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An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in 
{1, . . . ,k}, to the edges of G such that any two edges each incident with one distinct 
endpoint of a third edge, receive distinct colors. The problem of determining whether such 
a k-coloring exists is called Injective k-Edge-Coloring. We show that Injective 3-Edge-

Coloring is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of 
arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. Injective 4-Edge-

Coloring remains NP-complete for cubic graphs. For any k ≥ 45, we show that Injective 
k-Edge-Coloring remains NP-complete even for graphs of maximum degree at most 5

√
3k. 

In contrast with these negative results, we show that Injective k-Edge-Coloring is linear-
time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite 
subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph 
of maximum degree at most 

√
k/2 is injectively k-edge-colorable.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

We study the algorithmic complexity of the injective 
edge-coloring problem. Our aim is to determine restricted 
graph classes where the problem is NP-hard, while in con-
trast, designing algorithms for other graph classes. An in-
jective k-edge-coloring of a graph G = (V (G), E(G)) is an 
assignment of colors, i.e. integers in {1, . . . ,k}, to the edges 
of G in such a way that two edges that are each incident 
with one distinct endpoint of a third edge, receive distinct 
colors. In other words, for any 3-edge path of G (possi-
bly forming a triangle), the first and last edge of the path 
receive distinct colors. The injective chromatic index of G , 
denoted χ ′

i (G), is the least integer k for which G admits 
an injective k-edge-coloring.
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E-mail address: florent.foucaud@uca.fr (F. Foucaud).
https://doi.org/10.1016/j.ipl.2021.106121
0020-0190/© 2021 Elsevier B.V. All rights reserved.
This concept was recently introduced in [4], where 
it is studied for some classes of graphs, and proved to 
be NP-complete. Bounds on the injective chromatic index 
of planar graphs, graphs of given maximum degree, and 
other important graph classes, have been recently deter-
mined in [1,3,7,14,16]. In particular, as mentioned in [7], 
it follows from [1] that all planar graphs are injectively 
30-edge-colorable, while outerplanar graphs are injectively 
9-edge-colorable [7]. It is also proved in [14] that subcu-
bic graphs are injectively 7-edge-colorable, while subcubic 
bipartite graphs [7] and subcubic planar graphs [14] are 
injectively 6-edge-colorable. Moreover all subcubic planar 
bipartite graphs are injectively 4-edge-colorable [14].

Note that in [1], this notion is studied as the induced 
star arboricity of a graph, that is, the smallest number of 
star forests into which the edges of the graph can be 
partitioned: this is an equivalent way to interpret injec-
tive edge-coloring (see [7]). The concept of an injective 
edge-coloring is the natural edge-version of the notion of 
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an injective vertex-coloring, introduced in [10] and well-
studied since then.

Another closely related notion is the one of strong edge-
coloring of a graph G , introduced in [8] and well-studied 
since then, especially in view of a celebrated conjecture 
by Erdős and Nešetřil [6]. In this type of coloring, edges 
that are the endpoints of a same 3-edge path or 2-edge 
path must receive distinct colors. The strong chromatic in-
dex χ ′

s(G) of a graph G is the least integer k for which G
admits a strong edge-coloring with k colors. It follows from 
the definitions that for any graph G , χ ′

i (G) ≤ χ ′
s(G) holds.

The algorithmic complexity of determining the strong 
chromatic index of a graph is well-studied, see for exam-
ple [12] for a classic reference, and [5,11] for more recent 
ones. In this paper, we wish to undertake similar types of 
studies for the injective chromatic index. The problem at 
hand is formally defined as follows.

Injective k-Edge-Coloring

Instance: A graph G .
Question: Does G admit an injective k-edge-coloring?

Injective k-Edge-Coloring was proved NP-complete 
(for every fixed k ≥ 3) in [4], with no particular restric-
tion on the inputs. We strengthen this as follows.

Theorem 1. The two following are NP-Complete:

1. Injective 3-Edge-Coloring, even for triangle-free cubic 
graphs, and

2. Injective 4-Edge-Coloring, even for cubic graphs.

Answering a question from [4] about the complexity of
Injective k-Edge-Coloring for planar graphs, we also study 
restricted subclasses of planar graphs.

Theorem 2. Let g ≥ 3. Injective 3-Edge-Coloring is NP-
Complete even for:

1. planar subcubic graphs with girth at least g,
2. planar bipartite subcubic graphs of girth 6.

The two items in Theorem 2 cannot be combined, be-
cause we can prove the following (note that all planar 
bipartite subcubic graphs are injectively 4-edge-colorable 
[14]).

Theorem 3. Every planar bipartite subcubic graph of girth at 
least 16 is injectively 3-edge-colorable.

We also obtain the following positive result (t w(G) de-
notes the treewidth of G).

Theorem 4. For every graph G of order n and every positive in-
teger k, there exists a 2O (k·t w(G)2)n-time algorithm that solves
Injective k-Edge-Coloring.

It is proved in [1] that χ ′
i (G) ≤ 3

(t w(G)
2

)
, and so using 

the above algorithm, one can determine the injective chro-
matic index of a graph of order n in time 2O (t w(G)4)n.

Contrasting with our hardness results for planar graphs, 
Theorem 4 implies that Injective k-Edge-Coloring can be 
2

solved in polynomial-time on subclasses of planar graphs: 
K4-minor-free graphs (i.e. graphs of treewidth 2), and thus, 
on outerplanar graphs.

In [4], Cardoso et al. use a reduction on graphs having 
their maximum degree linear in the number of colors. We 
improve it with the following result.

Theorem 5. For every integer k ≥ 45, Injective k-Edge-

Coloring is NP-Complete even for graphs with maximum de-
gree at most 5

√
3k.

The bound of Theorem 5 is tight up to a constant fac-
tor: by a standard maximum degree argument of a conflict 
graph, every graph with maximum degree at most 

√
k/2 is 

injectively k-edge-colorable. (Indeed, for every edge e of a 
graph G , there are at most 2(�(G) − 1)2 edges which can-
not have the same color as e, where �(G) is the maximum 
degree of G .)

2. Proof of Theorem 1

For these two problems, we reduce from 3-Edge-

Coloring, which is NP-Complete even for cubic graphs 
[12]. (Recall that a proper edge-coloring is an edge-
coloring for which edges that are incident to a same vertex 
receive different colors.)

3-Edge-Coloring

Instance: A cubic graph G .
Question: Does G admit a proper 3-edge-coloring?

2.1. Proof of Theorem 1.1

Proof. Let G be the input cubic graph. We will proceed in 
two steps: first, we create a triangle-free subcubic graph G ′
which has an injective 3-edge-coloring if and only if G is 
properly 3-edge-colorable. Then we describe how to make 
the graph cubic.

We create the graph G ′ from G by removing all the 
edges of G . For each edge uv of G , we create a copy of 
a gadget Euv (see Fig. 1(a) for an illustration) and con-
nect it to u and v as follows. We add eight new vertices 
wuv , zuv , auv , buv , cuv , duv , euv and fuv . We create the fol-
lowing edges uwuv , v wuv , wuv zuv , zuvauv , zuvbuv , auv cuv , 
buv cuv , auvduv , buv euv , cuv fuv , duv fuv and euv fuv .

Claim 6. Euv is injectively 3-edge-colorable, and for every valid 
edge-coloring γ of Euv , γ (uwuv) = γ (v wuv ) = γ (wuv zuv). 
Moreover, for any choice of the same color for these three edges, 
we can extend the coloring to an injective 3-edge-coloring of 
Euv .

Proof. Let us injectively 3-edge-color Euv . W.l.o.g., we can 
assume that duv fuv is colored 1, buv cuv is colored 2 and 
auv zuv is colored 3. We deduce that buv euv is colored 
2, cuv fuv is colored 1, auvduv and auv cuv are colored 3, 
buv zuv is colored 2 and euv fuv is colored 1. Hence uwuv , 
v wuv and wuv zuv must all be colored 1.

Now, given one same color for these three edges, one 
can color the rest of the gadget, for example using the pre-
viously constructed coloring. �
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(a) Edge gadget Euv with an injective 3-edge-coloring. (b) Connecting three copies of Euv in the construction

of G ′′ , along with an injective 3-edge-coloring.

fuv

euvduv

cuv

buvauv

zuv

wuv

uv
11

1

1 1

1

2

2

2

3

3

3 ruv

suvpuv

quv

f 1
uv

e1
uv

d1
uv

c1
uv

b1
uv

a1
uv

z1
uv

w1
uv

u1

v1
f 2

uv

e2
uv

d2
uv

c2
uv

b2
uv

a2
uv

z2
uv

w2
uv

u2

v2

f 3
uv

e3
uv d3

uv

c3
uv

b3
uv a3

uv

z3
uv

w3
uv

u3 v3

1

1

1

1

1
1

2

2
2

3

3

3

2

2

2

2

2

2

1

1
1

3

3

3

3 3

3

33

3

2

2

2

1

1

1

33

3

2

2

2

1

11

Fig. 1. Edge gadgets used in the proof of Theorem 1.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)
If G has a proper 3-edge-coloring γ , we injectively 3-
edge-color G ′ by assigning to uwuv , v wuv and wuv zuv in 
G ′ the color γ (uv); then we extend the coloring to each 
Euv using Claim 6.

Conversely, if G ′ has an injective 3-edge-coloring, then 
we color an edge uv of G with the color of the edge uwuv
(or v wuv ) of G ′ . This coloring is proper since Claim 6 in-
sures that uwuv and v wuv have the same color. Indeed if 
ux is an edge adjacent to uv , then uwuv and xwux have 
different colors.

We now show how to make the construction cubic. We 
create the cubic graph G ′′ as follows. First, take three dis-
joint copies G1, G2 and G3 of G ′ . To differentiate the ver-
tices of each copy, we add an exponent to the name of the 
vertex corresponding to the number of the copy. For exam-
ple, vertex wuv of G1 will be noted w1

uv . For each edge uv
of G , connect G1, G2 and G3 via K1,3 with vertex classes 
{ruv} and {suv , puv ,quv} as follows. The vertex suv (resp. 
puv , resp. quv ) is adjacent to d3

uv (resp. d1
uv , resp. d2

uv ), e2
uv

(resp. e3
uv , resp. e1

uv ) and ruv (see Fig. 1(b)). The graph G ′′
is simply the graph where the edge gadget is represented 
in Fig. 1 and for each u ∈ V (G), the three copies of ui for 
i ∈ {1,2,3} are identified.

As G is cubic, G ′′ is triangle-free and cubic. Note that if 
G ′′ admits an injective 3-edge-coloring, then in particular 
G ′ also admits an injective 3-edge-coloring and thus by our 
previous arguments, G is properly 3-edge-colorable.

If G is properly 3-edge-colorable, then we fix such a 
coloring γ : E(G) → {1,2,3}. For i ∈ {1,2,3}, we color the 
edges incident with wi

uv with the color γ (uv) + i, where 
3

the colors are considered to be taken modulo 3 (consider-
ing 0 = 3). Then it suffices to extend the obtained coloring 
to each edge gadget (see Fig. 1). �
2.2. Proof of Theorem 1.2

Proof. Let G be the input graph. For each vertex u of 
G , we replace it by the following vertex gadget Su (see 
Fig. 2). The gadget Su is made of a 9-cycle xu

0 xu
1 . . . xu

8 and 
three other vertices yu

i (i ∈ {0,3,6}) that will be connected 
to the rest of the graph. We add the edges xu

1 xu
8 , xu

2 xu
4 , 

xu
5 xu

7 , xu
0 yu

0 , xu
3 yu

3 and xu
6 yu

6 . For any edge-coloring γ of Su , 
we note C u

i (γ ) = {
γ (xu

i xu
i+1), γ (xu

i xu
i−1)

}
where i ∈ {0,3,6}

and where the indices are taken modulo 9.

Claim 7. For every injective 4-edge-coloring γ of Su and for ev-
ery i ∈ {0,3,6}, the color γ (xu

i yu
i ) belongs to the set C u

i (γ ). 
Moreover, C u

0 (γ ) ∪ C u
3 (γ ) ∪ C u

6 (γ ) = {1,2,3,4} and there ex-
ists a color a ∈ {1,2,3,4} such that for all i ∈ {0,3,6}, a ∈
C u

i (γ ).
Furthermore, for any choice of color for xu

0 yu
0 , xu

3 yu
3 , xu

6 yu
6

and sets of colors C u
i (γ ), i ∈ {0,3,6} verifying the previous nec-

essary conditions, there exists an injective 4-edge-coloring γ of 
Su matching those choices.

Proof. Let us try to construct an injective 4-edge-coloring 
γ of Su . Up to permuting the colors, we assume that 
γ (xu

0 xu
1) = 1, γ (xu

0 xu
8) = 2 and γ (xu

8 xu
1) = 3. Note that xu

2 xu
4

and xu xu cannot both be colored 4, w.l.o.g. assume that 
5 7
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Fig. 2. Two vertex gadgets Su and S v , corresponding to the vertices u and v of a graph G , connected by an edge gadget corresponding to the edge uv of 
G .
γ (xu
2 xu

4) 
= 4. Hence γ (xu
2 xu

4) = 2 and γ (xu
2 xu

3) = 4. Remark 
that γ (xu

5 xu
6) 
= 2. Moreover xu

5 xu
7 and xu

6 xu
7 can only receive 

colors 1 or 4 and they must receive different colors. Hence 
γ (xu

5 xu
6) = 3, γ (xu

3 xu
4) = 1, γ (xu

5 xu
7) = 4 and γ (xu

6 xu
7) = 1. 

Now there are two ways to complete the coloring of 
Su , either γ (xu

1 xu
2) = 4, γ (xu

4 xu
5) = 3 and γ (xu

7 xu
8) = 2 or, 

γ (xu
1 xu

2) = 3, γ (xu
4 xu

5) = 2 and γ (xu
7 xu

8) = 4. In both cases 
all properties of the first part of the claim hold (with 
a = 1).

Finally, note that the second of the two previous color-
ing options allows us to color xu

i yu
i , i ∈ {0,3,6} with any 

color among those of xu
i xu

i+1 and xu
i xu

i−1, and to complete 
the coloring. �

For every edge uv of G , we construct the following 
edge gadget Euv (see Fig. 2). First, choose yu

i (resp. yv
j ) of 

degree 1 among the vertices of Su (resp. S v ). Create two 
new adjacent vertices wuv and zuv such that yu

i wuv yv
j zuv

is a 4-cycle.

Claim 8. For every injective 4-edge-coloring γ of G and every 
edge gadget Euv connecting yu

i and yv
j (i, j ∈ {0,3,6}), we 

have C u
i (γ ) = C v

j (γ ).
Furthermore, any injective 4-edge-coloring γ of Su and S v

such that C u
i (γ ) = C v

j (γ ) and γ (xu
i yu

i ) = γ (xv
j yv

j ) can be ex-
tended to an injective 4-edge-coloring of Su ∪ Euv ∪ S v .

Proof. Suppose, w.l.o.g. by Claim 7, that xu
i xu

i+1 is colored 
1, xu

i xu
i−1 is colored 2 and xu

i yu
i is colored 1. Now w.l.o.g., 

yu
i wuv is colored 3 and yu

i zuv is colored 4. This implies 
that wuv zuv is colored 2, yv

j wuv is colored 3, yv
j zuv is col-

ored 4, yv
j xv

j is colored 1 and C v
j (γ ) = {1,2}.

The second part of the claim is proved by taking the 
previous coloring and extending it using the second part 
of Claim 7. �

Let G ′ be the cubic graph constructed from G by the 
above process. By Claim 8, if uv is an edge connecting yu

i
and yv

j then for any injective coloring γ of G ′ , C u
i (γ ) =

C v
j (γ ) = {a,b} for some a and b. Hence this set somehow 

characterizes the edge gadget Euv , we say that Euv is col-
ored by {a,b}.
4

Suppose that there exists an injective 4-edge-coloring 
γ of G ′ . For each edge uv of G , we color uv depending on 
the coloring of Euv . When Euv is colored {1,2} or {3,4}
(resp. {1,3} or {2,4}, resp. {1,4} or {2,3}) then we color 
uv by color 1 (resp. 2, resp. 3). We argue that this edge-
coloring, noted γ , is proper. Indeed suppose it is not, then 
for some vertex u, w.l.o.g., uv and uw are both colored 1. 
This means that the coloring of G ′ is such that C u

i (γ ) =
C u

j (γ ) or C u
i (γ ) ∩ C u

j (γ ) = ∅ for i 
= j and i, j ∈ {0,3,6}. 
This contradicts Claim 7. Hence we get a proper 3-edge-
coloring of G .

Conversely, suppose that there exists a proper 3-edge-
coloring of G . In G ′ , we color each edge of the form xu

i yu
i

by 1. If an edge uv of G is colored 1 (resp. 2, resp. 3) 
then we assign the color {1,2} (resp. {1,3}, resp. {1,4}) to 
Euv . By Claim 7, this coloring can be extended to an injec-
tive 4-edge-coloring of each Su , u ∈ V (G). By Claim 8, this 
injective 4-edge-coloring can be extended to each edge 
gadget to color the whole graph. �
3. Proof of Theorem 2

We will reduce from the following problem:

Planar 3-Vertex-Coloring

Instance: A planar graph G with maximum degree 4.
Question: Does G admit a proper 3-vertex-coloring?

This problem was proven to be NP-Complete in [9]. Let 
G be a planar graph with maximum degree 4.

3.1. Proof of Theorem 2.1

Proof. Recall that we want to construct a graph G ′ with 
girth at least g .

For each vertex u ∈ V (G), we construct a vertex gad-
get Su as follows (see Fig. 3). First create a cycle xu

1 xu
2 . . . xu

�

where � ≥ g and � is an odd multiple of 3. To each xu
i

add a single pendant neighbor yu
i of degree 1. To the ver-

tex yu
1 , add two non-adjacent neighbors wu and zu . Create 

four more vertices au
1 , bu

1 , cu
1 and du

1 . The vertex wu is ad-
jacent to au

1 and bu
1 while zu is adjacent to cu

1 and du
1 . 

Now construct a path auau . . .au
g of length g and add to 
1 2
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Fig. 3. Vertex gadget Su for planar subcubic graphs with girth at least g (in this example g = 4 and � = 9).
each au
i for i ≤ g − 1 a pendant vertex of degree 1 called 

a′ u
i . Similarly we create the vertices bu

1 . . .bu
g, b′ u

1 . . .b′ u
g−1, 

cu
1 . . . cu

g, c′ u
1 . . . c′ u

g−1 and du
1 . . .du

g , d′ u
1 . . .d′ u

g−1. Finally add a 
vertex αu (resp. βu , resp. γ u , resp. δu) adjacent to au

g (resp. 
bu

g , resp. cu
g , resp. du

g ).

Claim 9. For any injective 3-edge-coloring ρ of Su , ρ(au
gα

u) =
ρ(bu

gβ
u) = ρ(cu

gγ
u) = ρ(du

gδ
u). We call this color ρ(Su). 

Moreover, for any choice of a color ρ(Su), there exists an in-
jective 3-edge-coloring ρ with these properties.

Proof. Suppose that there exists i ∈ {1, . . . , �} such that 
the property P(i) := “ρ(xu

i xu
i+1) = ρ(xu

i yu
i ) 
= ρ(xu

i xu
i−1)”

holds (the indices are taken modulo �, considering 0 = �). 
Then P(i) holds for all i ∈ {1, . . . , �}. Indeed, take such an 
i, then ρ(xu

i+1xu
i+2) = ρ(xu

i+1 yu
i+1) is the color {1,2,3} \{

ρ(xu
i yu

i ),ρ(xu
i xu

i−1)
}

. Hence the property holds for i + 1, 
by induction it holds for every i. Note that the same can 
be said for the property P ′(i) = “ρ(xu

i xu
i−1) = ρ(xu

i yu
i ) 
=

ρ(xu
i xu

i+1)”. Also note that if ρ(xu
i xu

i−1) = ρ(xu
i xu

i+1) 
=
ρ(xu

i yu
i ) then we have P(i + 1) which is a contradiction 

because we do not have P(i).
Suppose now that for all i, neither P(i) nor P ′(i) holds. 

This means that the edges incident to a vertex xu
i are ei-

ther of the same color, or of three distinct colors. If they 
have the same color, then the edges incident with xu

i+1
have three distinct colors, the ones incident to xu

i+2 have 
the same color, and so on. This would imply that the cycle 
xu

1 . . . xu
� is even, which is a contradiction. Moreover, if the 

edges incident to xu
i have three distinct colors, then the 

edges incident to xu
i+1 (or xu

i−1) would all have the same 
color, and therefore no injective 3-edge-coloring would be 
possible.

Thus, w.l.o.g. we can suppose that ρ(xu
1 xu

2) = ρ(xu
1 yu

1) =
1 and ρ(xu

1 xu
� ) = 3. By extending the coloring to the rest of 

Su , we can infer that ρ(yu wu) = ρ(yu zu) = 2, ρ(wuau) =
1 1 1

5

ρ(wubu
1) = 3 and ρ(zucu

1) = ρ(zudu
1) = 3. By the same rea-

soning, we can see that all the edges of Su (ignoring the 
edges involving one of the vertices xu

i ) have only one pos-
sible color which depends only on their distance to yu

1 and 
in particular ρ(au

gα
u) = ρ(bu

gβ
u) = ρ(cu

gγ
u) = ρ(du

gδ
u).

Conversely, Su admits a coloring (see Fig. 3 for an ex-
ample). To choose a coloring of Su having the desired color 
ρ(Su), it suffices to permute the colors in the previous col-
oring. �

To finish the construction, for any edge uv ∈ E(G), 
we add an edge euv to G ′ between a vertex among {
αu, βu, γ u, δu

}
and a vertex among 

{
αv , β v , γ v , δv

}
such 

that the planarity of G ′ is preserved. This can be done by 
cyclically ordering the vertices of 

{
αu, βu, γ u, δu

}
accord-

ing to a planar embedding of G , and adding the edge euv

between the right pair of vertices.
Note that G ′ is planar, subcubic with girth at least g .

Suppose that G ′ admits an injective 3-edge-coloring ρ . 
Assign to the vertex u of G the color ρ(Su). Take two ad-
jacent vertices u and v of G . The edge euv in G ′ is an edge 
between two vertices, one of Su and one of S v : w.l.o.g. say 
euv = αuαv . This implies that au

gα
u and av

gα
v receive dif-

ferent colors and thus ρ(Su) 
= ρ(S v ). Hence this coloring 
of G is a proper 3-vertex-coloring.

Conversely, suppose that G admits a proper 3-vertex-
coloring. Let ρ be a partial edge-coloring of G ′ with no 
colored edges. We choose the color ρ(Su) to be the color 
of u in G (and we color the appropriate edges of G ′). By 
Claim 9, we can extend ρ to each gadget Su . Note that by 
the choice of ρ(Su), there is no conflict between edges of 
Su and S v when u and v are adjacent in G . It is left to 
color the edges of the form euv . By construction, there are 
only two edges at distance 2 of euv (and this edge does not 
belong to a triangle). Hence there is at least one remaining 
color for euv . After coloring these edges, ρ is an injective 
3-edge-coloring of G ′ . �
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Fig. 4. Vertex gadget for planar bipartite subcubic graphs with girth at least 6.
3.2. Proof of Theorem 2.2

Proof. In order to prove this result, we will modify the 
previous construction to make it bipartite (the girth condi-
tion will be lost).

First we modify Su (see Fig. 4). Create the following 
gadget H . Start with a complete graph on four vertices 
x1, . . . , x4. For each edge xi x j , create a vertex xij adjacent 
to both xi and x j and remove the edge xi x j . To each of 
these vertices of degree 2, add a pendant edge, with yij

the vertex of degree 1 adjacent to xij .
We claim that in every injective 3-edge-coloring γ

of H , for any i 
= j, the vertex xij is incident to only 
one color. Suppose it is not the case, then there must 
exist an injective 3-edge-coloring γ for which we have 
one of x12x2 and x12x1 colored differently from x12 y12, 
say w.l.o.g. γ (x12x1) = 1 and γ (x12 y12) = 2. We deduce 
that γ (x2x23) = γ (x2x24) = 3, γ (x14x4) = γ (x3x13) = 2, 
γ (x3x34) = 1, and there is no color available for x23 y23, 
a contradiction.

Now, take two disjoint copies of H named Hu
1 and Hu

2 . 
Add an edge between the two vertices yu

12,1 and yu
12,2 and 

add the edge yu
12,1 yu

1 where yu
1 is a new vertex. Now re-

peat the construction process of Su , for g = 6 for example, 
as described in the previous section by starting at the step 
where the vertices wu and zu are added. As we observed, 
the edges incident to vertex xu

12,1 of Hu
1 (resp. xu

12,2 of 
Hu

2 ) have the same color in any injective 3-edge-coloring 
ρ . Hence, ρ(yu

12,1 yu
12,2) = ρ(yu

12,1 yu
1) 
= ρ(xu

12,1 yu
12,1). Note 

that this graph also admits an injective 3-edge-coloring 
(see Fig. 4). We are in the same configuration as in the 
proof of Theorem 2.1. Thus Claim 9 also holds for this gad-
get Su . Note that this gadget is bipartite.

The edge gadget does not change, it is still the edge 
euv . We need to be careful with the bipartiteness of the 
constructed graph. To ensure that the constructed graph is 
bipartite, it suffices that all vertices yu

1 , u ∈ V (G), belong 
to the same part of the bipartition. To that end, if there 
is a path of odd length between yu and yv , then w.l.o.g. 
1 1

6

this path is yu
1au

1 . . .au
gα

uαvav
g . . .av

1 yv
1 . If we increase the 

length of a sequence au
1 . . .au

g in Su by 3 (and also adding 
a′ u

g , a′ u
g+1 and a′ u

g+2), then this path now has even length. 
With this trick, we can ensure the bipartiteness of the con-
structed graph G ′ as well as keeping Claim 9 true in this 
new setting.

Hence, as before, G admits a proper vertex-3-coloring if 
and only if G ′ admits an injective 3-edge-coloring. �
4. Proof of Theorem 3

Proof. Let G be a planar bipartite subcubic graph with 
girth at least 16. Let A and B be the two parts of the bi-
partition of G . We construct the graph G A as follows: for 
each u ∈ A, we create a vertex u in G A . For each pair of 
vertices u, v of A which are at distance 2, we add an edge 
between u and v in G A . As G is subcubic, a planar em-
bedding of G also serves as a planar embedding of G A , 
where the edges of G A follow their corresponding path of 
length 2 in G . Hence, G A is a planar graph with maximum 
degree at most 6. Note that, by the girth condition on G , 
G A does not have any k-cycle, for all k with 4 ≤ k ≤ 7. 
Then, by the main result from [2], the graph G A admits a 
vertex-3-coloring γ .

We now color G as follows: each edge uv of G , where 
u ∈ A and v ∈ B , is colored by the color γ (u) in G A . We 
claim that this is an injective 3-edge-coloring of G . Indeed, 
take any path uv wz of G . W.l.o.g., assume u, w ∈ A and 
v, z ∈ B . By construction, uw ∈ E(G A) and thus uv and wz
receive different colors. �
5. Proof of Theorem 4

Proof. We give an fixed-parameter tractable (FPT) algo-
rithm parameterized by the treewidth t w(G) of our input 
graph G . We use a nice tree decomposition (see [13]) of the 
input graph for our dynamic programming algorithm. Nice 
tree decompositions are a well-known tool for designing 
algorithms on graphs of bounded treewidth using dynamic 
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programming. In our notation, the set of vertices of the 
graph associated to a node v of the tree, its bag, is de-
noted Xv .

A nice tree decomposition of a graph is a tree decom-
position, rooted at a node Root , with the following types 
of nodes. A join node has exactly two children, with the 
same bags as their parent join node. An introduce node has 
a unique child and contains exactly one more vertex in its 
bag than its child’s bag. A forget node also has a unique 
child, but the forget node’s bag has exactly one less ver-
tex than its child’s bag. A leaf node is a leaf of the tree 
and contains no vertices. We call G≤v the subgraph of G
induced by the subtree of the decomposition rooted at v
and G v the subgraph of G induced by Xv . We note NH (u)

for the neighborhood of a vertex u in a subgraph H of G .
We define the following set associated with a node v:

Tv =
{

t1 : Xv → P({1,2, . . . ,k})2
}

× {t2 : E(G v) → {1,2, . . . ,k}} ,

where P(X) is the power set of X . For T ∈ Tv with T =
(t1, t2), to simplify notation, we note T [u] for t1(u) when 
u ∈ Xv and T [e] = t2(e) when e ∈ E(G v). For a vertex u ∈
Xv , we also note Au and Bu the two sets such that T [u] =
t1(u) = (Au, Bu).

The set Val(v) is the subset of Tv such that T ∈ Val(v)

if and only if there exists an injective k-edge-coloring γ of 
G≤v such that:

1. for all u ∈ Xv , Au = {
γ (uw), w ∈ V (G≤v ) \ Xv

}
, i.e. Au

is the set of colors of the edges of G≤v (not in G v ) in-
cident with u,

2. for all u ∈ Xv , Bu = {
γ (zw), zw ∈ E(G≤v) \ E(G v) and

z ∈ NG≤v (u)
}

, i.e. Bu is the set of colors of the edges of 
G≤v (not in G v ) at distance 2 of u (or contained in a 
triangle containing u),

3. for all e ∈ E(G v), T [e] is the color γ (e).

In this case we say that γ is associated with T . Note that 
for each injective k-edge-coloring of G≤v , there exists an 
associated T ∈ Tv and hence, T ∈ Val(v). The set Val(v) is 
thus the set of T ∈ Tv associated with an injective k-edge-
coloring of G≤v .

Note that Val(Root) 
= ∅ if and only if there exists an 
injective k-edge-coloring of G . We will compute Val(Root)
with a dynamic programing algorithm. Also note that 
|Tv | ≤ 2O (k·t w(G)2) .

First suppose that v is a leaf node. Then Val(v) = Tv =
{(∅,∅)}.

Suppose that v is a forget node where v ′ is its child 
node such that Xv ∪{a} = Xv ′ . Let T ∈ Tv , T ∈ Val(v) if and 
only if there exists an associated coloring γ of G≤v . This 
coloring γ is also a coloring of G≤v ′ and thus is associated 
to a T ′ ∈ Val(v ′). In this case, since T and T ′ share the 
same coloring γ , we have the following constraints on T
and T ′:

• for all e ∈ E(G v), T [e] = T ′[e] = γ (e),
7

• for all u ∈ Xv such that au ∈ E(G v ′ ), Au = A′
u ∪ {T [au]}

and Bu = B ′
u ∪ {T [aw], w ∈ Xv ∩ NG(a), w 
= u} where 

T [u] = (Au, Bu) and T ′[u] = (A′
u, B ′

u),
• for all u ∈ Xv such that au /∈ E(G v ′ ), Au = A′

u and Bu =
B ′

u ∪ {T [aw], w ∈ Xv ∩ NG(u) ∩ NG(a)} where T [u] =
(Au, Bu) and T ′[u] = (A′

u, B ′
u).

The last two constraints reflect the fact that Au and Bu

must be updated after the removal of a. The only new 
colors that can be added to these sets come from edges 
incident with a. There are multiple cases, depending on 
whether u and a are adjacent or not, determining which 
colors of edges need to be added to these sets.

Hence, for all T ∈ Val(v), it suffices to check whether 
there exists a T ′ ∈ Val(v ′) for which the previous condi-
tions are verified. This can be done in time 2O (k·t w(G)2) , as 
T is uniquely determined by T ′ in the above constraints.

Suppose that v is an introduce node where v ′ is its 
child node such that Xv = Xv ′ ∪ {a}. Let T ∈ Tv , T ∈ Val(v)

if and only if there exists an associated coloring γ of G≤v . 
This coloring γ is also a coloring of G≤v ′ and thus is as-
sociated to a T ′ ∈ Val(v ′). In other words T is associated 
to a coloring γ obtained by extending a coloring γ ′ asso-
ciated to some T ′ ∈ Val(v ′). Thus T ′ ∈ Val(v ′), we have the 
following constraints on T and T ′ , in order to ensure that 
γ is the extension of γ ′:

• for all e ∈ E(G v ′ ), T [e] = T ′[e],
• for all u ∈ Xv ′ , T [u] = T ′[u],
• for T [a] = (Aa, Ba), Aa = ∅ and Ba = ⋃

u∈Xv ,ua∈E(G v ) Au ,
• the coloring of Xv is an injective k-edge-coloring,
• for all ua ∈ E(G v), T [ua] /∈Bu ∪ ⋃

u′∈Xv ,u′ 
=u,u′a∈E(G v ) Au′ .

The first two constraints correspond to the fact that γ is 
an extension of γ ′ . As a is a new vertex, Aa = ∅ and the 
only colors in Ba can be obtained by edges incident with 
some vertex u ∈ Xv itself adjacent to a, hence the third 
constraint. The last two constraints correspond to the fact 
that the coloring of the new edges around a cannot be in 
conflict with edges already colored. The fourth constraint 
checks that no such conflict arises in Xv and the fifth con-
straint ensures that for each new edge ua the color T [ua]
does not appear around an edge at distance 2 from a or u. 
For each T ′ , there are at most 2t w(G) possible candidates 
to be added to Val(v). Hence 2O (k·t w(G)2) time is sufficient 
to compute Val(v) from Val(v ′).

Suppose that v is a join node where v1 and v2 are its 
children nodes such that Xv = Xv1 = Xv2 . Let T ∈ Tv , T ∈
Val(v) if and only if there exists an associated coloring γ
of G≤v . As both G≤v1 and G≤v2 are subgraphs of G≤v , γ
is also a coloring of G≤vi (i ∈ {1,2}) and thus is associated 
to a Ti ∈ Val(vi). In this case, since T , T1 and T2 share the 
same coloring γ , we have the following constraints on T , 
T1 and T2:

• for all e ∈ E(G v), T [e] = T1[e] = T2[e],
• for all u ∈ Xv , Au = A1

u ∪ A2
u and Bu = B1

u ∪ B2
u where 

Ti[u] = (Ai
u, Bi

u) for i ∈ {1,2},
• for all uw ∈ E(G v ), Au ∩ Aw = ∅.
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Fig. 5. The edge gadget Euv when r > 0. The vertices inside each of the two rectangle form a clique. The vertex cuv is adjacent to every vertex inside the 
largest rectangle. The vertex duv is adjacent to every vertex inside the two rectangles.
The last constraint corresponds to the fact that the col-
oring is an injective k-edge-coloring (i.e. with no con-
flicts between the two subtrees). Given T1 ∈ Val(v1) and 
T2 ∈ Val(v2), T is uniquely determined by the above con-
straints. Hence it suffices to try all the pairs of T1, T2 and 
when the obtained set T verifies all conditions, we can 
add it to Val(v). This can be done in time (2O (k·t w(G)2))2 =
2O (k·t w(G)2) . �
6. Proof of Theorem 5

Proof. We reduce from k-Edge-Coloring, proven to be 
NP-Complete even for k-regular graphs in [15].

k-Edge-Coloring

Instance: A k-regular graph G .
Question: Does G admit a proper k-edge-coloring?

We choose p to be the largest integer such that k =(p
2

) + r (and thus r < p) and recall that k ≥ 45. Moreover 
we set � = 2p.

Let G be the input k-regular graph. For uv ∈ E(G), we 
define the edge gadget Euv as follows (see Fig. 5). First cre-
ate the following vertices auv , buv , xuv

1 , . . . , xuv
p−3, cuv , duv , 

euv , yuv
1 , . . . , yuv

r , suv
1 , . . . , suv

2� . The vertices suv
i have de-

gree 1 in Euv and will be connected to the rest of the 
graph. The vertices 

{
xuv

1 , . . . , xuv
p−3, a

uv , buv , cuv
}

form a 

clique; this is also the case for 
{

xuv
1 , . . . , xuv

p−3, a
uv, buv , duv

}

and 
{

yuv
1 , . . . , yuv

r ,duv
}

. The vertex euv is adjacent to cuv , 
duv , xuv

1 , . . . , xuv
p−3, suv

1 , . . . , suv
2� . In the case where r = 0, 

i.e. k = (p
2

)
, we delete duv .

Let u be a vertex of G with v1, . . . , vk its neighbors. 
We construct the vertex gadget Su from k × � vertices 
v1,1, . . . , v1,�, v2,1, . . . , vk,� and successively consider pairs 
vi , v j of neighbors. For each pair, we add an edge be-
tween one of vi,1, . . . , vi,� of minimum degree and one of 
v j,1, . . . , v j,� with minimum degree. By adding edges one 
by one in this way, we ensure that the maximum degree 
of the vertices of Su is at most k + 1.
�

8

Finally, for each edge uv of G , we identify the 2� ver-
tices suv

1 , . . . , suv
2� with the � vertices of Su corresponding 

to v (since v is a neighbor of u, by the construction of 
Su in the previous paragraph, there are � such vertices 
in Su) and with the � vertices of S v corresponding to u. 
This creates the graph G ′ . Note that its maximum degree 
is max(2� + p − 1, k

�
+ 2) ≤ 5p ≤ 5

√
3k.

Claim 10. For any injective k-edge-coloring γ of Euv , we have 
γ (euv suv

1 ) = γ (euv suv
2 ) = · · · = γ (euv suv

2� ). Moreover if γ is 
a partial injective k-edge-coloring of Euv where γ (euv suv

1 ) =
γ (euv suv

2 ) = · · · = γ (euv suv
2� ) and there are no other colored 

edges, we can extend γ to Euv .

Proof. First note that the clique 
{

xuv
1 , . . . , xuv

p−3, a
uv , buv ,

cuv
}

needs exactly 
(p

2

)
distinct colors. W.l.o.g. auvbuv is 

colored 1 and the colors used for this clique are 1, 2, . . . , (p
2

)
. None of these colors can be used to color the r edges 

of the form duv yuv
i hence they must be colored with 

(p
2

)+
1, . . . , 

(p
2

) + r. One can observe that an edge euv suv
i cannot 

have a color among 
(p

2

) + 1, . . . , 
(p

2

) + r as it is at dis-
tance 2 from the edges of the form duv yuv

j ( j ∈ {1, . . . , r}). 
Moreover this edge cannot receive the same color as one 
of the edges of the clique 

{
xuv

1 , . . . , xuv
p−3,auv ,buv , cuv

}
ex-

cept for the color 1 on the edge auvbuv . Hence all edges of 
the form euv suv

i have the same color.
Now suppose we have a coloring γ such that these 

edges euv suv
i (i ∈ {1, . . . ,2�}) are all colored with the same 

color, say 1. We color auvbuv with color 1 and use the (p
2

) + r − 1 other colors to color the rest of the edges 
of the clique 

{
xuv

1 , . . . , xuv
p−3,auv ,buv , cuv

}
and the edges 

of the form duv yuv
j ( j ∈ {1, . . . , r}). We color euv z for 

z ∈
{

xuv
1 , . . . , xuv

p−3, cuv
}

with the color of auv z.

If r = 0, then Euv is colored and γ is an injective k-
edge-coloring.
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If r > 0, we color duv euv and duvauv with the color 
of duv yuv

1 . We color duv z for z ∈
{

xuv
1 , . . . , xuv

p−3,buv
}

with 
the color of cuv z. It is left to color the edges of the clique {

yuv
1 , . . . , yuv

r

}
, for which we have available the 

(p−1
2

)

colors used to color the clique 
{

xuv
1 , . . . , xuv

p−3,auv ,buv
}

, 
which is enough as r ≤ p − 1. This is an injective k-edge 
coloring of Euv . �

Suppose there is an injective k-edge-coloring γ of G ′ . 
For an edge uv of G , we color it with the color γ (euv suv

1 ). 
Take two adjacent edges of G: uv1 and uv2. In Su , there 
is an edge between v1,i and v2, j for some indices i and 
j. Thus the edges euv1 v1,i and euv2 v2, j receive different 
colors. By Claim 10, uv1 and uv2 receive different colors. 
Hence G admits a k-edge-coloring.

Suppose there is a k-edge coloring γ of G . For each 
edge uv , we color euv suv

i with the color γ (uv). By 
Claim 10, we can extend this coloring to all Euv . At this 
point there is no conflict between the colored edges. In-
deed the only pairs of edges which are at distance 2 and 
not in the same edge gadget are of the form euw suw

i , and 
since γ is proper, there is no conflict here. It is left to color 
the edges inside the vertex gadget. Let e = vi, j vi′, j′ be an 
uncolored edge. As the maximum degree of the vertices of 
Su is at most k

�
+ 2, there are at most ( k

�
+ 2)2 edges in-

cident to a vertex of Su that can be in conflict with e. We 
must also consider the edges incident with euvi and euv j . 
For each of the two vertices there is one forbidden color 
γ (uvi) which is common to 2� edges incident to euvi to 
which we need to add p − 1 colors for the other edges 
of euvi . In the end, there are at most 2p + ( k

�
+ 2)2 for-

bidden colors for e. As 2p + ( k
�

+ 2)2 ≤ 2p + (
p−1

4 + 2)2 =
(

p−1
4 )2 + 3p + 3 ≤ k when k ≥ 45 and p ≥ 10, G ′ admits an 

injective k-edge-coloring. �
7. Conclusion

We proved that Injective 3-Edge-Coloring and Injec-

tive 4-Edge-Coloring are NP-complete on some restricted 
classes of subcubic graphs. One can ask whether Injec-

tive 5-Edge-Coloring is NP-complete on subcubic graphs. 
A conjecture proposed by Ferdjallah et al. [7] states that 
every subcubic graph admits an injective 6-edge-coloring 
(it is proved for planar graphs in [14]). In fact, we only 
know of two connected subcubic graphs which require six 
colors: K4 and the prism. Perhaps these are the only ex-
amples that are not 5-colorable, in which case Injective 
5-Edge-Coloring would be polynomial-time solvable for 
this class.

We have also proved that for planar bipartite subcu-
bic graphs, Injective 3-Edge-Coloring is polynomial-time 
solvable when the girth is at least 16 (because the answer 
is always YES), but NP-Complete when the girth is 6. It 
would be interesting to determine the values of the girth 

of planar bipartite subcubic graphs for which Injective 3-

Edge-Coloring stays NP-Complete, becomes polynomial-
time solvable, and always has YES as an answer.

We also do not know whether Injective 4-Edge-Coloring

is NP-Complete for bipartite subcubic graphs.
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