merge the colorings of both parts of the drum. Notice that, except the
vertices of the 12-cycle, all the vertices of one part of the drum are at distance at least 3 from vertices of the other part.

It remains to show that if a fullerene graph admits an exact square 3-coloring, then it must be a drum. Let G be an
exact square 3-colorable fullerene graph. By Lemma 16, a 5-face cannot have three consecutive 6-faces. By Lemmas 18
and 19, a vertex cannot be incident to three 5-faces. This leaves us with one possibility: each 5-face C is neighbor with
two other 5-faces through two non-adjacent edges of C . Labeling the vertices of one of the 5-faces, in the cyclic order,
x2, y2, z2, y3, x3, we may assume that each of the edges x2y2 and x3y3 is incident to another 5-face, thus so far we have
the subgraph of Fig. 8 induced by vertices xi’s, yi’s and zi’s, for 1 ≤ i ≤ 3. Using the labeling of this figure, the claim of
Lemma 20 implies that the second 5-face neighbor of the face x3y3z3y4x4 cannot be on the edge z3y4, thus it must be
on y4x4. Completing this sequence of 5-faces, we conclude that vertices xi form a face of G as they are already of full
egree. This face then can only be a 6-face which is the face F of the drum. The face F ′ of drum is found the same way
y considering the remaining 5-faces. □

.2. Fullerene graphs are exact square 5-colorable

To prove the main result of this section, we first give two lemmas on proper coloring of some graphs. Specifically, we
how that the precoloring extension of two graphs (where vertices take colors from lists of given sizes) can always be
one when the lists are subsets of {1, 2, 3, 4, 5}.

emma 22. Let abcdef be a 6-cycle and x be a vertex such that N(x) = {a, b, c, d, e, f }. Suppose these vertices have lists of
available colors from the set {1, 2, 3, 4, 5} satisfying the following: |L(a)| ≥ 2, |L(b)| ≥ 2, |L(c)| ≥ 2, |L(d)| ≥ 2, |L(e)| ≥ 2,
L(f )| ≥ 3 and |L(x)| = 5 (see Fig. 9). Then there exists a proper L-coloring of this graph.

roof. First we consider the case that L(a)∩L(c) ̸= ∅ and assume, without loss of generality, that 1 ∈ L(a)∩L(c). We color
(a) = φ(c) = 1. We then color vertices b, d, e, f in this order by observing that at each step there is an available color for
he current vertex. Now, if there is an available color from L(x) left for x, we are done. If not, then b, d, e, f have each been
olored with a distinct color from {2, 3, 4, 5}, say φ(b) = 2, φ(d) = 3, φ(e) = 4, φ(f ) = 5. We conclude that L(b) = {1, 2},
L(f ) = {1, 4, 5}, L(e) ⊂ {3, 4, 5} and L(d) ⊂ {1, 3, 4} as otherwise one of these vertices could be recolored in order to
ain a free color for vertex x. If 1 ∈ L(d), then we consider another coloring ψ(b) = ψ(d) = ψ(f ) = 1. This coloring then
xtends to a coloring of a, c and e, after which only four colors are used and thus we have a color left for x. Hence we
ay assume L(d) = {3, 4}. Let α ̸= 4 be a color in L(e), then the coloring φ(a) = φ(c) = 1, φ(b) = 2, φ(d) = φ(f ) = 4,
(e) = α uses at most four colors on neighbors of x and thus there is a color available at x.
As the pair e, c is symmetric to the pair a, c , for the remaining cases we may assume that L(a)∩ L(c) = L(c)∩ L(e) = ∅.

ince the colors are taken from the set {1, 2, 3, 4, 5}, we conclude that L(a)∩ L(e) ̸= ∅, and without loss of generality, we
ssume the coloring φ(a) = φ(e) = 1. If one of the two lists L(b) or L(d) does not contain color 1, then one could color the
ath bcd, and afterwards color vertex x and then finish by coloring f . Hence 1 ∈ L(b)∩ L(d) and then we consider another
oloring ψ(b) = ψ(d) = 1, which extends to the path afe (by first coloring a and e). We then color vertex x. Finally, since
e have already established that 1 ̸∈ L(c), we have a color left for vertex c and we are done. □

emma 23. The graph of Fig. 10 with the given lower bounds on the sizes of lists of colors from the set {1, 2, 3, 4, 5} is
-colorable.
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Fig. 10. Graph of Lemma 23, where L(x) = L(y) = L(z) = {1, 2, 3, 4, 5}.

Proof. Let G be the graph from the statement of the lemma. We distinguish three cases:

1. Suppose L(f ) ∩ L(d) ̸= ∅ and let α ∈ L(f ) ∩ L(d). Then we give the following partial coloring of G: we color both f
and d with color α and then greedily color e, c, b, in this order (at each step, there is at least one available color
with respect to L). Now the remaining uncolored vertices a, y, z, g, h, i, x form the configuration of Lemma 22, so
we are done.

2. We have L(f )∩ L(d) = ∅. Now, suppose L(f )∩ L(e) ̸= ∅. Then we color e with some color α ∈ L(f )∩ L(e) and thus we
still have |L(d)| ≥ 3. We then color greedily f , g, h, i, in this order. The remaining uncolored vertices z, x, a, b, c, d, y
form the configuration of Lemma 22, so we are done.

3. By the previous items we have that L(f ) ∩ L(d) = ∅ and L(f ) ∩ L(e) = ∅. Moreover, the same holds for each pair of
vertices isomorphic to f , d or to f , e. As the lists are taken from the set {1, 2, 3, 4, 5}, without loss of generality, we
can assume that L(f ) = {1, 2}, {3, 4} ⊆ L(e) and L(d) = {3, 4, 5}. Moreover, by symmetry we have L(g) ∩ L(e) = ∅

and thus L(g) = {1, 2, 5}. Therefore |L(g) ∩ L(d)| = 1. Now note that vertex a is symmetric to vertex d and to vertex
g and thus must satisfy |L(a) ∩ L(d)| = 1 and |L(a) ∩ L(g)| = 1, which is impossible since the colors are taken from
a set of five elements. □

Let C be the class of induced subgraphs of fullerene graphs. In order to show that every fullerene graph is exact square
5-colorable, we will prove a stronger statement: that every graph in C is exact square 5-colorable.

The main result of this section is the following theorem.

Theorem 24. Every graph G ∈ C is exact square 5-colorable.

Proof. Let G be a graph of C that is a minimum counterexample to our claim, that is, it is of smallest order among
those that are not exact square 5-colorable. Let H be a fullerene graph that contains G as an induced subgraph. In the
remainder of the proof, G will be a regarded as a plane graph whose embedding is induced by the unique embedding of
H . By Lemma 13, we know that every 5-cycle or 6-cycle of G is a face of both G and H . Furthermore, G has no other cycle
of length less than 9, and all cycles of length 9 are obtained from the symmetric differences of three 5-faces sharing a
common vertex. Further properties of G are as follows.

Claim 24.A. G is 2-connected.

Proof of claim. Note that the proof could be done in the same lines as for Claim 10.A for exact square 4-colorability of
K4-minor-free graphs. However, having five colors, we give a simpler proof here.

Suppose that G has a cut-vertex v. Since G is subcubic, it has a bridge uv. If one of u or v is of degree at most 2 (say,
it is u), then an exact square 5-coloring of G′

= G − u extends to G by using a proper permutation of colors in one of the
connected components of G′.

Therefore, both u and v are 3-vertices and the graph G′
= G − uv has exactly two connected components Gu and

Gv , containing u and v respectively. Let u1 and u2 (resp. v1 and v2) be the neighbors of u (resp. v) in Gu (resp. Gv). By
minimality of G, graphs Gu and Gv are exact square 5-colorable independently. Take such a coloring φ1 of Gu and let
φ1(u1) = 1, φ1(u2) = 2 and φ1(u) = α. We show that an exact square 5-coloring φ2 of Gv can be chosen to be compatible
with φ1 in G. Without loss of generality we can fix φ2(v) = 3 ̸= α. Then by applying a proper permutation of colors of
φ2 on Gv , one can choose φ2(v1) and φ2(v2) such that α /∈ {φ2(v1), φ2(v2)} and we are done. □
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Fig. 11. Configurations where two 2-vertices are at distance at most 3. The neighborhood of the black vertices is exactly the one depicted in the
igure.

laim 24.B. Any two 2-vertices of G are at distance at least 4.

roof of claim. The configurations of Fig. 11 are reducible. Indeed, if one of these configurations occurs, then we remove
rom G vertices y, v (resp. y, z, v and y, z, t, v) in the case of Configuration 11(a) (resp. 11(b) and 11(c)), in order to obtain
graph G′. The graph G′ is in C and, therefore, has an exact square 5-coloring which can be easily extended to G. □

laim 24.C. G has no 9-face.

roof of claim. By Lemma 13, every 9-face of Gmust contain three 2-vertices pairwise at distance at most 3, contradicting
laim 24.B. □

For a face f of G, let ℓ(f ) denote the length of f , and n2(f ) the number of 2-vertices on the boundary of f .

laim 24.D. For every face f of G, we have then n2(f ) ≤
⌊
ℓ(f )
4

⌋
.

Proof of claim. This follows directly from Claim 24.B. □

laim 24.E. G is a fullerene graph.

roof of claim. Let F (G) denote the set of faces of G in its planar embedding. By Euler’s Formula we have the following:∑
v∈V (G)

(2d(v) − 6) +

∑
f∈F (G)

(ℓ(f ) − 6) = −12 (1)

We assign to each vertex v the charge ω(v) = 2d(v)−6 and to each face f the charge ω(f ) = ℓ(f )−6. We redistribute
the charges by applying the following rule: every face f gives 1 to each 2-vertex lying on its boundary.

Note that after this redistribution of charges, the initial sum of charges is preserved. We analyze the new amount of
charges of vertices and faces of G:

• every 3-vertex has charge 0,
• every 2-vertex has charge 0 since by Claim 24.A it lies on two faces,
• every face f with ℓ(f ) ≥ 10 has strictly positive charge by Claim 24.D,
• every face f with ℓ(f ) = 6 has charge 0 by Claim 24.D,
• every face f with ℓ(f ) = 5 has charge −1 by Claim 24.D.

Therefore, in order to obtain a total charge of −12 after the redistribution of charges, we conclude that G contains
exactly twelve 5-faces and no other face of length at least 10. On the other hand, by definition of C, we know that G has
no 7-faces, nor 8-faces. Also by Claim 24.C, G has no 9-faces. Thus we conclude that G is a fullerene graph. □

Claim 24.F. Every 6-face of G is adjacent to at least one 5-face.

Proof of claim. Suppose to the contrary that G contains a 6-face adjacent to six 6-faces, as in Fig. 12(a). The graph
G1 = G−{a, b, c, . . . , x} belongs to C and is exact square 5-colorable. By applying such a coloring to G, we get a valid partial
exact square coloring of G. Observe that the remaining uncolored vertices induce two isomorphic connected components
in G[♯2] (see Fig. 12(b)). Thus, each can be (properly) colored independently. By counting the number of remaining colors
for each of the vertices of each of these connected components we obtain the configuration of Lemma 23, so we are
done. □

Claim 24.G. Every 6-face of G is adjacent to at least two 5-faces.
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Fig. 12. A 6-face surrounded only by 6-faces and its exact square.

Fig. 13. A 6-face surrounded only by one 5-face and its exact square.

Proof of claim. Suppose to the contrary that G contains a 6-face adjacent to at least five 6-faces. By Claim 24.F, this 6-face
has exactly five adjacent 6-faces and one 5-face, as depicted in Fig. 13(a). The graph G1 = G − {a, b, c, . . . , q, s, . . . , x}
belongs to C and is exact square 5-colorable. By applying such a coloring of G1 to G, we get a valid partial exact square
coloring. Observe that the remaining uncolored vertices induce in G[♯2] the graph depicted in Fig. 13(b). After counting
the number of available colors for each uncolored vertex, we properly color this graph using Lemma 22:

1. since |L(v)| ≥ 3 and |L(t)| ≥ 3, by the pigeonhole principle assign to v and t the same color,
2. color vertices j, e, a, c in this order,
3. color vertices m, h, k, s, w, u, p by Lemma 22,
4. color vertices x, o, g in this order,
5. color vertices n, q, l, d, b, f , i by Lemma 22.

Thus, the claim is proved. □

We can now deduce our last claim.

Claim 24.H. G has at most 80 vertices.
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Proof of claim. Since there are exactly twelve 5-faces in G and each can be adjacent to at most five 6-faces, there are at
most sixty 6-faces in G. By Claims 24.F and 24.G, every 6-face is adjacent to at least two 5-faces. Thus there can be at most
thirty 6-faces in G. Since each vertex belongs to three faces, we conclude that G has at most 30·6+12·5

3 = 80 vertices. □

To finish the proof, we have verified by computer using SageMath [40] that all fullerene graphs with up to 80 vertices
re exact square 5-colorable (in fact they are exact square 4-colorable). Thus G does not exist, and our theorem is proved.
he list of these fullerene graphs is available online2 and was generated independently using the two computer programs
ullgen [11] and buckygen [12,18] (these two different programs use two different methods, and thus this list is trusted to
e complete). □

. Conclusion

We have studied the notion of coloring of exact square on some families of subcubic graphs. This fits into a larger
rame of studying the chromatic number of exact distance d-power of graphs, which has recently got attention. However,
his special case is also closely related to the well studied notion of injective coloring. While in exact square coloring the
air of vertices of an edge are allowed to have a same color, in injective coloring this is only allowed for those edges that
re not in a triangle.
A main question studied here is the maximum possible exact square chromatic number of the class of subcubic planar

raphs. Conjecture 1 would imply that this is at most 5. There are examples of subcubic planar graphs which need five
olors in any injective coloring, but all known such examples contain triangles and are exact square 4-colorable. These
xamples are built using K−

4 whose vertices must receive four different colors in an injective coloring, however the exact
quare of this graph has only one edge and can be colored by two colors only. Thus 4 is also a possible answer for our
uestion.
It can be easily checked that a minimum counterexample to the conjecture has no triangle. Thus, as a natural class,

e considered cubic planar graphs each of whose faces is either a 5-cycle or 6-cycle. These are the duals of planar
riangulations having only vertices with degree 5 or 6. Known as fullerene graphs they are well studied. For this class
f graphs we characterized the ones admitting an exact square 3-coloring, and we proved that they all admit an exact
quare 5-coloring.
Further evidence that the upper bound of 5 might be replaced by 4 is the fact that the exact square of any bipartite

ubcubic planar graph is 4-colorable. Our proof of this fact uses the Four Color Theorem. It would be interesting to give an
ndependent proof. On the other hand, the example of an outerplanar subcubic graph whose exact square is 4-chromatic
as a fair number of degree 2 vertices. This suggests that one might be able to build examples of subcubic planar graphs
hose exact square is not 4-colorable.
We would like to ask if Theorem 10 can be strengthened by proving the same upper bound of 4 for the injective coloring

f K4-minor-free graphs. The upper bound of 5 is proved in [14] and the upper bound of 4 on the class of triangle-free
4-minor-free graphs follows from Theorem 10.
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