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Abstract

We study the complexity of graph modification problems with respect to
homomorphism-based colouring properties of edge-coloured graphs. A homomor-
phism from an edge-coloured graph G to an edge-coloured graph H is a vertex-
mapping from G to H that preserves adjacencies and edge-colours. We consider the
property of having a homomorphism to a fixed edge-coloured graph H, which gener-
alises the classic vertex-colourability property. The question we are interested in is the
following: given an edge-coloured graph G, can we perform k graph operations so that
the resulting graph admits a homomorphism to H? The operations we consider are
vertex-deletion, edge-deletion and switching (an operation that permutes the colours
of the edges incident to a given vertex). Switching plays an important role in the theory
of signed graphs, that are 2-edge-coloured graphs whose colours are the signs + and —.
We denote the corresponding problems (parameterized by k) by VD-H- COLOURING,
ED-H-COLOURING and SW-H-COLOURING. These problems generalise the exten-
sively studied H-COLOURING problem (where one has to decide if an input graph
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admits a homomorphism to a fixed target H). For 2-edge-coloured H, it is known that
H-COLOURING already captures the complexity of all fixed-target Constraint Satisfac-
tion Problems. Our main focus is on the case where H is an edge-coloured graph with at
most two vertices, a case that is already interesting since it includes standard problems
such as VERTEX COVER, ODD CYCLE TRANSVERSAL and EDGE BIPARTIZATION. For
such a graph H, we give a P/NP-complete complexity dichotomy for all three VD-H -
COLOURING, ED- H-COLOURING and SW-H -COLOURING problems. Then, we address
their parameterized complexity. We show that all VD-H- COLOURING and ED-H -
COLOURING problems for such H are FPT. This is in contrast with the fact that already
for some H of order 3, unless P = NP, none of the three considered problems is in
XP, since 3- COLOURING is NP-complete. We show that the situation is different for
SW-H-COLOURING: there are three 2-edge-coloured graphs H of order 2 for which
SW-H-COLOURING is W[1]-hard, and assuming the ETH, admits no algorithm in time
£ (k)n°® for inputs of size n and for any computable function f. For the other cases,
SW-H-COLOURING is FPT.

Keywords Parameterized complexity - Graph homomorphism - Graph modification -
Edge-coloured graph - Signed graph

1 Introduction

Graph colouring problems such as k-COLOURING are among the most fundamen-
tal problems in algorithmic graph theory. The problem of H-COLOURING is a
homomorphism-based generalisation of k-COLOURING that is extensively studied
[10,20,25,33]. Considering a fixed graph H, in H-COLOURING one asks whether an
input graph G admits a homomorphism (an edge-preserving vertex-mapping) to H.
Observe that k- COLOURING is the same problem as K;-COLOURING, where K is the
complete graph of order k (the order of a graph is its number of vertices).

We will consider parameterized variants of H- COLOURING where H is an edge-
coloured graph. We say that a graph is t-edge-coloured if its edges are coloured
with at most ¢ colours. In this paper, all (edge-coloured) graphs may have loops and
multiple edges, but multiple edges of the same colour are irrelevant. (Thus by graph we
effectively mean multigraph.) We sometimes give actual colour names to the colours:
red, blue, green. For 2-edge-coloured graphs, we will use red and blue as the two
edge colours. A standard uncoloured graph can be seen as 1-edge-coloured. For two
edge-coloured graphs G and H, a homomorphism from G to H is a vertex-mapping
¢ : V(G) — V(H) such that, if xy is an edge of colour i in G, then ¢(x)¢@(y) is an
edge of colour i in H. Whenever such a ¢ exists, we say that G maps to H, and we
write G —> H.

The H- COLOURING problems are well-studied, see for example [1,3—6]. They are
special cases of Constraint Satisfaction Problems (CSPs). A large set of CSPs can
be modeled by homomorphisms of general relational structures to a fixed relational
structure H [20]. The corresponding decision problem is noted as H-CSP. When H has
only binary relations, H can be seen as an edge-coloured graph (a relation corresponds
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to the set of edges of a given colour) and H- CSP is exactly H-COLOURING. The
complexity of H-CSP has been the subject of intensive research in the last decades,
since Feder and Vardi conjectured in [20] that H-CSP is either in P or is NP-complete
— a statement that became known as the Dichotomy Conjecture. The latter conjecture
was solved in 2017 in [8,42] independently; the criterion for H-CSP to be in P is based
on certain algebraic properties of H. Nevertheless, determining whether a structure
H satisfies this criterion is not an easy task (even for targets as simple as oriented
trees [10]). Thus, the study of more simple and elegant complexity classifications for
relevant special cases is of high importance

The complexity of H-COLOURING when H is uncoloured is well-understood: it is in
P if H contains a loop or is bipartite; otherwise it is NP-complete [25]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-coloured
graph, it was proved that the class of H-COLOURING problems captures the difficulty
of the whole class of H-CSP problems [6], and thus the dichotomy classification for
this class of problems is expected to be much more intricate.

Our goal is to study generalisations of H-COLOURING problems for edge-coloured
graphs by enhancing them as modification problems. In this setting, given a graph
property P and a graph operation 7, the graph modification problem for P and  asks
whether an input graph G can be made to satisfy property P after applying operation
7 a given number k of times. This is a classic setting studied extensively both in the
realms of classical and parameterized complexity, see for example [11,15,31,32,39].In
this context, the most studied graph operations are vertex-deletion and edge-deletion,
see the seminal papers [32,39].

For a fixed graph H, let P(H) denote the property of admitting a homomorphism to
H. Certain standard computational problems can be stated as graph modification prob-
lems to P(H). For example, VERTEX COVER is the graph modification problem for
property P (K1) and operation vertex-deletion. Similarly, ODD CYCLE TRANSVER-
SAL and EDGE BIPARTIZATION are the graph modification problems for P(K>) and
vertex-deletion, and P(K>) and edge-deletion, respectively.

When considering edge-coloured graphs with only two edge-colours, another oper-
ation of interest is switching: to switch at a vertex v is to change the colour of all edges
incident with v. (Note that a loop does not change its colour under switching.) This
operation is of prime importance in the context of signed graphs. A signed graph is
a 2-edge-coloured graph in which the two colours are denoted by signs (+ and —).
A graph is called balanced if it can be switched to be all-positive. The concepts of
signed graphs, balance and switching, were introduced and developed in [24,40] and
have many interesting applications, in particular in social networks and biological
dynamical systems (see [26] and the references therein).

The switching operation plays an important role in the study of homomorphisms of
signed graphs, a concept defined in [34] which has many connections to deep questions
in structural graph theory. In their definition, before mapping the vertices, one may
perform any number of switchings. (Note that when switching at a set S of vertices
of a signed graph G, the order does not matter: ultimately, only the edges between
S and its complement V (G) \ S change their sign.) The algorithmic complexity of
this problem was studied in [6,7,18,23]. Herein, we will consider edge-coloured graph

@ Springer



1186 Algorithmica (2022) 84:1183-1212

modification problems for property P(H) (for fixed edge-coloured graphs H) and for
graph operations vertex-deletion, edge-deletion and switching.

A parameterized problem is a decision problem where in addition to the input, a
parameter is also considered (the parameter is an integer function of the input). Such
a problem is fixed parameter tractable (FPT) if for any input / with parameter value
k, it can be solved in time O (f (k)|I|°) for a computable function f and integer c. It
is in the class XP if it can be solved in time O(|7|$®) for a computable function g.
It is W[1]-hard if all problems in the class W[1] can be reduced in FPT time to it. For
more details, see the books [16,17].

Let us now formally define the problems of interest to us, where H is a fixed
edge-coloured graph (the parameter is always k).

VD-H- COLOURING Parameter: k.
Input: An edge-coloured graph G, an integer k.

Question: Is there a set S of at most k vertices of G such that (G — ) =5 H?

ED- H-COLOURING Parameter: k.
Input: An edge-coloured graph G, an integer k.

Question: Is there a set S of at most k edges of G such that (G — S) 25 H?

SW-H-COLOURING Parameter: k.
Input: A 2-edge-coloured graph G, an integer k.
Question: Is there a set S of k vertices of G such that the 2-edge-coloured graph

G’ obtained from G by switching at every vertex of S satisfies G’ =5 H?

In the study of the three above problems, one may assume that H is a core (that
is, H does not have a homomorphism to a proper subgraph of itself). Indeed, it is
well-known that for any subgraph H’ of H with H 5 H',wehave G > H if and
only if G =5 H' [4].

Of course, whenever H-COLOURING is NP-complete, all three above problems are
NP-complete, even when k = 0, and so they are not in XP (unless P = NP). This is
for example the case when H is a monochromatic triangle: then this is the problem
3-COLOURING. Thus, from the point of view of parameterized complexity, it is of
primary interest to consider these problems for edge-coloured graphs H such that
H-COLOURING is in P. In that case a simple brute-force algorithm iterating over all
k-subsets of vertices of G implies that the three problems are in XP and hence the
interesting question is whether these problems are FPT or not. For undirected graphs,
the only cores H for which H-COLOURING is in P are the three connected graphs with
at most one edge [24] (a single vertex with no edge, a single vertex with a loop, two
vertices joined by an edge), so in that case the interest of these problems is limited.
However, for many interesting families of edge-coloured graphs H, the problem H-
COLOURING is in P, and the class of such graphs H is not very well-understood, see
[3-5]. Even when H is a 2-edge-coloured cycle, tree or complete graph, there are
infinitely many H with H-COLOURING NP-complete and infinitely many H where it
isin P [3].
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Recall that when H is a single vertex with no loop, VD-H - COLOURING is exactly
VERTEX COVER. If H has a single edge, VD-H - COLOURING and ED- H-COLOURING
are ODD CYCLE TRANSVERSAL and EDGE BIPARTIZATION, respectively. For H con-
sisting of a single (blue) loop, SW-H-COLOURING for k = |V (G)| consists in checking
whether the given 2-edge-coloured graph G is balanced (a problem that is in P [6]).
More generally, SW-H-COLOURING for 2-edge-coloured graphs H and k = |V (G)|
(that is, the number of switchings is unrestricted) is exactly the problem SIGNED H -
COLOURING studied in [6,7,23].

Related Work Several works address the parameterized complexity of graph
colouring problems. Graph colouring problems parameterized by structural param-
eters are considered in [28]. In [12], the vertex-deletion variant of H-LIST-
COLOURING is studied. Graph modification problems for COLOURING in specific
graph classes and for operations vertex-deletion and edge-deletion are consid-
ered, for example in [14] (bipartite graphs, split graphs) and [38] (comparability
graphs).

Every problem VD-H- COLOURING can be encoded as a special weighted homo-
morphism problem H’-WEIGHTED- COLOURING, as considered in [35]. In that setting,
the target H' is a graph with integer weights, and the goal is to find a homomor-
phism of some input graph G whose weight (i.e. the sum of weights of the images
of the vertices of G) is at most some given integer k. In our setting, we could gen-
eralize this problem to edge-coloured graphs and build H' from H by setting all
weights to 0 and adding a new vertex x adjacent to all vertices of H with weight
1. Now finding a weighted homomorphism of G to H with weight as most k is the
same as having a positive solution to VD-H - COLOURING (vertices mapped to x rep-
resent the deleted vertices in §). A similar notion was studied for general CSPs in
[9]. In that setting, only one “free” target vertex has weight O and all the others,
weight 1, and the goal is to find a homomorphism of weight at most a given integer
k. The Boolean CSP version where there are only two target values, 0 and 1, and we
wish to minimize the number of variables set to 1, is called the MIN ONES problem
[30].

Algorithmic problems relative to the operation of Seidel switching, similar to our
switching, have been considered. Given a (simple) graph G, the Seidel switching
operation performed at a vertex exchanges all adjacencies and non-adjacencies of v.
This can be seen as performing a switching operation in a 2-edge-coloured com-
plete graph, where blue edges are the actual edges of G, and red edges are its
non-edges. In [19,29], the complexity of graph modification problems with respect
to the Seidel switching operation and the property of being a member of certain
graph classes has been studied. Our work on SW-H-COLOURING problems can
be seen as a variation of these problems, generalised to arbitrary 2-edge-coloured
graphs.

A related switching problem is as follows: given a signed graph G and a positive
integer k, can it be switched so that there are at most k negative edges? This is shown
to be NP-complete in [26].

Our Results We study the classical and parameterized complexities of the three prob-
lems VD-H- COLOURING, ED-H-COLOURING and SW-H-COLOURING. Our focus
is on t-edge-coloured graphs H of order at most 2 with ¢ an integer (r = 2 for
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Table 1 Overview of our main results, sorted by problem and by type of classification

Problem VD-H- ED-H- SW-H-
COLOURING COLOURING COLOURING
P vs NP-hard Dichotomy for all Dichotomy when Dichotomy when
graphs (Cor. 14) [V(H)| <2 [V(H)| <2
(Thm. 15) (Thm. 20)
FPT vs. W[1]-hard All FPT (Thm. 23) All FPT (Thm. 23) Dichotomy
when (Thms. 24, 25)
[V(H)| <2

SW-H-COLOURING). Despite having just two vertices, H-COLOURING for such H
is interesting and nontrivial; it is proved to be in P by two different nontrivial
methods, see [1,5]. Thus, the three considered problems are in XP for such H.
(Recall that for suitable 1-edge-coloured graphs H of order 1 or 2, VD-H- COLOURING
and ED-H-COLOURING include VERTEX COVER and ODD CYCLE TRANSVER-
SAL.)

We completely classify the classical complexity of VD-H- COLOURING when H is
a t-edge-coloured graph of arbitrary order: it is either trivially in P or NP-complete. It
turns out that all VD-H - COLOURING problems are FPT when H has order at most 2.
To prove this, we extend a method from [5] and reduce the problem to an FPT variant
of 2-SAT.

For ED-H-COLOURING, a classical complexity dichotomy seems more difficult to
obtain, as there are nontrivial P cases. We perform such a classification when H is
a r-edge-coloured graph of order at most 2. Similar 2-SAT-based arguments as for
VD-H - COLOURING give a FPT algorithm for ED- H-COLOURING when H has order
at most 2.

For SW-H-COLOURING when H is a 2-edge-coloured graph, the classical
dichotomy is again more difficult to obtain. We perform such a classification by
using some characteristics of the switch operation and by giving some reductions to
well-known NP-complete problems. In contrast to the two previous cases for the param-
eterized complexity, we show that for three graphs H of order 2, SW-H -COLOURING
is already W[1]-hard (and cannot be solved in time f(k)|G|°® for any computable
function £, assuming the ETH'). For all other 2-edge-coloured graphs of order 2, we
prove that SW-H-COLOURING is FPT.

Table 1 presents a brief overview of our results, and Table 2 lists the classical and
parameterized complexities of the three considered problems for all 2-edge-coloured
graphs of order at most 2.

Our paper is structured as follows. In Sect. 2, we state some definitions and make
some preliminary observations in relation with the literature. In Sect. 3, we study the
classical complexity of the three considered problems. We address their parameterized
complexity in Sect. 4. Finally, we conclude in Sect. 5.

! The Exponential Time Hypothesis, ETH, postulates that 3-SAT cannot be solved in time 2000 (n 4 m)e,
where n and m are the input’s number of variables and clauses, and c is any integer [27].
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Table2 Our results for target graphs H of order at most 2 (up to inversion of edge-colours, there are twelve

such graphs, see Sect. 3)

Graph H

VD-H - COLOURING

ED-H-COLOURING

SW-H-COLOURING

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard but FPT

NP-hard and W[1]-h

NP-hard and W[1]-h

NP-hard and W[1]-h
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2 Preliminaries and Known Results
2.1 Some Known Complexity Dichotomies

Recall that whenever H-COLOURING is NP-complete, VD-H - COLOURING, ED-H -
COLOURING and SW-H -COLOURING are NP-complete (even for k = 0), and thus are
not in XP, unless P = NP. For example, this is the case when H is a monochromatic
triangle. When SIGNED H-COLOURING (this is SW-H-COLOURING for k = |V (G)],
see [6]) is NP-complete, then SW-H-COLOURING is NP-complete (but could still be
in XP or FPT).

On the other hand, when H-COLOURING is in P, all three problems are in XP for
parameter k (by a brute-force algorithm iterating over all k-subsets of vertices of G,
performing the operation on these k vertices, and then solving H-COLOURING):

Proposition 1 Let H be an edge-coloured graph such that H-COLOURING is in P. Then,
VD-H- COLOURING, ED-H-COLOURING and SW-H-COLOURING can be solved in
time |G|9®.

When k = 0 and H is 1-coloured, we have the following classic theorem.

Theorem 2 (Hell and Nesettil [25]) Let H be a 1-edge-coloured graph. H-COLOURING
is in P if the core of H has at most one edge (H is bipartite or has a loop), and NP-
complete otherwise.

There is no analogue of Theorem 2 for edge-coloured graphs. In fact, it is proved
in [6, Sect. 3] that a dichotomy classification for H-COLOURING restricted to 2-edge-
coloured H would imply a dichotomy for all fixed-target CSP problems. Thus, no
simple combinatorial classification is expected to exist. Even for trees, cycles or com-
plete graphs, such classifications are far from trivial, see the PhD thesis [3] for an
overview of some partial results highlighting the difficulty of the problem. Some clas-
sifications exist for certain classes of graphs H, such as those of order at most 2 (see
[1, Sect. 3] and [5, Sect. 2.1]) or paths [4, Sects. 2 and 3].

For SW-H-COLOURING with k = |V(G)], (that is, SIGNED H-COLOURING), we
have the following (where the switching core of a 2-edge-coloured graph is a notion
of core where an arbitrary number of switchings can be performed before the self-

mapping).

Theorem 3 (Brewster et al. [6,7]) Let H be a signed graph. SIGNED H-COLOURING is
in P if the switching core of H has at most two edges, and NP-complete otherwise.

Note that 2-edge-coloured graphs where the switching core has at most two edges
either have one vertex (with zero loop, one loop or two loops of different colours), or
two vertices (with either one edge or two parallel edges of different colours joining
them) [6]. If there are two vertices joined by one edge and a loop at one of the vertices,
we can switch at the non-loop vertex if necessary to obtain one edge-colour, and then
retract the whole graph to the loop-vertex, so this is not a core.
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2.2 Homomorphism Dualities and FPT Time

For a r-edge-coloured graph H, we say that H has the duality property if there is
a set F(H) of t-edge-coloured graphs such that, for any 7-edge-coloured graph G,
G %5 H if and only if no graph F of F(H) satisfies F — G.If F(H) is finite, we
say that H has the finite duality property. If checking whether any graph F in F(H)
satisfies F —> G (for an input edge-coloured graph G) is in P, we say that H has
the polynomial duality property. This is in particular the case when F(H) is finite.
For such H, H-COLOURING is in P. This topic is explored in detail for edge-coloured
graphs in [1]. By a simple bounded search tree argument, we get the following:

Proposition4 Let H be an edge-coloured graph with the finite duality property. Let
c = max{|V(F)|,F € F(H)}. The problems VD-H- COLOURING and SW-H-
COLOURING can be solved in time O(f(F(H))n®) for some computable function
f. The problem ED- H-COLOURING can be solved in time O (f(F(H ))ncz) for some
computable function f.

Proof First, we search for all appearances of homomorphic images of graphs in
F(H) (there are at most f(F(H)) such images for some exponential function
f), which we call obstructions. This takes time at most O(f(F(H))n¢), where
c = max{|V(F)|, F € F(H)}. Then, we need to get rid of each obstruction. For
VD-H- COLOURING (resp. ED- H-COLOURING), we need to delete at least one vertex
(resp. edge) in each obstruction, thus we can branch on all ¢ (resp. ) possibilities. For
SW-H-COLOURING, we need to switch at least one of the vertices of the obstruction
(but then update the list of obstructions, as we may have created a new one). In all
cases, this gives a search tree of height k and degree bounded by a function of F(H),
which is FPT. O

Some dualities have been obtained for small edge-coloured graphs. The following
theorem from [1, Sect. 3] is crucial for our techniques.

Theorem 5 (Brewster et al. [1, Sect. 3]) Let H be an edge-coloured graph of order at
most 2. Then, H has the polynomial duality property. If H has order 1, then H has
the finite duality property.

We next describe the duality sets for some special cases that will be used in our
proofs.

Lemma 6 (Brewster et al. [1, Proposition 3.3]) A 2-edge-coloured graph has a homo-
morphism to HrZ’; if and only if it contains no homomorphic image of cycles with an

odd number of blue edges.

We present a brief proof of their result. Note that homomorphic images of paths
are walks and that homomorphic images of cycles are closed walks.

Proof Let G be a 2-edge-coloured graph which admits a homomorphism ¢ to H,Zf;.
Suppose that G contains a homomorphic image of some cycle with an odd number
of blue edges, that is to say G contains a closed walk W with an odd number of blue
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edges. Note that if uv is a blue edge, then ¢ (1) # ¢ (v) and if uv is a red edge, then
¢ (u) = ¢ (v). By going around the closed walk, we obtain ¢ () 7# ¢ (u) for any vertex
u of W, a contradiction.

Let G be a2-edge-coloured graph which contains no homomorphic image of cycles
with an odd number of blue edges. We identify every connected red components of
G. The graph that we obtain has red loops but no other red edges, moreover the graph
induced by the blue components is bipartite (otherwise there would be a cycle with an
odd number of blue edges in G). Hence by identifying the vertices of each part in the

. .. . ec
bipartition, we obtain H?". Hence G = H?®. O

Lemma 7 (Brewster et al. [1, Proposition 3.4]) A 2-edge-coloured graph has a homo-
morphism to Hrzfl’? if and only if it contains no homomorphic image of a red-blue-red
4-vertex path.

Proof Let u be the vertex of H; 2b with a red loop, and v the vertex with a blue loop.
Given a 2-edge-coloured graph G map all the vertices incident with a red edge to u,
and map all others to v. This is a homomorphism unless two vertices mapped to u are
joined by a blue edge. But in this case, we can find a homomorphic image of a red-
blue—zrbed walk in G. Conversely, note that a red-blue-red path has no homomorphism
to H7p. O

Lemma 8 (Brewster et al. [1, Theorem 3.5]) A 2-edge-coloured graph has a homo-
morphism to H; %0 if and only if it contains no homomorphic image of a path of the
form RB2P~ 1R (where R is ared edge, B a blue edge and p > 1 is an integer) or of
cycles with an odd number of blue edges.

Proof (Proof (sketch)) First note that none of the two obstructions admit a homomor-
phism to H,%ll. If a 2-edge-coloured graph G has none of these homomorphic images
then by identifying every vertex incident with a red edge of G, we obtain a bipartite
graph on the blue edges for which one of the two parts contains every vertex incident
with a red loop. By mapping this part to the vertex of H; %0 with the red loop and the
other part to the other vertex, we obtain our homomorphlsm O

Lemma9 (Brewster et al. [1, Theorem 3.7]) A 2-edge-coloured graph has a homo-
morphism to H,z”,b if and only if it contains no homomorphic image of an all-blue odd
cycle.

Proof (Proof (sketch)) The idea is to note that the graph induced by the blue edges is
bipartite and that the red edges do not create any constraints. O

The proof of the following results are more complicated, hence we refer the reader to
[1] for the details. In a 2-edge-coloured graph, a closed walk vgvy . . . v; is alternating
if forevery i <t — 1, v;v;41 and v;41v;42 do not have the same colour. An odd figure
eight is a closed walk of the form vg, v1, ..., v2;, Vo, V242, ..., V2p—1, Vo, i.e. two odd
cycles which share a vertex vy.

Lemma 10 (Brewster et al. [1, Theorem 3.7]) A 2-edge-coloured graph has a homo-
morphism to H;’ 2b if and only if it contains no homomorphic image of an odd figure
eight vg, vy, .. vzj, V0, V242, ---» V2p—1, Vo for which all edges vy;v2;41 are blue.
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Fig.1 The twelve 2-edge-coloured cores of order at most 2 considered in this paper

Lemma 11 (Brewster et al. [1, Theorem 3.7]) A 2-edge-coloured graph has a homo-
morphism to H?, 2 if and only if it contains no homomorphic image of alternating odd
figure eight, that is, an alternating closed walk vo, v1, ..., V2, V0, V242, ..., V2p—1,
V0.

3 P/NP-Complete Complexity Dichotomies

In this section, we prove some results about the classical complexity of VD-H-
COLOURING, ED-H-COLOURING and SW-H-COLOURING. We first adapt a general
method from [32] to show that VD-H- COLOURING is either trivial, or NP-complete
in Sect. 3.1.

For ED-H -COLOURING and SW-H -COLOURING, we cannot use this technique (in
fact there exist nontrivial P cases). Thus, we turn our attention to edge-coloured graphs
of order 2 (note that for every edge-coloured graph H of order at most 2, H-COLOURING
is in P [1,5]). Recall that SW-H-COLOURING is defined only on 2-edge-coloured
graphs, so our focus is on this case (but for ED- H-COLOURING our results hold for
any number of colours). In Sect. 3.2, we prove a dichotomy result for graphs of order
at most 2 for the ED-H-COLOURING problem. The SW-H-COLOURING problem is
treated in Sect. 3.3, where we also prove a dichotomy result.

The twelve 2-edge-coloured graphs of order at most 2 that are cores (up to symme-
tries of the colours) are depicted in Fig. 1. The two colours are red (dashed edges) and
blue (solid edges). We use the terminology of [1]: for « € {—, r, b, rb}, the 2-edge-
coloured graph HO% is the graph of order 1 with no loop, ared loop, a blue loop, and both
kinds of loops, respectively. Similarly, for @ € {—, r, b, rb} and B, y € {—, r, b}, the
graph Hj 2"‘ denotes the graph of order 2 with vertex set {0, 1}. The string o 1ndlcates
the presence of an edge between 0 and 1: no edge, a red edge, a blue edge and both
edges for —, r, b and rb, respectively. Similarly, 8 and y denote the presence of a loop
at vertices 0 and 1, respectively (— for no loop, r for a red loop, b for a blue loop).

3.1 Dichotomy for VD-H-COLOURING for All H

Graph modification problems for operations vertex-deletion and edge-deletion have
been studied extensively. For a graph property P, we denote by VERTEX DELETION-
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‘P the graph modification problem for property P and operation vertex-deletion. A
property is hereditary if P(G) implies P (H) for all induced subgraphs H of G. Lewis
and Yannakakis [32] defined a non-trivial property P on graphs as a property true for
infinitely many graphs and false for infinitely many graphs. These definitions can be
extended to edge-coloured graphs. They showed the following general result.

Theorem 12 (Lewis and Yannakakis [32]) The VERTEX DELETION-P problem for
non-trivial graph-properties P that are hereditary is NP-hard.

By modifying the proof of Theorem 12, we can prove the two following results.

Theorem 13 Let P be a non-trivial property of t-edge-coloured graphs that is hered-
itary and true for all empty graphs. Then, VERTEX DELETION-P is NP-hard.

The proof of this theorem follows the proof of Theorem 12 from [32]. The only
difference is that we work with 7-edge-coloured graphs instead of undirected graphs.

Proof Let G be a t-edge-coloured graph. We denote by CC(G) the set of connected
components of G. These components are also ¢-edge-coloured graphs. For x and v
two vertices of G, let R, (x) be the set of vertices connected to x in G — v. For any
vertex v € V(G), let CCy(G) be the set of connected subgraphs of G induced by the
sets of vertices of the form R, (x) U {x} forx € V(G — v). In other words, CC,(G) is
the set of connected components of G — v where we added the vertex v. In particular,
if v is not a cut-vertex, then CC,(G) = {G}.

For a connected ¢-edge-coloured graph G and v € G, let a,(G) = (ny, na, ...n;)
suchthatn; > np > --- > n; and the multi-sets {ny, ..., n;}and {|V(C)|:C eCC,(G)}
are equal. In other words, o, (G) is the ordered sequence of the orders of the 7-edge-
coloured graphs in CC,(G). Let a(G) be the smallest sequence (for the lexicographic
order) a, (G) over all possible vertices v € V (G).

For a t-edge-coloured graph G, let 8(G) = (¢(G1), ¢(G1), ...a(Gy)) such that
a(Gy) > a(Gy) =1 -+ > a(Gy) (where > is the lexicographical order) and
CC(G) =1{Gy, ..., G;}. Inother words, B(G) is the ordered sequence of a-sequences
of the connected components of G.

Recall that P is non-trivial. In particular, P has counter-examples. For an integer p
and ar-edge-coloured graph G, we denote by pG, the t-edge-coloured graph composed
of p disjoint copies of G. Let J be a r-edge-coloured graph such there exists some
k > 1 for which P(kJ) is false, and which has the minimum B-sequence among the
t-edge-coloured graphs verifying this property. Let k > 1 such that P(kJ) is false
and P((k — 1)J) is true. Suppose that 8(J) = («¢(J1), ..., a(J;)) where CC(J) =
{J1, ..., J:}. Let x be a vertex of J; for which a(J;) = a,(J;) and let J* be the
connected 7-edge-coloured graph of CCy (J;) with the greatest number of vertices.
Since all empty graphs verify P, J contains at least one edge. This implies that J;
and J7 contain at least one edge. In particular, J¥ contains at least two vertices. Let
y be a vertex of J 1 which is different from x. Let J { (resp. J') be the r-edge-coloured
graph obtained from J; (resp. J) by removing the vertices of V (JT) \ {x}. See Fig. 2
for an example.

Each induced subgraph of J that we defined will be useful to show that VERTEX
DELETION-P is NP-hard. We reduce VERTEX COVER to VERTEX DELETION-P. (Note
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(a) Some possible 4-edge-coloured (b) The 4-edge-coloured graph
graph J. Jt.
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(c) The 4-edge-coloured graph J'.

Fig.2 An example of a 4-edge-coloured graph J and its induced subgraphs J;, J5, J*, J 1/ and J’
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Fig.3 An example of the graph H when J is the 3-edge-coloured graph of Fig. 2 and G is just an edge uv.
Here, we chose to identify x;, with x,, and x,, with y;,,. Note that if no vertex is removed from H, then H
contains J as an induced subgraph

that it may be complicated to find the 7-edge-coloured graph J, but this is a constant
graph that depends only on P and this fact only makes the reduction non-constructive.)
Let (G, £) be an instance of VERTEX COVER where G is an undirected graph of order
p and £ is an integer.

We construct the r-edge-coloured graph H from G as follows. For each vertex
v € V(G), we add a copy J;, of J' to H.

For each edge uv € E(G), we add a copy J;}, of J* to H. We identify the copy
xy (resp. x,) of x in J) (resp. J;) with the copy x,, (resp. yyy) of x (resp. y) in J,/;.
This concludes the construction of H. See Fig. 3 for an example. We construct the
t-edge-coloured graph H' by taking pk disjoint copies of H.

We claim that (G, £) is a positive instance of VERTEX COVER if and only if
(H’, pkt) is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S of vertices of G of size at most £ that is a vertex
cover of G. We construct S € V(H’) as follows. For every copy of H in H' and
every vertex u € S, we add the copy of the vertex x, of J,, to S'. Note that | S| < pk¢.
We claim that H' — S’ verifies P. Let J be the set of t-edge-coloured graphs that
can be constructed as follows. Take a copy of J| and at most A(G) copies of J+.
For each copy of J ¥, delete one of x or y and identify the other vertex with the copy
x" of x in the copy of J{. The set J contains at most 34(6) t_edge-coloured graphs,
J contains all possible maximal connected induced subgraphs of H connected to a
vertex x;,, when every x, for v € N(u) has been removed in H.

A connected component C of H — S’ can be of four types.

1. The connected component C belongs to {J, ..., Ji}.
2. The connected component C belongs to J .
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3. The connected component C is isomorphic to a connected induced subgraph of J|
where the vertex x has been removed.

4. The connected component C is isomorphic to a connected induced subgraph of
J T where the vertices x and y have been removed.

Let J* be the 7-edge-coloured graph composed of disjoint copies of the vertices of
J and disjoint copies of J, ..., J;—1 and J;. Note that every connected component
of H' — §’ is an induced subgraph of J*. Let C € 7, note that «(C) < a,/(C) where
x" is the copy of x in J{. Note that CC/(C) = CCy(J') U X where X is the set
corresponding to the copies of JT in C with one of x or y removed. The connected
multigraphs of X have order |V(J+)| — 1, hence a/(C) < ax(J1) = a(J1). Note
that B(J*) <r B(J) since forevery C € J, a(C) < a(Jy).

By minimality of J, any number of disjoint copies of J* must verify P, hence
H' — S verifies P and (H’, pk£) is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S of vertices of H' of size at most pkf such that
P(H' — S’) holds. Note that H — S’ can contain at most k — 1 copies of the z-edge-
coloured graph J by definition of J. In particular H' has at least pk — (k — 1) copies
of H for which after removing the vertices of §’, the t-edge-coloured graph does not
contain a copy of J.

Suppose that for one of the copies Hy of H, |V (Hp) N S’| < /£. In this case, we
construct § € V(G) as follows. If S’ NV (J)) # &, thenadd u to S.If S’ N (V (J,;[) \
{x, y}) # O, then add arbitrarily one of u or v to S. Note that |S| < £. Suppose that
there is an edge uv € E(G), such that u, v ¢ S. Our copy of H contains J, J, and
J.} and these 7-edge-coloured graphs do not contain vertices from S. The vertex x,,
has been identified with one of x,, or x,, say x,.. The #-edge-coloured graph composed
of J) and J}; with x,, and x,, identified is exactly the 7-edge-coloured graph J. Hence
if H — S’ does not contain J, the set S is a vertex cover of G of size at most £.
1 Suppose, by contradiction, that for every copy of H either H — S’ contains J or
verifies |V (Ho) N'S’| > € + 1. In this case, S’ has at least (pk — (k — 1))(€ + 1)
vertices. Moreover, as £ < p (otherwise the instance of VERTEX COVER is trivial),
(pk—(Gk—-—1)+1)=>pkl+L€+1+k(p— (£ —1)) > pkl, acontradiction.

Hence G has a vertex cover of size at most £. O

For a t-edge-coloured graph, the only case where the property of mapping to H
is trivial (in this case, always true) is when H has a vertex with all ¢ kinds of loops
attached (in which case the core of H is the subgraph induced by that vertex). Thus
we obtain the following dichotomy.

Corollary 14 Let H be a t-edge-coloured graph. VD-H- COLOURING is in P if H
contains a vertex having a loop of each edge-colour, and NP-complete otherwise.

Proof For every edge-coloured graph H, VD-H - COLOURING is in NP. H-COLOURING
is a hereditary property and is verified by all independent sets, thus if it has infinitely
many NO-instances (on loopless ¢-edge-coloured graphs); it is nontrivial, and thus
NP-hard by Theorem 13. Let us see when this is the case.

We can observe that the problem is actually trivial if H contains a vertex with all
t-coloured loops, indeed every t-edge-coloured graph can be mapped to this vertex
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(in this case, we return YES). Moreover, if not, then the complete graph K g4+ with
all t-coloured edges between each pair of vertices does not map to H. Indeed by
the pigeonhole principle, two vertices # and v of our input ¢-edge-coloured graph
must have the same image vertex w in H. As there is an edge coloured i between
u and v, there must be a loop coloured i on w. Thus w should have all z-coloured
loops, a contradiction. Thus, in all such cases, the property is nontrivial on loopless
t-edge-coloured graphs and hence the problem is NP-complete. O

3.2 Dichotomy for ED-H-COLOURING When H Has Order 2

No analogue of Theorem 12 for operation edge-deletion exists nor is expected to exist
[39]. We thus restrict our attention to the case of edge-coloured graphs H of order at
most 2. For this case we classify the complexity of ED- H-COLOURING. Since multiple
edges of the same colour are irrelevant, if H has order 2, for each edge-colour there
are three possible edges.

Theorem 15 Let H be an edge-coloured core of order at most 2. If each colour class
of the edges of H contains only loops or contains all three possible edges, then ED-
H-COLOURING is in P; otherwise it is NP-complete.

We separate the proof of this theorem into several lemmas.

Lemma 16 Let H be an edge-coloured core of order at most 2. If each colour class of
the edges of H contains only loops or contains all three possible edges, then ED-H -
COLOURING is in P.

Proof First note that if colour i has all three possible edges in H, we can simply ignore
this colour by removing it from H and G without decreasing the parameter, as it does
not provide any constraint on the homomorphisms.

We can therefore suppose that H contains only loops. If two colours induce the
same subgraph of H, then we can identify these two colours in both G and H as they
give the same constraints.

If G has colours that H does not have, then remove each edge with this colour and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colours as H. We
are left with only a few cases, as H is a core (there is no vertex whose set of loops is
included in the set of loops of the other).

e H has a single loop. Then, G %, H as G has the same colours as H.

e H contains two non-incident loops with different colours and two non-incident
loops of a third colour. Up to symmetry, suppose that H has one blue loop and one
green loop on the first vertex and has one red loop and one green loop on the second
vertex. We will reduce to the problem where we have removed the green loops.
Let p be the number of green edges of G. We construct G’ from G by replacing
each green edge by a blue edge and a red edge (we can end up with multiple blue
or red edges that way). We claim that ED- H-COLOURING with parameter k and
input G is true if and only if ED-HV%;—COLOURING with parameter k + p on input
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G’ is true. If the first problem has a solution S, then remove the corresponding
edges from G’ (if the corresponding edge of G is green remove the two new edges
in G’). Each vertex of G — § is set to one component, in particular each green
edge is set to a vertex with a blue edge or a red edge. If a green edge uv of G is
sent to the first vertex, we remove the edge of G’ corresponding to uv which is
red. We can check that after removing those edges, G’ admits a homomorphism to
Hrz’;. We removed at most k edges in the first step plus the number of green edges
in S and removed one edge for each green edge left in the second step. Thus, we
removed less than k + p edges in G’. If the second problem has a solution S, then
remove from G all blue and red edges of S. Remove the green edges of G only
if both were removed in G’. Note that S contains at least one edge in G’ for each
green edge of G. Thus we removed less than k edges in G. Moreover, G = H
by taking the same homomorphism as in G’. Indeed, the blue and red edges are
sent to one of the two loops while each green connected component is sent to one
vertex. Using this method we can reduce the problem to ED-HFZ;-COLOURING,
which is our last case.

e H contains two non-incident loops with different colours; then H = Hrz’;. Indeed
if there were any other kind of loop, then we would be in the previous case or
we could identify two colours. Note that a 2-edge-coloured graph maps to Hf;

if and only if it has no red edge incident to a blue edge. Thus, solving ED-Hrz’;-
COLOURING amounts to splitting G into disconnecting red and blue connected
components. This can be done by constructing the following bipartite graph: put a
vertex for each edge of G; two vertices are adjacent if the corresponding edges in
G are adjacent and of different colours. Solving ED-H&; -COLOURING is the same
as solving VERTEX COVER on this bipartite graph, which is in P.

There is no other case as otherwise the set of loops of one vertex would be included
in the set of loops of the other. O

The NP-completeness proofs are by reductions from VERTEX COVER, based on
vertex- and edge-gadgets constructed using obstructions to the corresponding homo-
morphisms from [1] presented in Sect. 2.2.

We start with proving the NP-hardness of two special cases, and then we will show
that we can always reduce the problem from these two cases.

Lemma 17 The problem ED- H?2 -COLOURING is NP-hard.

Proof We reduce from VERTEX COVER. Given an input graph G of VERTEX COVER,
we construct a 2-edge-coloured graph G’ from G as follows. Take G and colour all
edges blue, then add a pending red edge vv’ to each vertex v of G (see Fig. 4). By
Lemma 7, a 2-edge-coloured graph maps to Hrzfl?) if and only if it does not contain a
homomorphic image of a red-blue-red 3-edge-path [1].

Assume that G has a vertex cover C of size at most k. When removing these vertices
in G’, the resulting graph is a collection of independent red edges and thus maps to
H.

Conversely, assume that we have a set S of k edges of G’ such that (G’ — S) N
Hr%lz. In particular, for every blue edge uv of G, we must have one of uu’, uv or vv’
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Fig.5 Reduction from VERTEX COVER to ED-H>"?-COLOURING

in S. Thus we can obtain a vertex cover of G of size k from S: for a vertex v, if vv’
belongs to S, we add v to that vertex cover. If uv € §, we add randomly u or v to the
Vvertex cover.

We thus have a polynomial-time reduction from VERTEX COVER to ED-Hrzfl’,-
COLOURING. Therefore this problem is NP-hard. O

Lemma 18 The problem ED-Hrszb -COLOURING is NP-hard.

Proof We again reduce from VERTEX COVER. For an input graph G of VERTEX
COVER, we construct a 2-edge-coloured graph G’ from G as follows. We start with a
red copy of G, then we add a pending blue edge vv’ for each v € G. Finally, for each
edge uv € G, we create three new vertices Xy, Yuv, Zup Such that u'x,,, /x4y, YuvZuv
are red and x,, Yy, Xy Zuy are blue (see Fig. 5).

We then recall Lemma 11 proved in [1], stating that a 2-edge-coloured graph maps
to Hrz’rbb if and only if it does not contain an alternating odd figure eight, that is,
an alternating closed walk v, v1, ..., v2;, Vo, V242, ..., U2p—1, Vo. Note that our
construction creates such a pattern for each edge of G.

Assume that G has a vertex cover C of size at most k. Then for each v € C, we
delete vv’ from G’. We prove that the resulting graph G” contains no alternating odd
figure eight. First observe that in the graph obtained from G’ by removing all edges
from G, all the alternating walks have length at most 7, hence it contains no odd figure
eight. Thus, if G” contains an alternating odd figure eight, then it uses an edge uv
from G. Since C is a vertex cover, either uu’ or vv’ is not present in G”. Then, either
u or v has no incident blue edge. This implies that G” has no alternating odd figure
eight, and hence maps to Hrszb.

Conversely, assume that we can remove a set S of k edges from G’ so that G'\ S N
Hr%’bb. We construct a set C C V(G) as follows: if vv’ € S, then we add v € C. If
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wv, W' Xy, V' Xuys Xuw Yuv XuvZuv OF YuuZuy lie in S, then we add randomly u or v to C.
Note that, in each case, |C| < k. Moreover, we claim that C is a vertex cover of G.
Assume not, and consider an edge uv in G such that u, v ¢ C. By construction, this
means that none of the edges uv, uu’, vv’, u'xyy, V'xu0, Xuv Yuvs XuvZuv, YuvZup li€s in
S. These vertices form an alternating odd figure eight, contradicting that G" \ S N
HZYP.

Therefore, ED-Hrzjf’ -COLOURING is NP-hard. O

Lemma 19 For H an edge-coloured core of order at most 2, if there exists a colour
of H which contains a non-loop and does not contain all three possible edges, then
ED- H-COLOURING is NP-complete.

Proof Take such a graph H. If one colour, say blue, contains only one edge from
the first vertex to the second, then for graphs G which are all blue, the problem is
equivalent to EDGE BIPARTIZATION, which is NP-complete.

Now, if H contains no such edge, then by assumption it must contain a colour, say
blue, with a loop and an edge from the first vertex to the second (and no other edge of
this colour). Let u be the vertex with the loop and v be the other vertex. Since H is a
core, H does not map to its subgraph induced by u. If for every colour of H there was
a loop of this colour on u, then H would not be a core. Hence there exists a colour,
say red, such that there is a red edge in H and u has no loop coloured red. Hence, the
graph obtained by removing all edges which are neither blue nor red, is either Hrz’l,’, or
Hf_”,f’ up to symmetry.

Thus, by the previous two Lemmas 17 and 18, the problem is NP-complete using
the same reductions (the edges of H that are neither blue nor red can be ignored). O

3.3 Dichotomy for SW-H-COLOURING When H Has Order 2

We now turn our attention to the switching operation.

Theorem 20 Let H be a 2-edge-coloured graph from Fig. 1. If H is one oerzlz, H?

r,—’

H*b Hrzr_b or H¥? then SW-H-COLOURING is NP-complete. Otherwise, it is in P.

r.b>’ rro
Proof We begin with the P cases.

e Every 2-edge-coloured graph maps to Hr]b, thus SW-Hr]b-COLOURING is trivially
in P.

e No graph with an edge can be mapped to H! (regardless of switchings).

e For H/!, we need to test if the graph can be switched to an all-blue graph in less
than k switchings. There are only two sets of switchings that achieve this signature
(one is the complement of the other). Itis in P to test if the graph can be switched to
an all-blue graph (see [6, Proposition 2.1]). Doing that also gives us one of the two
switching sets; we then need to check if its size is at most k or at least |V (G)| — k.
So, SW-H,!-COLOURING is in P.

e For Hr%;, we just apply the algorithm for Hb1 and Hr1 to each connected component,
one of the two must accept for each of them.
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Fig.6 Reduction from VERTEX 7 7 )
COVER to ¢y $ @

e For HE’ b a graph G is a YES-instance if and only if G (without considering
edge-colours) is bipartite, which is polynomially testable.

e For HE{’_ a graph G is a YES-instance if and only if it is bipartite and maps to
H bl. We just need to check the two properties, which are both in P.

e For Hrz’b,, a graph G maps to Hrz’l; if and only if it has no cycles with an odd number
of blue edges (see Lemma 6, proved in [1]).
This property is preserved under the switching operation. Thus, switching the
graph does not impact the nature of the instance. It is thus in P (we can test with
k = 0) since H?2-COLOURING is in P [1,5].

We now consider the NP-complete cases. For every H, SW-H-COLOURING clearly
lies in NP. NP-hardness follows from the above-stated Theorem 3 (proved in [6,7]) in
all but one case: indeed, Hrz)}l’,, Hf”,;’, Hrzrf and H,%’,b are their own switching cores
and have at least three edges, thus when H is one of these, SW-H-COLOURING is
NP-complete (even with k = |V (G)]).

The last case is Hr%_ . We give a reduction from VERTEX COVER to SW-H,z,b_ -
COLOURING. Given instance G of VERTEX COVER, we construct an all-red copy G’
of G, and we attach to each vertex v of G a blue edge vv’, with a red loop on v’ (see
Fig. 6).

Denote by x the vertex of H,% with a loop, and by y the other one. Assume that
G has a vertex cover C of size at most k. Denote by G” the graph obtained from G’
by switching at the vertices of C. We map every vertex v’ to x, every vertex of C to x
and the remaining ones to y. Since C is a vertex cover, each red edge of G” is either a
loop on some vertex v’, an edge vv’ with v € C or an edge uv with u, v € C. In each
case, both endpoints are mapped on x. The blue edges of G” are then either vv’ with
v ¢ Coruvwithu € C and v ¢ C. In both cases, the two endpoints are mapped to
different vertices of Hrz}’_ ; thus, G” LN H,Zb_

Conversely, assume that we can switch G’ at vertices from a set S such that the
resulting graph G” maps to H,%b_. Let C be the set of vertices v of G such that v or
v’ lies in S. Note that C has size at most |S|. We claim that C is a vertex cover of G.
Assume that there is an edge uv in G with u, v ¢ C. By construction, u, u’, v, v’ ¢ S,
souu’, vv’ are blue in G”, and uv is red. Thus, u, v have to be mapped to x, and u’, v’
to y, a contradiction since u’ has a incident red loop in G”. Therefore C is a vertex
cover of G. O

b
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Table 3 Clauses appearing in

the 2-SAT formula F(G) of Eiti) Clause
Theorem 21 proved in [5], for @ X
each edge uv of G coloured i. ( u)@
The clauses depend on the edge {00} () ()
set of H in colour i, described in {01} (xy + xp) (X + Xp)
the rows (where V(H) = {0, 1}) n () ()
{00, 01} (Xu +xv)
{01, 11} (xy + xv)
{00, 11} (xu + %) (X + xv)
{00, 01, 11} (xu +xu)

4 Parameterized Complexity Results
4.1 VD-H-COLOURING and ED-H-COLOURING

For many edge-coloured graphs H of order at most 2, we can show that VD-H-
COLOURING and ED-H -COLOURING are FPT by giving ad-hoc reductions to VERTEX
COVER, ODD CYCLE TRANSVERSAL or a combination of both. However, a more
powerful method is to generalise a technique from [5] used to prove that H-COLOURING
is in P by reduction to 2-SAT (see also [3]):

Theorem 21 (Brewster et al. [S]) Let H be an edge-coloured graph of order at most 2.
Then, for each instance G of H-COLOURING, there exists a polynomially computable
2-SAT formula F(G) that is satisfiable if and only if G . H.Thus, H-COLOURING
isin P.

Proof (Proof (sketch)) The formula F(G) from Theorem 21 contains a variable x,
for each vertex v of G, and for each edge uv, a set of clauses that depends on H,
as described in Table 3 (reproduced from [5]). The idea is to see the two vertices of
H as “true” (1) and “false” (0), and for each edge uv of a certain colour, to express
the possible valid assignments of x, and x, based on the edges of that colour that are
present in H. For example, if H has, for colour i, a loop at vertex 0 and an edge 01,
but no other edge of colour i, for each edge uv of G of colour i, we add the clause
(x4 +Xxy) to F(G), indeed the constraint for edge uv is satisfied if at least one of u, v
is mapped to O. O

We will show how to generalise this idea to VD-H- COLOURING and ED-H-
COLOURING. We will need the following parameterized variant of 2-SAT:

VARIABLE DELETION ALMOST 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F, an integer k.

Question: Is there a set of k variables that can be deleted from F (together with
the clauses containing them) so that the resulting formula is satisfiable?

VARIABLE DELETION ALMOST 2-Sat and another similar variant, CLAUSE DELE-
TION ALMOST 2-SAT (where instead of k variables, k clauses may be deleted), are
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known to be FPT (see [16, Chapter 3.4] and [37]). We need to introduce a more general
variant, that we call GROUP DELETION ALMOST 2-SAT, defined as follows.

GROUP DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F, an integer k, and a partition of the clauses
of F into groups such that each group has a variable which is present in all of its
clauses.

Question: Is there a set of k groups of clauses that can be deleted from F' so that
the resulting formula is satisfiable?

By a generalisation of [16, Exercise 3.21] for CLAUSE DELETION ALMOST 2-SAT,
we obtain the following complexity result for GROUP DELETION ALMOST 2-SAT.

Proposition 22 GROUP DELETION ALMOST 2-SAT is FPT.

Proof We will reduce the problem GROUP DELETION ALMOST 2-SAT to the problem
VARIABLE DELETION ALMOST 2-SAT.

Take an instance G of GROUP DELETION ALMOST 2-SAT with groups g1, ..., gp.
We construct an instance V of VARIABLE DELETION ALMOST 2-SAT as follows. For
i € [1, p], wereplace each occurrence of variable x in the clauses of group g; by a new
variable x;. Moreover, for each variable x and for each i, j,suchthat1 <i < j < p,
we add the two clauses (X; + x;) and (x; +X;) to V (i.e. x; = x;). The parameter for
V remains k.

Suppose that V is a positive instance, i.e. that after removing up to k variables,
the resulting set of clauses V' is satisfied by a truth assignment v. For each removed
variable x;, we remove the group of clauses g; in G. Note that at most k groups are
removed since we removed at most k variables in ). We have to show that the new set
of clauses G’ is satisfiable.

Note that if x; and x; are not removed, then v satisfies (x; + x;) and (x; + X;),
which ensures that v(x;) = v(x;). Thus, defining the truth value of x by the value of
v(x;) (for some non-removed x;) is well-defined. Take a clause (x + y) of G, then
(x; + y;) is a satisfied clause of V' for some i € [1, p]. By definition of our truth
assignment, (x + y) is satisfied, so G’ is satisfiable. Therefore, G is a positive instance.

Conversely, suppose that we can remove k groups from G such that the resulting
set of clauses G’ is satisfied by v. If we removed the group g; in the solution, then we
remove x; in VV where x; is a variable of g; that appears in each of its clauses. Such
a variable exists by definition of G. This removes all the clauses corresponding to the
clauses of the group g; in V. Thus, taking the truth assignment that assigns to each x;
the value v(x) satisfies the instance V. O

We are now able to prove the following theorem.

Theorem 23 Forevery edge-coloured graph H of order at most 2, VD- H - COLOURING
and ED-H -COLOURING are FPT.

Proof For aninstance G, k of VD-H - COLOURING or ED- H -COLOURING, we consider
the formula F(G) from Theorem 21 (see Table 3). In F(G), to each vertex of G
corresponds a variable x,,. Deleting v from G when mapping G to H has the same
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effect as deleting x,, when satisfying F(G). Thus, this is an FPT reduction from VD-
H- COLOURING to VARIABLE DELETION ALMOST 2-SAT.

Moreover, each edge uv of G corresponds to one or two clauses of F(G). This
naturally defines the groups of GROUP DELETION ALMOST 2-SAT by grouping the
clauses corresponding to the same edge. Removing an edge is equivalent to removing
its corresponding group. To finish, we have to make sure that we can have one variable
common to all the clauses of each group. This is the case in the reduction in [5] for
every case except when E; (H) (the set of edges of colour i in H) is just a loop. Assume
without loss of generality that the loop is on vertex 1 (the other loop can be treated
the same way). Suppose uv has colour i in G; then uv must be mapped to the loop on
vertex 1. The original reduction added the clauses (x,)(x,); we modify this part and
add instead the clauses (¢ + x,)(c + xy)(¢) where c is a new variable. This is now a
valid and equivalent instance of GROUP DELETION ALMOST 2-SAT, which is FPT by
Proposition 22. O

4.2 SW-H-COLOURING: FPT Cases

We now consider the parameterized complexity of SW-H-COLOURING. By Theo-
rem 20, there are five 2-edge-coloured graphs H of order at most 2 with SW-H-
COLOURING NP-complete. We first show that two of them are FPT:

Theorem 24 SW-H?% -COLOURING and SW-H?* -COLOURING are FPT.

Proof The graph Hryz has the finite duality property by [1], see Lemma 7: G LN Hrz)}l’,
if and only if G does not contain a walk abcd where ab and cd are red edges and bc
is a blue edge. This implies FPT time for SW- Hffl’)—COLOURING by a simple bounded
search tree algorithm (Proposition 4).

For the graph H,z,b_ , as mentioned in Lemma 8, the duality set F (H) discovered in
[1] is composed of walks of the form R B2?~! R (where R is ared edge, B a blue edge
and p > 1 is an integer) and of closed walks with an odd number of blue edges. As
seen before, if the graph G has such a cycle then switching will not remove it, thus
we can reject.

If the graph has a RB*>P~' R walk and is a positive instance, then we claim that
we need to switch one of the four vertices incident with the red edges. Indeed, if we
switch only at the vertices inside the blue walk (those not incident with one of the red
edges) then the parity of the number of blue edges will not change and we will still
have some maximal odd blue subwalk, the two edges next to the extremities being
red. Thus we would still have a RB>7~! R path.

Thus, since we need to switch at one of these four vertices, we branch on this con-
figuration using the classic bounded search tree technique. This is an FPT algorithm.

O

4.3 SW-H-COLOURING: W[1]-Hard Cases

The remaining cases, Hrzzb s Hf”_b and Hr%rrb, yield W[1]-hard SW-H-COLOURING
problems, even for input graphs of large girth (the girth of a graph is the smallest
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length of one of its cycles, and by the girth of an edge-coloured graph we mean the
girth of its underlying uncoloured graph):

Theorem 25 Let x € {r, b, —}. Then for any integer g > 3, the problem SW—Hrzf)’f—
COLOURING is W[1]-hard, even for graphs G with girth at least g and that would map
to H,zfcr if the number of switchings was unbounded. Under the same conditions, SW-
Hrzf)’cr -COLOURING cannot be solved in time f(k)|G|°® for any computable function
f, assuming the ETH.

We will prove Theorem 25 by three reductions from MULTICOLOURED INDEPEN-
DENT SET, which is W[1]-complete [36] and defined as follows.

MULTICOLOURED INDEPENDENT SET Parameter: k.
Input: A graph G, an integer k and a partition of V(G) into k sets V1,..., V.
Question: Is there a set S of exactly k vertices of G, such that each V; contains
exactly one element of S, that forms an independent set of G?

Our three reductions (one for each possible choice of x) follow the same pattern. In
Sect. 4.3.1, we describe this idea, together with the required properties of the gadgets.
In Sects. 4.3.2, 4.3.3 and 4.3.4, we show how to construct the gadgets. Since the
reduction preserves the parameter and is actually polynomial, the ETH-based lower
bound follows from [13].

4.3.1 Generic Reduction

Let (G, k) be an instance of MULTICOLOURED INDEPENDENT SET, and denote by
Vi, ..., Vi the partition of G. We begin by replacing each V; by a partition gadget
G;. This gadget must have |V;| special vertices x; € V;, in order to associate a vertex
of G; to each vertex of V;. Moreover, G; must satisfy the following:

(P1) We do not have G; —> HZD.

(P2) If we switch G; at exactly one vertex v, then the obtained graph maps to Hrzjf’
(without switching) if and only if v is one of the special vertices of G;.

(P3) G; has girth at least g.

(P4) G; has two reset vertices x and y that are different from the x;’s and such that
G; switched at x and y maps to Hf;b (without further switching).

Let uv be an edge of G. Recall that u and v can be seen as vertices of G’. We then
add an edge gadget G, between u and v. This gadget must satisfy the following:

(E1l) Let H be the graph obtained from G,, by switching at a subset S of {u, v}.
Then, H > HZX?if S # {u, v}.
(E2) Assume thatu € V; and v € V; and let H be the graph obtained from G, U

G; U G by switching u and v. Then, we do not have H LN H,zjcb.
(E3) G, has girth at least g.
(E4) In G, u and v are at distance at least g.

Let G’ be the graph obtained from G by replacing each V; by a partition gadget G;,
and each edge uv by an edge gadget G, such that for every u € V; and v such that
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uv is an edge, we identify the special vertex u in G; with the special vertex u in G,.
(Note in particular that every vertex of G is present in G'.)

We say that a set S of vertices of G is valid if, when seen in G’, it contains at most
one special vertex in each edge gadget. We need a last condition about G':

(SP) If, after switching a valid set in G’, the obtained graph does not map to Hrz’;b,
then this is because a partition gadget or an edge gadget does not map to H,”,
(that is, each minimal obstruction is entirely contained in an edge gadget or a

partition gadget).
With this Property (S P), we can prove that (G, k) — (G, k) is a valid reduction.

Proposition 26 (G’, k) is a positive instance of SW—H,%;” -COLOURING if and only if
(G, k) is a positive instance of MULTICOLOURED INDEPENDENT SET.

Proof Assume we can switch at most k vertices of G’ such that the obtained graph
maps to H?. Let S be the set of those vertices. We claim that S is a valid set of
G'. First note that, due to (P1), S must contain at least one vertex in each V;. This
enforces | S| = k, thus S contains exactly one vertex v; in each V;. By (P2), each of
these v; has to be one of the special vertices of G;. This means that S contains only
vertices that are present in G.

We claim that S induces an independent set in G. Assume by contradiction that there
isanedge uv in G withu, v € S. Then, by construction, there is an edge gadget whose
special vertices are u and v, such that the edge gadget and the two partition gadgets
associated with « and v map to Hrzfrb when we switch only at # and v, contradicting
(E2). (Note that S does not contain any other vertex of the edge gadget nor any
other vertex of the partition gadgets.) Therefore, G has an independent set of size k
containing exactly one vertex in each set V;.

Conversely, assume that G has an independent set S intersecting each V; at one
vertex. Then, we denote by H the graph obtained by switching all vertices of S in G'.
By construction, this is a valid set, hence by (S P) every obstruction for mapping to
Hrzsch in H is actually contained in some gadget. However, it cannot be contained in a
partition gadget due to (P2), nor in an edge gadget due to (E'1). Therefore, we have

H = HYY. O
Observe moreover that, due to (P3), (E3) and (E4), G’ has girth at least g. More-
over, let S be the set of all reset vertices of G'. Let H be the 2-coloured graph obtained

by switching every vertex of S. By (P4), no partition gadget in H contains an obstruc-
tion. Furthermore, no edge gadget contains an obstruction by (E1). Therefore, using

(SP), we obtain that H does not contain any obstruction, hence H BN H};”. Thus
to prove Theorem 25 it suffices to construct the gadgets.

4.3.2 Gadgets for H2'®

We now describe the gadgets for SW—H,%;b -COLOURING. As mentioned in Lemma 9,

for every 2-edge-coloured graph G, we have G —> H2'? if and only if it does not
contain an all-blue odd cycle.
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(a) Partition gadget for V; = {wo,z1,22,73} (b) Edge gadget for uv.
with the two reset vertices r1, 72.

Fig.7 Partition and edge gadgets in the H%Qb—reduction when g =3
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Fig.8 The edge gadget for uv in the Hf_”_b -reduction when g = 6

The partition gadget G; is an all-blue cycle of length 2g if g and |V;| have the
same parity (resp. 2g + 2 is they do not have the same parity) with a chord of order
| Vi| between two antipodal vertices. The special vertices are those on the chord (see
Fig. 7a). The reset vertices are defined as any two vertices on the initial cycle, one on
each side of the chord.

Property (P3) directly follows from the construction. Moreover, since G; contains
an all-blue odd cycle, we have (P1). If we switch G; at exactly one vertex, then either
this vertex is a special vertex and the obtained graph does not have any all-blue odd
cycle (and thus maps to H,%’,b ), or it is not a special vertex and there is still an all-blue
odd cycle. Therefore, property (P2) also holds.

Finally, if we switch at the two reset vertices, then there is no more all-blue odd
cycle, thus (P4) also holds.

We now consider the edge gadget. It is formed by an all-blue odd cycle of length
2g + 1 where two vertices u, v at distance g have been switched (see Fig. 7b). These
vertices are the special vertices of the gadget. By construction, properties (E3) and
(E4) hold. Moreover, consider a set S C {u, v}. The only way for switching the
vertices of § to yield a graph containing an all-blue odd cycle is to switch both u
and v. This proves (E1). If we switch at both special vertices then we do not have

Guy N H,%’rb, which implies (E2).

It remains to prove Property (SP). Let S be a valid set, and let H be the graph
obtained from G’ when switching all vertices of S. Assume that H contains an all-
blue odd cycle. Since S is valid set, at most one vertex has been switched in each
edge gadget. Therefore, no all-blue odd cycle of H can contain an edge from an edge

gadget. It is thus contained in some partition gadget, ensuring that (S P) holds.

4.3.3 Gadgets for H2

We now describe the gadgets for SW-H,z”_b -COLOURING. As mentioned in lemma 10,

for every 2-edge-coloured graph G, we have G LN H,z!’_b if and only if it does not
contain a bad walk, i.e. an odd figure eight vo, v1, ..., v2j, Vo, V242, ..., V2p—1, V0
such that all edges vy;vo;41 are blue [1].

The partition gadget G; is the same as in the previous case (see Fig. 7a).

The edge gadget is an odd path of length at least g, whose edges are all blue except
for the two first and two last ones (see Fig. 8).
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(a) Partition gadget for Vi = {zo,x1, 22,23}, (b) Edge gadget for uv. The vertex x is where
with the two reset vertices 71, 72. the two alternating cycles were identified.

Fig.9 Partition and edge gadgets in the Hr2’bb-reducti0n when g =3

Since the partition gadget G; is the same as for H,%’,” , Property (P3) still holds.
Moreover, since all-blue odd-cycles still are obstructions, we have (P1).

Observe thatif a graph H contains an obstruction, then so does its subgraph obtained
by removing recursively its leaves. Note that switching exactly one vertex v in G;
makes its neighborhood all-red. Therefore, v cannot be contained in a bad walk any-
more. In this case, the obstruction is contained in a possibly empty cycle C, (obtained
by removing from G; the vertex v and the leaves of G; recursively).

If we switch G; at exactly one vertex, then either this vertex is a special vertex and
C, is empty or an all-blue even cycle (and thus maps to H,%’,b ), or it is not a special
vertex and C), is still an all-blue odd cycle. Therefore, property (P2) also holds.

Finally, if we switch at the two reset vertices u, v, then G; \ {u, v} is a tree, thus
G; does not contain any obstruction, hence (P4) also holds.

By construction, properties (E£3) and (E4) hold. Moreover, observe that the edge
gadget does not contain a bad walk since it is a path. Thus (E1) holds. If H is the
graph defined in property (E2) then there is a bad walk starting from u, then turning
around one odd cycle in the partition gadget containing u, crossing the edge gadget to
v, taking a similar turn around an odd cycle of the partition gadget containing v and
then going back to u by the edge gadget. So (E2) holds.

It remains to prove (S P). Let S be a valid set, and H be the graph obtained from G’
by switching S. Observe that no bad walk contains to consecutive red edges. Moreover,
in H, every edge gadget contains two such edges (since its two endpoints cannot be
both in S). Therefore, no bad walk crosses an edge gadget G,,,,, which implies that no
bad walk contains edges in G, . Hence, every bad walk is contained in some partition
gadget, thus ensuring that (S P) holds.

4.3.4 Gadgets for H>'?

We now describe the gadgets for SW-H%)}’ -COLOURING. As mentioned in Lemma 11,

for every 2-edge-coloured graph G, we have G LN Hrzzb if and only if it does not
contain alternating odd figure eight, that is, an alternating closed walk vg, vy, ..., v2;,
V0, V2425 ---» U2p—1, Vo for some integers j and p [1].

The partition gadget G; is defined by gluing two obstructions with large girth along
a path of length |V;| (see Fig. 9a). More precisely, consider an alternating odd cycle
C of size |V;| + g (or |V;| + g + 1). Note that C contains a vertex u adjacent to two
red edges. We attach an alternating odd cycle C’ of length g (or g + 1) to u, such
that the edges of C’ adjacent to u are blue. To obtain G;, we take two copies of this
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obstruction, and glue their respective largest cycle along a path of length |V;|. The
vertices of this path are the special vertices of G;, and the two copies of u are the reset
vertices of G;.

The edge gadget is formed by identifying the vertices with monochromatic neigh-
bourhood of two alternating odd cycles of length 2g + 1, in such a way that the common
vertex has two blue edges in one cycle and two red edges in the other one. To obtain
the edge gadget, we switch this graph at two vertices u, v in the same cycle, at distance
g from each other (see Fig. 9b).

Observe that G; has girth at least g, hence Property (P3) holds. Moreover, by
construction, G; contains an obstruction, hence (P 1) holds. Note that there are exactly
two (minimal) obstructions in G;, the ones used to construct it. Therefore, if we switch
G; at a non-distinguished vertex, one of the these obstructions is unchanged, and the
obtained graph does not map to Hf”f . Conversely, assume that we switch G; at a
distinguished vertex u# and there remains an obstruction. Note that all the paths of
length two starting from u are now monochromatic, hence no alternating odd figure
eight can go through u. This implies that every alternating odd figure eight in this
graph does not use the internal vertices of the chord. When removing these vertices
from G, the former endpoints of the chord have monochromatic neighborhood, hence
they cannot be contained in an alternating odd figure eight. Removing the whole chord
and (recursively) the leaves of G; gives two disjoint alternating odd cycles, which do
not contain any alternating odd figure eight. Thus we have (P2).

Finally, if we switch the two reset vertices of G, all the paths of length 2 starting at
these vertices are monochromatic, hence no alternating odd figure eight goes through
them. Removing the reset vertices, and recursively the obtained leaves gives the empty
graph. Therefore, there is no alternating odd figure eight in G;, it thus maps to Hr%rl,b ,
and (P4) holds.

The construction of the edge gadget ensures that (E3) and (E4) are satisfied.
Moreover, if we switch at u and v, we obtain an obstruction, ensuring that (£2) holds.
Finally, let H be the graph obtained from G, by possibly switching v. Then every
path of length two starting at u is monochromatic, hence no alternating odd figure
eight in H contains u. Removing u and leaves of H yields an alternating odd cycle,
which does not contain any alternating odd figure eight. Therefore, H maps to Hr%’ b,
and by exchanging u with v, we obtain (E1).

It remains to prove (S P). Let S be a valid set and H be the graph obtained from G’
by switching at every vertex of S. Consider an alternating odd figure eight containing
an edge from an edge gadget and an edge from a partition gadget. This walk goes
through a vertex u € V; such that the edge before u in the walk lies in G; and the
other one lies in some G,,. If u € S, the paths of length 2 starting from u in G;
are monochromatic. Conversely, if v ¢ S, the paths of length 2 starting at # in G,
are monochromatic. In both cases we reach a contradiction with the existence of an
alternating odd figure eight going through v. Therefore, every alternating odd figure
eight of H is contained either in an edge gadget or in a partition gadget.
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5 Conclusion and Perspectives

We have introduced VD- H - COLOURING, ED- H-COLOURING and SW-H -COLOURING
and characterised their complexity for some small edge-coloured graphs H. The full
complexity landscape still needs to be determined. We have fully classified the classic
complexity of VD-H- COLOURING problems. It remains to do the same for ED-H-
COLOURING and SW-H -COLOURING.

We proved that both VD-H - COLOURING and ED- H-COLOURING are FPT when H
has order at most 2. However, if H has order 3, for example if H is a monochromatic
triangle, we obtain 3-COLOURING, which is not even in XP. SW-H -COLOURING seems
particularly interesting, since we obtained an FPT/W([1]-hard dichotomy when H has
order at most 2 (in which case the problem is always in XP). But again for some H
of order 3, SW-H-COLOURING is not in XP. It would be very interesting to obtain
FPT/WI[1]/XP trichotomies for VD-H- COLOURING, ED-H-COLOURING and SW-H -
COLOURING, as least for some interesting classes of targets H such as, for example,
trees or cycles.

One may also study restricted classes of inputs, such as planar graphs (studied in the
context of switching homomorphisms in [18]). For example, do the W[1]-hard cases
of SW-H-COLOURING become FPT (or even polynomial) when the input is planar?

Another variation that seems of interest, recently studied in [2] for signed graphs
and 2-edge-coloured graphs, is the one when lists are involved (the input is given
with a list function that assigns to each vertex, an allowed set of vertices from the
target graph H). What are the complexities of list versions of VD-H- COLOURING,
ED-H-COLOURING and SW-H -COLOURING for 2-edge-coloured graphs H?

One could also study VD or ED versions of SIGNED H-COLOURING. For example,
in [26], the authors proved that ED BALANCED SUBGRAPH, the problem of deciding
whether a given signed graph becomes balanced after k edge-deletions, is FPT for
parameter k. (Note that the minimum number of edge/vertex-deletions required to
make a signed graph balanced is studied under the name of frustration index/number
of that signed graph [41].) This problem is equivalent to the ED-version of SIGNED
Hj',-COLOURING.

Finally, we note that it could be interesting to study analogues of VD-H-
COLOURING and ED-H-COLOURING for arbitrary fixed-template CSP problems, not
just when H is an edge-colored graph. To the best of our knowledge, this has not been
done.
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