
Discrete Applied Mathematics 319 (2022) 424–438

F
J
a

b

c

d

e

f

g

✩

o
g

h
0

Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Monitoring the edges of a graph using distances✩,✩✩,★

lorent Foucaud a,b,c,∗, Shih-Shun Kao b,d, Ralf Klasing b, Mirka Miller e,f,
oe Ryan g

LIMOS, CNRS UMR 6158, Université Clermont Auvergne, Aubière, France
Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, F-45067 Orléans Cedex 2, France
Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan
School of Mathematical and Physical Sciences, The University of Newcastle, Australia
Department of Mathematics, University of West Bohemia, Czech Republic
School of Electrical Engineering and Computing, The University of Newcastle, Newcastle, Australia

a r t i c l e i n f o

Article history:
Received 30 October 2020
Received in revised form 21 May 2021
Accepted 1 July 2021
Available online 21 July 2021

Keywords:
Distance-edge-monitoring set
Identification
shortest paths
bounds
complexity
approximation

a b s t r a c t

We introduce a new graph-theoretic concept in the area of network monitoring. A set
M of vertices of a graph G is a distance-edge-monitoring set if for every edge e of G,
there are a vertex x of M and a vertex y of G such that e belongs to all shortest paths
between x and y. We denote by dem(G) the smallest size of such a set in G. The vertices
of M represent distance probes in a network modeled by G; when the edge e fails, the
distance from x to y increases, and thus we are able to detect the failure. It turns out
that not only we can detect it, but we can even correctly locate the failing edge.

In this paper, we initiate the study of this new concept. We show that for a nontrivial
connected graph G of order n, 1 ≤ dem(G) ≤ n − 1 with dem(G) = 1 if and only if G is
a tree, and dem(G) = n − 1 if and only if it is a complete graph. We compute the exact
value of dem for grids, hypercubes, and complete bipartite graphs.

Then, we relate dem to other standard graph parameters. We show that dem(G) is
lower-bounded by the arboricity of the graph, and upper-bounded by its vertex cover
number. It is also upper-bounded by twice its feedback edge set number. Moreover, we
characterize connected graphs G with dem(G) = 2.

Then, we show that determining dem(G) for an input graph G is an NP-complete
problem, even for apex graphs. There exists a polynomial-time logarithmic-factor ap-
proximation algorithm, however it is NP-hard to compute an asymptotically better
approximation, even for bipartite graphs of small diameter and for bipartite subcubic
graphs. For such instances, the problem is also unlikely to be fixed parameter tractable
when parameterized by the solution size.
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1. Introduction

The aim of this paper is to introduce a new concept of network monitoring using distance probes, called distance-edge-
monitoring. Our networks are naturally modeled by finite undirected simple connected graphs, whose vertices represent
computers and whose edges represent connections between them. We wish to be able to monitor the network in the
sense that when a connection (an edge) fails, we can detect this failure. We will select a (hopefully) small set of vertices
of the network, that will be called probes. At any given moment, a probe of the network can measure its graph distance to
any other vertex of the network. Our goal is that, whenever some edge of the network fails, one of the measured distances
changes, and thus the probes are able to detect the failure of any edge.

Probes that measure distances in graphs are present in real-life networks, for instance this is useful in the fundamental
task of routing [8,14]. They are also frequently used for problems concerning network verification [2,4,6].

We will now proceed with the formal definition of our main concept. In this paper, by graphs we refer to connected
imple graphs (without multiple edges and loops). A graph with loops or multiple edges is called a multigraph.
We denote by dG(x, y) the distance between two vertices x and y in a graph G. For an edge e of G, we denote by G− e

he graph obtained by deleting e from G.

Definition 1. For a set M of vertices and an edge e of a graph G, let P(M, e) be the set of pairs (x, y) with x a vertex of
M and y a vertex of V (G) such that dG(x, y) ̸= dG−e(x, y). In other words, e belongs to all shortest paths between x and y
in G.

For a vertex x, let EM(x) be the set of edges e such that there exists a vertex v in G with (x, v) ∈ P({x}, e). If e ∈ EM(x),
we say that e is monitored by x.

A set M of vertices of a graph G is distance-edge-monitoring if every edge e of G is monitored by some vertex of M ,
that is, the set P(M, e) is nonempty. Equivalently,

⋃
x∈M EM(x) = E(G).

We denote by dem(G) the smallest size of a distance-edge-monitoring set of G.

Note that V (G) is always a distance-edge-monitoring set of G, so dem(G) is always well-defined.
Consider a graph G modeling a network, and a set M of vertices of G, on which we place probes that are able to measure

their distances to all the other vertices. If M is distance-edge-monitoring, if a failure occurs on any edge of the network
(in the sense that the communication between its two endpoints is broken), then this failure is detected by the probes.

In fact, it turns out that not only the probes can detect a failing edge, but they can also precisely locate it (the proof of
the following is delayed to Section 2).

Proposition 2. Let M be a distance-edge-monitoring set of a graph G. Then, for any two distinct edges e and e′ in G, we have
P(M, e) ̸= P(M, e′).

Thus, assume that we have placed probes on a distance-edge-monitoring set M of a network G and initially computed
all the sets P(M, e). In the case a unique edge of the network has failed, Proposition 2 shows that by measuring the set
of pairs (x, y) with x ∈ M and y ∈ V (G) whose distance has changed, we know exactly which is the edge that has failed.

We define the decision and optimization problem associated to distance-edge-monitoring sets.

Distance-Edge-Monitoring Set
Instance: A graph G, an integer k.
Question: Do we have dem(G) ≤ k?

Min Distance-Edge-Monitoring Set
Instance: A graph G.
Task: Build a smallest possible distance-edge-monitoring set of G.

Related notions. A weaker model is studied in [2,4] as a network discovery problem, where we seek a set S of vertices such
hat for each edge e, there exist a vertex x of S and a vertex y of G such that e belongs to some shortest path from x to y.

A different (also weaker) model is the Link Monitoring problem studied in [5], in which one seeks to monitor the edges
f a graph network by selecting vertices to act as probes. To each probe is assigned a routing tree (a DFS tree spanning
he whole graph), and it is essentially required that each edge of the graph belongs to one of the trees.

Distance-edge-monitoring sets are also related to resolving sets and edge-resolving sets, that model sets of sensors that
an measure the distance to all other vertices in a graph. A resolving set is a set R of vertices such that for any two
istinct vertices x and y in G, there is a vertex r in R such that dG(r, x) ̸= dG(r, y). The smallest size of a resolving set
n G is the metric dimension of G [15,26]. If instead, the set R distinguishes the edges of G (that is, for any pair e, e′ of
dges of G, there is a vertex r ∈ R with dG(x, e) ̸= dG(x, e′), where for e = uv, dG(x, e) = min{dG(x, u), dG(x, v)}), we have
n edge-resolving set [19]. A set that distinguishes all vertices and edges is a mixed resolving set [18]. Note that there is
o relation, in general, between the (edge-)metric dimension of G, and dem(G), as shown by the examples of trees and

grids: trees can have arbitrarily large metric dimension and edge-metric dimension [19], but when G is a tree dem(G) = 1
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(Theorem 9). Conversely, dem(G) can be arbitrarily large for grids (Theorem 10), while their edge-metric dimension and
etric dimension are 2 [19].
Another related concept is the one of strong resolving sets [24,25]: a set R of vertices is strongly resolving if for any

air x, y of vertices, there exists a vertex z of R such that either x is on a shortest path from z to y, or y is on a shortest
ath from z to x. It is related to distance-edge-monitoring sets in the following sense. Given a distance-edge-monitoring
et M , for every pair x, y of adjacent vertices, there is a vertex z of M such that either x is on every shortest path from z
o y, or y is on every shortest path from z to x.

The concept of an (strong) edge-geodetic set is also related to ours. A set S of vertices is an edge-geodetic set if for every
dge e of G, there are two vertices x, y of S such that e is on some shortest path from x to y. It is a strong edge-geodetic
et if to every pair x, y of S, we can assign a shortest x− y path to {x, y} such that every edge of G belongs to one of these
|S|
2

)
assigned shortest paths [22].

A model related (only by name) is the one of edge monitoring sets [3]: a set S is edge monitoring if for every edge xy
f G, e belongs to a triangle xyz with z ∈ S. But this is very far from our definition.

ur results. We first derive a number of basic results about distance-edge-monitoring sets in Section 2 (where we also
ive some useful definitions).
In Section 3, we study dem for some basic graph families (like trees and grids) and relate this parameter to other

tandard graph parameters such as arboricity arb, vertex cover number vc and feedback edge set number fes. We show
hat dem(G) = 1 if and only if G is a tree. We show that for any graph G of order n, dem(G) ≥ arb(G). Moreover,
em(G) ≤ vc(G) ≤ n − 1 (with equality if and only if G is complete). We show that for some families of graphs
, dem(G) = vc(G), for instance this is the case for complete bipartite graphs and hypercubes. Then we show that
em(G) ≤ 2 fes(G) − 2 when fes(G) ≥ 3 (when fes(G) ≤ 2, dem(G) ≤ fes(G) + 1).1
In Section 4, we characterize connected graphs G with dem(G) = 2.
In Section 5, we show that Distance-Edge-Monitoring Set is NP-complete, even for apex graphs (graphs obtained from

planar graph by adding an extra vertex). Then, we show that Min Distance-Edge-Monitoring Set can be approximated
n polynomial time within a factor of ln(|E(G)| + 1) by a reduction to the set cover problem. Finally, we show that no
ssentially better ratio can be obtained (unless P=NP), even for graphs that are of diameter 4, bipartite and of diameter 6,
r bipartite and of maximum degree 3. For the same restrictions, the problem is unlikely to be fixed parameter tractable
hen parameterized by the solution size. These hardness results are obtained by reductions from the Set Cover problem.
We conclude our paper in Section 6.

2. Preliminaries

We now give some useful lemmas about basic properties of distance-edge-monitoring sets. We start with the proof of
Proposition 2.

Proof of Proposition 2. Suppose by contradiction that there are two distinct edges e and e′ with P(M, e) = P(M, e′). Since
by definition, P(M, e) ̸= ∅, we have (x, v) ∈ P(M, e) (and thus (x, v) ∈ P(M, e′)), where x ∈ M and v ∈ V (G). Thus, all
shortest paths between x and v contain both e and e′. Assume that one of these shortest paths, e is closer to x than e′, and
let w be the endpoint of e that is closest to v. Then, we have (x, w) ∈ P(M, e) but (x, w) /∈ P(M, e′): a contradiction. □

An edge e in a graph G is a bridge if G − e has more connected components than G. We will now show that bridges
are very easy to monitor.

Lemma 3. Let G be a connected graph and let e be a bridge of G. For any vertex x of G, we have e ∈ EM(x).

Proof. Assume that e = uv. Since e is a bridge, we have dG(x, u) ̸= dG(x, v). If dG(x, u) < dG(x, v), then (x, v) ∈ P({x}, e).
Otherwise, we have (x, u) ∈ P({x}, e). In both cases, e ∈ EM(x). □

We now introduce the following terminology from [11]. In a graph, a vertex is a core vertex if it has degree at least 3.
A path with all internal vertices of degree 2 and whose end-vertices are core vertices is called a core path (note that we
allow the two end-vertices to be equal, but all other vertices must be distinct). A core path that is a cycle (that is, both
end-vertices are equal) is a core cycle. The base graph of a graph G is the graph obtained from G by iteratively removing
vertices of degree 1 (thus, the base graph of a forest is the empty graph).

Lemma 3 implies the following.

Observation 4. Let G be a graph, and Gb be its base graph. Then, dem(G) = dem(Gb).

Given a vertex x of a graph G and an integer i, we let Li(x) denote the set of vertices at distance i of x in G.

1 This is an improvement over the results from the conference version [12], where we proved dem(G) ≤ 5 fes(G) − 5.
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Lemma 5. Let x be a vertex of a connected graph G. Then, an edge uv belongs to EM(x) if and only if u ∈ Li(x) and v is the
only neighbor of u in Li−1(x), for some integer i.

Proof. Let uv ∈ EM(x). Then, there exists a vertex y such that all shortest paths from y to x go through uv. Thus, one of
and v (say, u) is in a set Li(x) and the other (v) is in a set Li−1(x), for some positive integer i. Moreover, v must be the
nly neighbor of u in Li−1(x), since otherwise there would be a shortest path from y to x going through u but avoiding uv.
Conversely, if u is a vertex in Li(x) with a unique neighbor v in Li−1(x), then the edge uv belongs to EM(x) since all

shortest paths from u to x use it. □

We obtain some immediate consequences of Lemma 5.

Lemma 6. For a vertex x of a graph G, the set of edges EM(x) induces a forest.

Proof. Let Gx be the subgraph of G induced by the edges in EM(x). By Lemma 5, an edge e belongs to EM(x) if and only
f e = uv, u ∈ Li(x) and v is the only neighbor of u in Li−1(x). In this case, we let v be the parent of u. Each vertex in Gx
as at most one parent in Gx, and each edge of Gx is an edge between a vertex and its parent. Thus, Gx is a forest. □

emma 7. Let G be a graph and x a vertex of G. Then, for any edge e incident with x, we have e ∈ EM(x).

roof. For every vertex y of L1(x) (that is, every neighbor of x), x is the unique neighbor of y in L0(x) = {x}. Thus, the
laim follows from Lemma 5. □

We next give a characterization for the cases where no other edge (other than those incident with x) belongs to EM(x).

emma 8. Let G be a connected graph with a vertex x of G. The following two conditions are equivalent.

(i) EM(x) is the set of edges incident with x.
(ii) For every vertex y of G with y ∈ V (G) \ ({x} ∪ L1(x)), there exist two shortest paths from x to y sharing at most one edge

(the one incident with x).

roof. If (ii) holds, then for any i > 1, every vertex in level Li(x) has at least two neighbors in level Li−1(x), so (i) is implied
y Lemmas 5 and 7.
Conversely, if (i) holds, we can prove (ii) by induction on dG(x, y). The claim is true for all vertices in L2(x). Assume it is

rue for vertices at levels L2(x), . . . , Li(x) and let y be a vertex in Li+1(x). By Lemma 5, y has at least two distinct neighbors,
and v, in Li(x). Consider two shortest paths Pu from u to x and Pv from v to x. If (ii) is satisfied, we are done. Otherwise,

et st be the edge common to both Pu and Pv that is closest to u and v (with s ∈ Lj and t ∈ Lj−1 for some j > 1). By the
nduction hypothesis, there are two shortest paths P1 and P2 from s to x that share at most an edge incident with x. Using
hese two shortest paths, we can easily combine them with Pu and Pv to obtain the two shortest paths from y to x, as
equired. □

. Basic graph families and bounds

In this section, we study dem for standard graph classes, and its relation with other standard graph parameters.

.1. Trees and grids

heorem 9. Let G be a connected graph with at least one edge. We have dem(G) = 1 if and only if G is a tree.

roof. In a tree, every edge is a bridge. Thus, by Lemma 3, if G is a tree, any vertex x of G is a distance-edge-monitoring
et and we have dem(G) ≤ 1 (and of course as long as there is an edge in G, dem(G) ≥ 1).
For the converse, suppose that dem(G) = 1. Then, clearly, G must have at least one edge. Moreover, since all edges of

G must belong to EM(x), by Lemma 6, G must be a forest. Since G is connected, G is a tree. □

Let Ga,b denote the grid of dimension a × b. By Theorem 9, we have dem(G1,a) = 1. We can compute all other values.

Theorem 10. For any integers a, b ≥ 2, we have dem(Ga,b) = max{a, b}.

Proof. Without loss of generality we assume that max{a, b} = a, and Ga,b has a rows and b columns.
Clearly, for any vertex x, by Lemma 5, EM(x) consists of the edges that are in the same row and column as x. This

shows that any distance-edge-monitoring set M must contain a vertex of each row and column, and dem(Ga,b) ≥ a.
To see that dem(Ga,b) ≤ a, we can choose any set M of a vertices containing exactly one vertex of every row and at

least one vertex of every column of Ga,b: M is a distance-edge-monitoring set of Ga,b of size a. □
427



F. Foucaud, S.-S. Kao, R. Klasing et al. Discrete Applied Mathematics 319 (2022) 424–438

P
e

a
e

3

o

T
n

P
d

o

w
S
o

O
d

T
r

3.2. Connection to arboricity and clique number

The arboricity arb(G) of a graph G is the smallest number of sets into which E(G) can be partitioned and such that each
set induces a forest. The clique number ω(G) of G is the size of a largest clique in G.

Theorem 11. For any graph G of order n and size m, we have dem(G) ≥ arb(G), and thus dem(G) ≥
m

n−1 and dem(G) ≥
ω(G)
2 .

roof. By Lemma 6, for each vertex x of a distance-edge-monitoring set M , EM(x) induces a forest. Thus, to each edge
of G we can assign one of the forests EM(x) such that e ∈ EM(x). This is a partition of G into |M| forests, and thus

arb(G) ≤ dem(G).
Moreover, it is not difficult to see that arb(G) ≥

m
n−1 (since a forest has at most n − 1 edges) and arb(G) ≥

ω(G)
2 (since

clique of size k = ω(G) has k(k − 1)/2 edges but a forest that is a subgraph of G can contain at most k − 1 of these
dges). □

.3. Connection to vertex covers and consequences for hypercubes and complete bipartite graphs

We next see that distance-edge-monitoring sets are relaxations of vertex covers. A set C of vertices is a vertex cover
f G if every edge of G has one of its endpoints in C . The smallest size of a vertex cover of G is denoted by vc(G).

heorem 12. In any graph G of order n, any vertex cover of G is a distance-edge-monitoring set, and thus dem(G) ≤ vc(G) ≤

− 1. Moreover, we have dem(G) = n − 1 if and only if G is the complete graph of order n.

roof. Let C be a vertex cover of G. By Lemma 7, for every edge e, there is a vertex x ∈ C with e ∈ EM(x), thus C is
istance-edge-monitoring.
Moreover, any graph G of order n has a vertex cover of size n− 1: for any vertex x, the set V (G) \ {x} is a vertex cover

f G.
Finally, suppose that dem(G) = n − 1: then also vc(G) = n − 1. If G is not connected, we have vc(G) ≤ n − 2 (starting

ith V (G) and removing any vertex from each connected component of G yields a vertex cover), thus G is connected.
uppose by contradiction that G is not a complete graph. Then, we have two vertices x, y in G such that xy is not an edge
f G. Then, V (G) \ {x, y} is a vertex cover of G, a contradiction.
This completes the proof. □

In some graphs, any distance-edge-monitoring set is a vertex cover.

bservation 13. If, for every vertex x of a graph G, EM(x) consists exactly of the edges incident with x, then a set M is a
istance-edge-monitoring set of G if and only if it is a vertex cover of G.

Note that Observation 13 does not provide a characterization of graphs with dem(G) = vc(G). For example, as seen in
heorem 10, for the grid Ga,2, we have dem(Ga,2) = vc(Ga,2) = a, but for any vertex x of Ga,2, EM(x) consists of the whole
ow and column of Ga,2.

Let Ka,b be the complete bipartite graph with parts of sizes a and b, and let Hd denote the hypercube of dimension d.
Both Ka,b and Hd satisfy Condition (ii) of Lemma 8. In a connected bipartite graph, the smallest vertex cover consists of
the smallest of the two parts. Thus, by Observation 13, we obtain the following.

Corollary 14. We have dem(Ka,b) = vc(Ka,b) = min{a, b}, and dem(Hd) = vc(Hd) = 2d−1.

3.4. Connection to feedback edge set number

A feedback edge set of a graph G is a set of edges such that removing them from G leaves a forest. The smallest size of
a feedback edge set of G is denoted by fes(G) (it is sometimes called the cyclomatic number of G).

The following folklore lemma uses the terminology defined in Section 2 (a proof can be found for example in Section
5.3.1 of [11] or Section 4.1 of [20]).

Lemma 15 ([11,20]). Let G be a graph with fes(G) = k ≥ 2. The base graph of G has at most 2k − 2 core vertices, that are
joined by at most 3k − 3 edge-disjoint core paths.

In other words, Lemma 15 says that the base graph of a graph G with fes(G) = k ≥ 2 can be obtained from a multigraph
H of order at most 2k − 2 and size 3k − 3 by subdividing its edges an arbitrary number of times.

Theorem 9 states that for any tree G (that is, a graph with feedback edge set number 0), we have dem(G) ≤ fes(G)+1.
We now show the same bound for graphs G with fes(G) ≤ 2.

Theorem 16. If fes(G) ≤ 2, then dem(G) ≤ fes(G) + 1. Moreover, if fes(G) ≤ 1, then equality holds.
428
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Proof. Let k = fes(G). If k = 0, G is a tree and we are done by Theorem 9.
Assume next that k = 1, that is, G is a connected unicyclic graph. Since G is not a tree, we have dem(G) ≥ 2. Let

C be the unique cycle of G and let x be a vertex of C . If C has even length, EM(x) ∩ E(C) consists of all edges of C
xcept the two that are incident to the antipodal vertex of x in C . Thus, for any two non-adjacent vertices x and y of C ,
EM(x)∪EM(y))∩E(C) = E(C). By Lemma 3, all other edges of G are monitored and thus {x, y} is distance-edge-monitoring.

If C has odd length, EM(x)∩E(C) consists of all edges of C except the one that connects the two vertices that are farthest
rom x. Thus, for any two vertices x and y of C , (EM(x)∪EM(y))∩E(C) = E(C) and again {x, y} is distance-edge-monitoring.

Assume finally that k = 2 and let Gb be the base graph of G. By Lemma 15, Gb contains at most two core vertices joined
y at most three core paths. By Lemma 3, any non-empty distance-edge-monitoring set of Gb is also one of G, since all
dges of G not present in Gb are bridges.
If one of the core paths of Gb is a core cycle, then in fact Gb must have two core cycles, with either one or two core

ertices. Then, select one vertex from each core cycle that is farthest from the core vertex on this cycle. One can check
hat these two vertices form a distance-edge-monitoring set.

Otherwise, Gb consists of two core vertices x, y joined by three parallel core paths. If x, y are not adjacent, then {x, y}
orms a distance-edge-monitoring set of Gb. (Note that x monitors the edges of the three core paths that are closer to x,
nd y monitors the edges closer to y.) Otherwise, the edge xy is one of the three core paths. Then, one may select x and a
iddle vertex of each of the two core paths of length at least 2. This forms a distance-edge-monitoring set and completes

he proof. □

We will now give a weaker (but similar) bound for any value of fes(G). This improves on our previous bound from [12].

heorem 17. Let G be a graph with fes(G) = k. If k ≥ 3, then dem(G) ≤ 2k − 2.

roof. Let Gb be the base graph of G. By Lemma 15, Gb contains at most 2k − 2 core vertices, that are joined by at most
k − 3 core paths. By Lemma 3, any non-empty distance-edge-monitoring set of Gb is also one of G, since all edges of G
ot present in Gb are bridges. Thus, it is sufficient to construct a distance-edge-monitoring set M of Gb of size at most
k − 2.
A first candidate would be to select the set C of all core vertices of Gb. However, this might not be a distance-edge-

onitoring set, indeed for any odd-length core cycle of Gb its middle edge is not monitored, and for any even-length core
ycle of Gb the two edges at the opposite of the core vertex are not monitored. Similarly, if Gb contains two distinct core
ertices c1, c2 that are joined by a core path P of odd length at least 3 and by another core path of length 1 (an edge), then
he middle edge of P is not monitored. (Note that every other edge e is monitored, indeed there is one endpoint x of e
uch that the unique shortest path from x to its closest core vertex goes through e.) We call these core paths, problematic
ore paths. Let P be the set of problematic core paths. In what follows, we will start from C as a solution set and adjust
t to handle problematic core paths.

To this end, we build a subgraph G′

b of Gb, by iteratively selecting a new core path P of P , and by removing the inner-
ertices and edges of P from Gb, unless we decrease the number of core vertices of the graph by more than 1. When there
s no such candidate core path left in P , we stop the process and obtain the graph G′

b. Let p be the number of core paths
f P that we have removed from Gb in this process, and let k′

= fes(G′

b).
First, we show that k′

= k − p. First, to see that k′
≥ k − p, we show that k ≤ k′

+ p. Observe that one can obtain a
eedback edge set of Gb from one of G′

b by additionally selecting one edge of each of the p core paths that were deleted
rom Gb to obtain G′

b, which shows that k ≤ k′
+ p, as claimed. Second, to see that k′

≤ k − p, consider any feedback
dge set F of Gb, and note that it necessarily contains one edge of each core cycle of Gb. Moreover, for every pair c1, c2
f distinct core vertices of Gb joined by at least 2 core paths, it contains an edge of all of them, except possibly one. In
act we may assume that F is chosen so that it contains an edge of all of them that have length at least 2. Thus, every
roblematic core path of Gb has an edge in F . Removing these p edges from F , we obtain the desired feedback edge set
f G′

b of size k − p.
Let C ′ be the set of core vertices of G′

b. Since at each step of the procedure used for building G′

b, we decrease the number
f core vertices by at most 1, G′

b has at least |C | − p core vertices. Thus, since k′
= k − p and applying Lemma 15 to G′

b,
e have:

|C | ≤ |C ′
| + p

≤ 2k′
− 2 + p

= 2(k − p) − 2 + p
= 2k − p − 2

We now build our distance-edge-monitoring set M as follows. First, we let M = C . Moreover, for each problematic
ore path P that was deleted to obtain G′

b, we add one arbitrary inner-vertex of P to M . At this point, M monitors all
dges, except those of the problematic paths of Gb that were not deleted when constructing G′

b. Observe that in G′

b, each
uch core path P joins two distinct adjacent core vertices c1, c2 of G′

b, both having degree exactly 3 in G′

b. (Moreover, since
≥ 3, c1 and c2 are joined only by two core paths in G′

b.) We select an arbitrary core vertex among c1 and c2 (say c1),
emove it from M , and replace it with the neighbor of c1 on P . We do this for every such remaining problematic core
ath. Again, since k ≥ 3, now every problematic core path contains a vertex of M .
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It is clear that M has size at most 2k−2. We now show that M is distance-edge-monitoring. To do so, consider an edge
of Gb, which lies on some core path P . If P is not a problematic path or e is not the middle edge of P , then similarly as
or the set C , there is an endpoint x of e whose unique shortest path to one of the core vertices c of P (or the neighbor of
, if c was removed from M) goes through e, and so e is monitored by c or its neighbor. For the remainder, assume that
is problematic and that e is the middle edge of P . If P was among the p paths from which we added an extra vertex x

to M , then x monitors e. Otherwise, we have removed one of the core vertices of P , and replaced it with its neighbor on
P . Then, this neighbor monitors e. This completes the proof. □

We do not believe that the bound of Theorem 17 is tight. There are examples of graphs G where dem(G) = fes(G)+ 1,
for example this is the case for the grid Ga,2: by Theorem 10, when a ≥ 2 we have dem(Ga,2) = a, and fes(Ga,2) = a − 1.

Note that Ga,b for a, b ≥ 2 provides examples of a family of graphs where for increasing a, b the difference between
fes(Ga,b) and dem(Ga,b) is unbounded by a constant. Indeed, by Theorem 10, we have dem(Ga,b) = max{a, b}, but fes(Ga,b)
is linear in the order ab.

4. Graphs G with dem(G) = 2

In this section, we characterize connected graphs G with dem(G) = 2.
For two vertices u, v of a graph G and two non-negative integers i, j, we denote by Bi,j(u, v) the set of vertices at

distance i from u and distance j from v in G.

Observation 18. Let G be a graph, and let u, v be two vertices in G. Let i, j be two non-negative integers such that Bi,j(u, v) ̸= ∅.
Then, |i − j| ≤ dG(u, v).

Proof. Let x ∈ Bi,j(u, v). According to the definition of Bi,j(u, v), dG(u, x) = i and dG(v, x) = j. According to the triangle
inequality, it holds that i ≤ dG(u, v)+j. Hence, i−j ≤ dG(u, v). Similarly, it holds that j ≤ dG(u, v)+i. Hence, j−i ≤ dG(u, v).
Overall, |i − j| ≤ dG(u, v). □

Observation 19. Let G be a graph, and let u, v be two vertices in G. Let i, j be two non-negative integers such that Bi,j(u, v) ̸= ∅.
Let x ∈ Bi,j(u, v), and let y ∈ Bi′,j′ (u, v) be a neighbor of x. Then, i′ ∈ {i − 1, i, i + 1} and j′ ∈ {j − 1, j, j + 1}.

Proof. Let x ∈ Bi,j(u, v) and let y ∈ Bi′,j′ (u, v) be a neighbor of x. Because y is a neighbor of x, the distances from u to y
and x can only differ by at most 1. Hence, i′ ∈ {i− 1, i, i+ 1}. Likewise, because y is a neighbor of x, the distances from v

to y and x can only differ by at most 1. Hence, j′ ∈ {j − 1, j, j + 1}. □

We are now ready to state our characterization in the next theorem. An example of a graph G with dem(G) = 2
following the characterization is given in Fig. 1.

Theorem 20. Let G be a connected graph with at least one cycle, and let Gb be the base graph of G. Then, dem(G) = 2 if and
only if there are two vertices u, v in Gb such that all of the following conditions (I)–(IV) hold in Gb.

(I) ∀i, j ∈ {0, 1, 2, . . . }: Bi,j(u, v) is an independent set.
(II) ∀i, j ∈ {1, 2, 3, . . . }: Every vertex x in Bi,j(u, v) has at most one neighbor in each of the four sets Bi−1,j(u, v) ∪

Bi−1,j−1(u, v), Bi−1,j(u, v) ∪ Bi−1,j+1(u, v), Bi,j−1(u, v) ∪ Bi−1,j−1(u, v) and Bi,j−1(u, v) ∪ Bi+1,j−1(u, v).
(III) ∀i, j ∈ {1, 2, 3, . . . }: There is no 4-vertex path zxyz ′ with z ∈ Bi−1,a(u, v), z ′

∈ Ba′,j(u, v), x ∈ Bi,j(u, v), y ∈ Bi−1,j+1(u, v),
a ∈ {j − 1, j + 1}, a′

∈ {i − 2, i}.
(IV) ∀i, j ∈ {1, 2, 3, . . . }: x ∈ Bi,j(u, v) has neighbors in at most two sets among Bi−1,j+1(u, v), Bi−1,j−1(u, v), Bi+1,j−1(u, v).

Proof. ⇒ Let us assume dem(G) = 2, hence dem(Gb) = 2 according to Observation 4. Let {u, v} be a distance-edge-
monitoring set of Gb. We will show that the properties (I)–(IV) hold.

(I) Assume that Bi,j(u, v) is not an independent set. Let e = xy be an edge such that x, y ∈ Bi,j(u, v). Then, the distance
from x to u is i and the distance from y to u is i, hence e is not monitored by u, according to Lemma 5. Likewise, e
is not monitored by v, a contradiction.

(II) Let x ∈ Bi,j(u, v).

(i) Assume x has two neighbors y, y′
∈ Bi−1,j(u, v) ∪ Bi−1,j−1(u, v). Assume first that x has two neighbors y, y′

such that either both y, y′
∈ Bi−1,j(u, v), both y, y′

∈ Bi−1,j−1(u, v), or y ∈ Bi−1,j(u, v), y′
∈ Bi−1,j−1(u, v). Let

e = xy. Then, the distance from y to u and the distance from y′ to u are both i − 1, hence e is not monitored
by u, according to Lemma 5. The distance from y to v and the distance from x to v are also the same, hence
e is not monitored by v, according to Lemma 5. This is a contradiction.

(ii) Assume x has two neighbors y, y′
∈ Bi−1,j(u, v) ∪ Bi−1,j+1(u, v). If both y, y′

∈ Bi−1,j(u, v) we are done
by Case (i). Thus, assume that y ∈ B (u, v) ∪ B (u, v) and y′

∈ B (u, v), and let e = xy. If
i−1,j i−1,j+1 i−1,j+1
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Fig. 1. A (base) graph G with dem(G) = 2, where {u, v} is a distance-edge-monitoring set. For easier readability, we use the notation Bi,j for Bi,j(u, v).

y, y′
∈ Bi−1,j+1(u, v), as in Case (i), the ordered pair of distances from y to u and v and the ordered pair

of distances from y′ to u and v are the same, and by Lemma 5 e is not monitored. If y ∈ Bi−1,j(u, v),
y′

∈ Bi−1,j+1(u, v), the same argument works to show that u does not monitor e. Moreover, the distances
from x to v and from y to v are both j, and by Lemma 5 v also does not monitor e. This is a contradiction.

(iii) The cases where x has two neighbors in Bi,j−1(u, v) ∪ Bi−1,j−1(u, v) or in Bi,j−1(u, v) ∪ Bi+1,j−1(u, v) are
completely symmetric to Cases (i) and (ii).

(III) Assume there is a path zxyz ′ with z ∈ Bi−1,a(u, v), z ′
∈ Ba′,j(u, v), x ∈ Bi,j(u, v), y ∈ Bi−1,j+1(u, v), a ∈ {j − 1, j + 1},

a′
∈ {i − 2, i}, and let e = xy, then the distance from u to z is i − 1, and the distance from u to y is i − 1, hence by

Lemma 5 e is not monitored by u. The distance from v to z ′ is j, and the distance from v to x is j, hence e is also
not monitored by v according to Lemma 5, a contradiction.

(IV) Let us assume by contradiction that x ∈ Bi,j(u, v) has three neighbors y, y′, z such that y ∈ Bi−1,j−1(u, v), y′
∈

Bi+1,j−1(u, v), and z ∈ Bi−1,j+1(u, v), and let e = xy. The distance from z to u is i− 1, and the distance from y to u is
i − 1, hence e is not monitored by u. The distance from y to v is j − 1, and the distance from y′ to v is j − 1, hence
e is not monitored by v, according to Lemma 5, a contradiction.

⇐ Let us assume that there are two vertices u, v in Gb such that all of the conditions (I) - (IV) hold in Gb. We will show
that {u, v} is a distance-edge-monitoring set in Gb, and hence dem(G) = 2 according to Observation 4. Let e = xy be an
edge in G such that x ∈ Bi,j(u, v). According to condition (I), y /∈ Bi,j(u, v). We will distinguish three cases with respect to
y. All the other cases are symmetric to these three main cases.

Case(a): y ∈ Bi−1,j−1(u, v). (The case y ∈ Bi+1,j+1(u, v) is symmetric.)
By contradiction, assume e is not monitored. Then, there is a path Pi of length i from x to u not using e, and there
is a path Pj of length j from x to v not using e. Let z be the neighbor of x in Pi. Then, z belongs to Bi−1,a(u, v).
Let z ′ be the neighbor of x in Pj. Then, z ′ belongs to Ba′,j−1(u, v). According to Observation 19 and condition (II),
a = j + 1 and a′

= i + 1. Hence, x has neighbors in all three sets Bi−1,j+1(u, v), Bi−1,j−1(u, v), Bi+1,j−1(u, v), in
contradiction to condition (IV).

Case(b): y ∈ Bi,j−1(u, v). (The cases y ∈ Bi−1,j(u, v), Bi+1,j(u, v) or Bi,j+1(u, v) are symmetric.)
By contradiction, assume e is not monitored. Then, there is a path Pj of length j from x to v not using e. Let z ′

be the neighbor of x in Pj. Then, z ′ belongs to Ba′,j−1(u, v). As a′
∈ {i − 1, i, i + 1}, this contradicts condition (II).

Case(c): y ∈ Bi−1,j+1(u, v). (The case y ∈ Bi+1,j−1(u, v) is symmetric.)
By contradiction, assume e is not monitored. Then, there is a path of length i from x to u avoiding y (let z be the
neighbor of x on this path). Similarly, there is a path of length j+1 from y to v avoiding x (let z ′ be the neighbor
of y on this path). Thus, there is a 4-vertex path zxyz ′ with z ∈ Bi−1,a(u, v), z ′

∈ Ba′,j(u, v), a ∈ {j − 1, j, j + 1},
a′

∈ {i− 2, i− 1, i}. According to condition (II), a ̸= j and a′
̸= i− 1. However, the other cases (a ∈ {j− 1, j+ 1}

and a′
∈ {i − 2, i}) contradict condition (III). □

5. Complexity

We now study the algorithmic complexity of finding an optimal distance-edge-monitoring set.
A c-approximation algorithm for a given optimization problem is an algorithm that returns a solution whose size is

always at most c times the optimum. We refer to the books [1,16] for more details. For a decision problem Π and for
some parameter p of the instance, an algorithm for Π is said to be fixed parameter tractable (fpt for short) if it runs in time
f (p)nc , where f is a computable function, n is the input size, and c is a constant. In this paper, we will always consider the
solution size k as the parameter. The class FPT contains the parameterized decisions problems solvable by an fpt algorithm.
The classes W[i] (with i ≥ 1) denote complexity classes with parameterized decision problems that are believed not to
be fpt. We refer to the books [10,23] for more details.
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5.1. NP-hardness

We will now use the connection to vertex covers hinted in Section 3 to derive an NP-hardness result. For two graphs
, H , G ▷◁ H denotes the graph obtained from disjoint copies of G and H with all possible edges between V (G) and V (H).

We denote by K1 the graph on one single vertex.

Theorem 21. For any graph G, we have vc(G) ≤ dem(G ▷◁ K1) ≤ vc(G) + 1. Moreover, if G has radius at least 4, then
vc(G) = dem(G ▷◁ K1).

Proof. We denote by u the vertex from K1. By Theorem 12, we have dem(G ▷◁ K1) ≤ vc(G ▷◁ K1) ≤ vc(G) + 1 since u
together with any vertex cover of G is a vertex cover of G ▷◁ K1.

To see that vc(G) ≤ dem(G ▷◁ K1), assume that we have a distance-edge-monitoring set M of G ▷◁ K1, and let vw be
ny edge of G. There exists a vertex x in M such that vw ∈ EM(x). Then, we must have x ∈ {v, w}, indeed, if not, then vw
ould be part of a unique shortest path of length 2 from x to some vertex y, which is not possible since the path from x
o y going through u is another path of length 2.

Now, assume that G has radius at least 4: it remains to prove that dem(G ▷◁ K1) ≤ vc(G). Let M be a vertex cover of G.
y Lemma 7, all edges incident with a vertex of M are monitored by M , which includes all (original) edges of G. Let e = uv
e an edge incident with the vertex u of K1 such that v /∈ M . We claim that there is a vertex x of M with dG(v, x) ≥ 3.
ndeed, since G has radius at least 4, there is a vertex at distance 4 of v in G. Consider a neighbor of that vertex that is
tself at distance 3 of v in G. Since M is a vertex cover, one of these two vertices is in M , which proves the existence of
. Now, we know that dG▷◁K1 (v, x) = 2, and the only path of length 2 from v to x goes through e. Thus e ∈ EM(x). This
hows that all edges are monitored by M , and completes the proof. □

orollary 22. Distance-Edge-Monitoring Set is NP-complete, even for graphs obtained from a planar subcubic graph by
ttaching a universal vertex.

roof. It is known (see [13]) that Vertex Cover is NP-complete for planar subcubic graphs with radius at least 4 (for the
atter condition, note that a subcubic graph of radius at most 3 has constant order). Theorem 21 provides a polynomial
eduction from such instances, and this completes the proof. □

.2. Approximation algorithm

Given a hypergraph H = (X, S) with vertex set X and edge set S, a set cover of H is a subset C ⊆ S of edges such that
ach vertex of X belongs to at least one edge of C . We will provide reductions for Min Distance-Edge-Monitoring Set
o and from Set Cover and Min Set Cover.

Set Cover
Instance: A hypergraph H = (X, S), an integer k.
Question: Is there a set cover C ⊆ S of size at most k?

Min Set Cover
Instance: A hypergraph H = (X, S).
Task: Build a smallest possible set cover of H .

It is known that Min Set Cover is approximable in polynomial time within a factor of ln(|X | + 1) [17], but, unless P=NP,
not within a factor of (1 − ϵ) ln |X | (for every positive ϵ) [9]. Moreover, Set Cover is W[2]-hard (when parameterized by
k) and not solvable in time |X |

o(k)
|H|

O(1) unless FPT=W[1] [7].

Theorem 23. Min Distance-Edge-Monitoring Set is approximable within a factor of ln(|E(G)| + 1) in polynomial time.

Proof. Let G be a graph and consider the following hypergraph H = (X, S) with X = E(G) and such that S contains, for
each vertex x of G, the set Sx = {e ∈ X | e ∈ EM(x)}. Now, it is not difficult to see that there is a one-to-one correspondence
between set covers of H and distance-edge-monitoring sets of G, where we associate to each vertex x of a distance-edge-
monitoring set of G, the set Sx in a set cover of H . Thus, the result follows from the ln(|X | + 1)-approximation algorithm
for Min Set Cover from [17]. □

5.3. Approximation and parameterized hardness

Theorem 24. Even for graphs G that are (a) of diameter 4, (b) bipartite and of diameter 6, or (c) bipartite and of maximum
degree 3, Min Distance-Edge-Monitoring Set is not approximable within a factor of (1 − ϵ) ln |E(G)| in polynomial time,
unless P = NP. Moreover, for such instances, Distance-Edge-Monitoring Set cannot be solved in time |G|

o(k), unless FPT=W[1],
and it is W[2]-hard for parameter k.
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Proof. For an instance (H, k) of Set Cover, we will construct in polynomial time instances (G, k + 2) or (G, k + 1) of
Distance-Edge-Monitoring Set so that H has a set cover of size k if and only if G has a distance-edge-monitoring set of
size at most k + 2 or k + 1.

In our first reduction, the obtained instance has diameter 4, while in our second reduction, the obtained instance is
bipartite and has diameter 6, and in our third reduction, the graph G is bipartite and has maximum degree 3. The three
constructions are similar.

The statement will follow from the hardness of approximatingMin Set Cover proved in [9], the parameterized hardness
of Set Cover (parameterized by solution size), and the lower bound on its running time [7].

First of all, we point out that we may assume that in an instance (H = (X, S), k) of Set Cover, there is no vertex of X
that belongs to a unique set of S. Indeed, otherwise, we are forced to take S in any set cover of H; thus, by removing S
and all vertices in S, we obtain an equivalent instance (H ′, k−1). We can iterate until the instance satisfies this property.

(1) We now describe the first reduction, in which the obtained instance has diameter 4. Let (H, k) = ((X, S), k) be an
instance of Set Cover, where X = {x1, x2, . . . , x|X |}, S = {C1, C2, . . . , C|S|} and Ci = {ci,j | xj ∈ Ci}. Construct the following
instance (G, k + 2) = ((V , E), k + 2) of Distance-Edge-Monitoring Set, where V = V1 ∪ V2 ∪ · · · ∪ V5 ∪ V ′

1 ∪ V ′

2 ∪ V ′

3,
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E ′

1 ∪ E ′

2 ∪ E ′

3 ∪ E ′

4 and

V1 = {u1, u2, u3},

V2 = {vi | 1 ≤ i ≤ |S|},
V3 = S,
V4 = {ci,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

V5 = X,

V ′

1 = {u′

1, u
′

2, u
′

3},

V ′

2 = {c ′

i,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

V ′

3 = {w′

j | 1 ≤ j ≤ |X |},

E1 = {(u1, u2), (u1, u3), (u2, u′

1), (u3, u′

1)},
E2 = {(u1, vi), (vi, Ci) | 1 ≤ i ≤ |S|},
E3 = {(Ci, ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

E4 = {(ci,j, xj) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

E ′

1 = {(u′

1, u
′

2), (u
′

2, u
′

3), (u
′

3, u
′

1)},
E ′

2 = {(u′

1, c
′

i,j), (c
′

i,j, ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

E ′

3 = {(u′

1, w
′

j), (w
′

j, xj) | 1 ≤ j ≤ |X |},

E ′

4 = {(u′

1, vi) | 1 ≤ i ≤ |S|}.

An example is given in Fig. 2. Notice that the purpose of the vertices in V ′

1, V
′

2, V
′

3 is only to reduce the diameter. A
simpler reduction without these vertices, and with an additional edge joining u2 and u3 would also function.

To see that G has diameter 4, observe that every vertex of G has a path of length at most 2 to the vertex u′

1.
Let C be a set cover of H of size k. Define M = C ∪ {u1, u′

2}. Then, by Lemma 5, u1 monitors (in particular) the edges
(u1, u2), (u1, u3), (u′

1, u
′

3), and all the edges in E2 ∪ E3. Similarly, u′

2 monitors the edges (u′

1, u
′

2), (u
′

2, u
′

3), (u3, u′

1), (u2, u′

1)
and all the edges in E ′

2 ∪ E ′

3 ∪ E ′

4. It thus remains to show that all edges of E4 are monitored. Notice that among those
edges, vertex Ci of S monitors exactly all edges cj1,j2 with xj2 ∈ Ci. Thus, if e = (ci,j, xj), there is i′ such that xj ∈ Ci′ and
Ci′ ∈ C , and e is monitored by Ci′ (either i = i′ and the only shortest path from xj to Ci contains e, or i ̸= i′ and the only
shortest path from ci,j to Ci′ contains e). Hence, M is a distance-edge-monitoring set of G of size at most k + 2.

Conversely, let M be a distance-edge-monitoring set of G of size at most k + 2. In order to monitor the edge (u′

2, u
′

3),
either u′

2 ∈ M or u′

3 ∈ M . In order to monitor the edges (u1, u3) and (u1, u2), there must be a vertex of M in {u1, u2, u3}.
e may replace M ∩{u1, u2, u3} by u1 and M ∩{u′

2, u
′

3} by u′

2, as u1 monitors the same edges as {u1, u2, u3} (among those
ot already monitored by u′

2) and u′

2 monitors the same edges as {u′

2, u
′

3} (among those not already monitored by u1). As
een in the previous paragraph, all edges of E1, E2, E3, E ′

1, E
′

2, E
′

3 and E ′

4 are monitored by {u1, u′

2}. However, no edge of E4
s monitored by any vertex of V1 ∪ V ′

1. Thus, all remaining vertices of M are needed precisely to monitor the edges of E4.
If vi ∈ M , let M = M \ {vi} ∪ {Ci}, and the set of monitored edges does not decrease. If ci,j ∈ M , let M = M \ {ci,j} ∪ {Ci},

nd the set of monitored edges does not decrease. If xj ∈ M , let M = M \ {xj} ∪ {ci,j} for some i such that xj ∈ Ci, and
he set of monitored edges does not decrease. If c ′

i,j ∈ M , let M = M \ {c ′

i,j} ∪ {ci,j}, and the set of monitored edges
oes not decrease. If w′

j ∈ M , let M = M \ {w′

j} ∪ {xj}, and the set of monitored edges does not decrease. Iterating this
rocess, we finally obtain a distance-edge-monitoring set M ′ of G with |M ′

∩ V1| = 1, |M ′
∩ V ′

1| ≥ 1, |M ′
∩ V3| ≤ k,

′
∩ (V2 ∪ V4 ∪ V5 ∪ V ′

2 ∪ V ′

3) = ∅. Let C = M ′
∩ V3. If C is not a set cover of H , then there is xj ∈ X that is not covered

y C . Recall that we assumed that each vertex of X belongs to at least two edges of S. Then, according to Lemma 5, any
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Fig. 2. First reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph
{x1, x2, x3, x4}, {C1 = {x1, x2}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}}). Vertices and edges of V ′

i and E ′

i for i = 2, 3 are only suggested.

dge (ci,j, xj) is not monitored by any of the vertices in M ′
= (M ′

∩ V1) ∪ (M ′
∩ V ′

1) ∪ C , a contradiction. Hence, C is a set
over of H of size at most k.

2) We now describe the second reduction, in which the obtained instance is bipartite and has diameter 6. Let (H, k) =

(X, S), k) be an instance of Set Cover, where X = {x1, x2, . . . , x|X |}, S = {C1, C2, . . . , C|S|} and Ci = {ci,j | xj ∈ Ci}. Construct
he following instance (G, k+ 2) = ((V , E), k+ 2) of Distance-Edge-Monitoring Set, where V = V1 ∪ V2 ∪ · · · ∪ V5 ∪ V ′

1 ∪
′

2 ∪ V ′

3 ∪ V ′′, E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E ′

1 ∪ E ′

2 ∪ E ′

3 ∪ E ′′ and

V1 = {u1, u2, u3, u4},

V2 = {vi | 1 ≤ i ≤ |S|},
V3 = S,
V4 = {ci,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

V5 = X,

V ′

1 = {u′

1, u
′

2, u
′

3, u
′

4},

V ′

2 = {v′

i | 1 ≤ i ≤ |S|},
V ′

3 = {w′

j | 1 ≤ j ≤ |X |},

V ′′
= {u′′

1},

E1 = {(u1, u2), (u2, u3), (u3, u4), (u4, u1)},
E2 = {(u1, vi), (vi, Ci) | 1 ≤ i ≤ |S|},
E3 = {(Ci, ci,j) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

E4 = {(ci,j, xj) | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci},

E ′

1 = {(u′

1, u
′

2), (u
′

2, u
′

3), (u
′

3, u
′

4), (u
′

4, u
′

1)},
E ′

2 = {(u′

1, v
′

i ), (v
′

i , Ci) | 1 ≤ i ≤ |S|},
E ′

3 = {(u′

1, w
′

j), (w
′

j, xj) | 1 ≤ j ≤ |X |},

E ′′
= {(u1, u′′

1), (u
′′

1, u
′

1)}.
The reduction is depicted in Fig. 3.
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Fig. 3. Second reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph
{x1, x2, x3, x4}, {C1 = {x1, x2}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}}). Vertices and edges of V ′

i and E ′

i for i = 2, 3 are only suggested.

Let C be a set cover of H of size k. Define M = C ∪ {u3, u′

3}. Then, by Lemma 5, u3 monitors the edges (u2, u3), (u3, u4),
u1, u′′

1), (u
′

2, u
′

1), (u
′

4, u
′

1) and all the edges in E2 ∪ E3, and u′

3 monitors the edges (u′

2, u
′

3), (u
′

3, u
′

4), (u
′′

1, u
′

1), (u2, u1), (u4, u1)
nd all the edges in E ′

2 ∪ E ′

3 ∪ E ′

4. If e = (ci,j, xj), there is i′ such that xj ∈ Ci′ and Ci′ ∈ C , and e is monitored by Ci′ (either
= i′ and the only shortest path from xj to Ci contains e, or i ̸= i′ and the only shortest path from ci,j to Ci′ contains e).
ence, M is a distance-edge-monitoring set of G of size at most k + 2.
Let M be a distance-edge-monitoring set of G of size at most k + 2. In order to monitor the edge (u2, u3), either

2 ∈ M or u3 ∈ M . If vi ∈ M , let M = M \ {vi} ∪ {Ci}, and the set of monitored edges does not decrease. If ci,j ∈ M , let
= M\{ci,j}∪{Ci}, and the set of monitored edges does not decrease. If xj ∈ M , let M = M\{xj}∪{ci,j} for some i such that

j ∈ Ci, and the set of monitored edges does not decrease. In order to monitor the edge (u′

2, u
′

3), either u
′

2 ∈ M or u′

3 ∈ M .
f v′

i ∈ M , let M = M \ {v′

i} ∪ {Ci}, and the set of monitored edges does not decrease. If w′

j ∈ M , let M = M \ {w′

j} ∪ {xj},
nd the set of monitored edges does not decrease. If u′′

1 ∈ M , let M = M \ {u′′

1} ∪ {u3}, and the set of monitored edges
oes not decrease. Iterating this process, we finally obtain a distance-edge-monitoring set M ′ of G with |M ′

∩ V1| ≥ 1,
M ′

∩ V ′

1| ≥ 1, |M ′
∩ V3| ≤ k, M ′

∩ (V2 ∪V4 ∪V5 ∪V ′

2 ∪V ′

3 ∪V ′′) = ∅. Let C = M ′
∩V3. If C is not a set cover of H , then there

s xj ∈ X that is not covered by C . Without loss of generality, assume that each vertex of X belongs to at least two edges of
. Then, according to Lemma 5, any edge (ci,j, xj) is not monitored by any of the vertices in M ′

= (M ′
∩V1)∪ (M ′

∩V ′

1)∪C ,
contradiction. Hence, C is a set cover of H of size at most k.

3) We now describe the third reduction, in which the obtained instance is bipartite and has maximum degree 3. Let
H, k) = ((X, S), k) be an instance of Set Cover, where X = {x1, x2, . . . , x|X |}, S = {C1, C2, . . . , C|S|} and Ci = {ci,j | xj ∈ Ci}.
et D = ⌈log2 max{|X |, |S|}⌉. Let B(r, {r1, r2, . . . , rℓ}, d) denote a binary tree with root r and ℓ leaves r1, r2, . . . , rℓ at
istance d ≥ ⌈log2 ℓ⌉ from r . Let P(r, s, ℓ) denote the path of length ℓ with endpoints r and s. Let Ci = {ci,j | 1 ≤ i ≤

S|, 1 ≤ j ≤ |X |, xj ∈ Ci}. Let Xj = {ci,j | 1 ≤ i ≤ |S|, 1 ≤ j ≤ |X |, xj ∈ Ci}. Let B = B(u, {v1, v2, . . . , v|S|},D). For
≤ i ≤ |S|, 1 ≤ j ≤ |X |, let Pi = P(vi, Ci,D), B(Ci) = B(Ci, Ci,D), and B(xj) = B(xj,Xj,D). Construct the following instance

G, k + 1) = ((V , E), k + 1) of Distance-Edge-Monitoring Set, where V = V1 ∪ V2 ∪ · · · ∪ V8, E = E1 ∪ E2 ∪ · · · ∪ E5 and

V1 = {u1, u2, u3, u4},

V2 = V (B),
V3 = ∪1≤i≤|S| V (Pi),
V = S,
4
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Fig. 4. Third reduction from Set Cover to Distance-Edge-Monitoring Set from the proof of Theorem 24 applied to the hypergraph
({x1, x2, x3, x4}, {C1 = {x1, x2}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}}), thus D = ⌈log2 max{3, 4}⌉ = 2.

V5 = ∪1≤i≤|S|,1≤j≤|X |,xj∈Ci V (B(Ci)),
V6 = ∪1≤i≤|S|,1≤j≤|X |,xj∈Ci Ci,
V7 = ∪1≤j≤|X | V (B(xj)),
V8 = X,

E1 = {(u1, u2), (u2, u3), (u3, u4), (u4, u1), (u1, u)},
E2 = E(B),
E3 = ∪1≤i≤|S| E(Pi),
E4 = ∪1≤i≤|S|,1≤j≤|X |,xj∈Ci E(B(Ci)),
E5 = ∪1≤j≤|X | E(B(xj)).

The reduction is depicted in Fig. 4.
Let C be a set cover of H of size k. Define M = C ∪ {u2}. Then, by Lemma 5, u2 monitors the edges (u1, u2), (u2, u3),

(u1, u) and all the edges in E2 ∪ E3 ∪ E4, and any vertex in C monitors the edges (u1, u4), (u1, u2). If e ∈ E(B(xj)), there is i′
uch that xj ∈ Ci′ and Ci′ ∈ C , and e is monitored by Ci′ (either i = i′ and the only shortest path from xj to Ci contains e,
or i ̸= i′ and the only shortest path from ci,j to Ci′ contains e). Hence, M is a distance-edge-monitoring set of G of size at
ost k + 1.
Let M be a distance-edge-monitoring set of G of size at most k+1. In order to monitor the edge (u2, u3), either u2 ∈ M

r u3 ∈ M . If v ∈ (M ∩ V (B)), descend to the leftmost leaf vi in B with v as its ancestor, and let M = M \ {vi} ∪ {Ci}.
hen, the set of monitored edges does not decrease. If v ∈ (M ∩ V (Pi)), let M = M \ {vi} ∪ {Ci}, and the set of monitored
dges does not decrease. If v ∈ (M ∩ V (B(Ci))), let M = M \ {v} ∪ {Ci}, and the set of monitored edges does not decrease.
f v ∈ (M ∩ V (B(xj))), let M = M \ {xj} ∪ {ci,j} for some i such that xj ∈ Ci, and the set of monitored edges does not
ecrease. Iterating this process, we finally obtain a distance-edge-monitoring setM ′ of Gwith |M ′

∩ V1| ≥ 1, |M ′
∩ V4| ≤ k,

′
∩ (V2 ∪ V3 ∪ V5 ∪ V6 ∪ V7 ∪ V8) = ∅. Let C = M ′

∩ V4. If C is not a set cover of H , then there is xj ∈ X that is not
overed by C . Without loss of generality, assume that each vertex of X belongs to at least two edges of C . Then, according
o Lemma 5, any edge (v, xj) is not monitored by any of the vertices in M ′

= (M ′
∩ V1) ∪ C , a contradiction. Hence, C is a

et cover of H of size at most k. □

. Concluding remarks and questions

We have introduced a new graph parameter useful in the area of network monitoring. We conclude the paper with
ome remarks for future research directions.

.1. Structural graph parameters

We have related the parameter dem to other standard graph parameters by giving lower and upper bounds. The
iagram in Fig. 5 shows the relations between these parameters. It would be interesting to improve them. In particular, is
t true that dem(G) ≤ fes(G) + 1? As we have seen, this bound would be tight. Moreover, is the bound dem(G) ≥ ω(G)/2

rom Theorem 11 tight?
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a
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Fig. 5. Relations between some structural parameters and dem. Arcs between parameters indicate that the bottom parameter is upper-bounded by
function of the top parameter.

The relation of the parameter dem to other structural graph parameters not considered here would also be of interest.
feedback vertex set of a graph G is a set of vertices such that removing them from G leaves a forest. The smallest size

of a feedback vertex set of G is denoted by fvs(G). It is not difficult to show that for any graph G, fvs(G) ≤ vc(G) and
fvs(G) ≤ fes(G). However, we cannot hope to bound dem(G) by a function of fvs(G), as we did in Theorems 12 and 17
for vc(G) and fes(G). Indeed, consider the example of a path Pa of order a ≥ 9 to which we add a universal vertex. This
graph Pa ▷◁ K1 has radius at least 4, thus, by Theorem 21, we have dem(Pa ▷◁ K1) = vc(Pa) = ⌊a/2⌋, while we have
fvs(Pa ▷◁ K1) = 1. Similarly, the pathwidth of Pa ▷◁ K1 is 2. Nevertheless, we do not know whether we can upper-bound
dem(G) by a function of the bandwidth or the treedepth of G.

6.2. Further complexity questions

It would also be interesting to determine graph classes where Distance-Edge-Monitoring Set has a polynomial-
time (or parameterized) exact or constant-factor approximation algorithm. For example, what happens for planar graphs,
chordal graphs or interval graphs?

6.3. Strengthening the definition

It is also reasonable to require to be able to simultaneously detect multiple edge failures in a network. In that case,
we could propose the following strengthening of distance-edge-monitoring sets, based on extending Proposition 2. For a
graph G and a set E of edges of G, we denote by G − E the graph obtained by removing all edges of E from G.

Definition 25. For a set E of edges and a set M of vertices of a graph G, we let P(M, E) be the set of pairs (x, y) with x a
vertex of M and y a vertex of V (G) such that dG(x, y) ̸= dG−E(x, y).

For a graph G, a distance-edge-monitoring set M of G is called a strong distance-edge-monitoring set of G if for any two
distinct subsets E1 and E2 of edges of G, we have P(M, E1) ̸= P(M, E2). We denote by sdem(G) the smallest size of a strong
distance-edge-monitoring set of G.

However, it turns out that the concept of strong distance edge-monitoring sets is in fact equivalent to the one of a
vertex cover!

Proposition 26. A set M of vertices of a graph G is strong distance-edge-monitoring if and only if it is a vertex cover of G.

Proof. First, assume that M is a vertex cover. For an edge uv (assume without loss of generality that u ∈ M), we have
(u, v) ∈ P(M, E) if and only if uv ∈ E. For two distinct sets E1, E2 of edges of G, we have an edge e = uv in the symmetric
difference E1 ⊖ E2 and thus one of the pairs (u, v) or (v, u) belongs to exactly one of P(M, E1) and P(M, E2). This implies
that M is a strong distance-edge-monitoring set.

Conversely, let M be a strong distance-edge-monitoring set of G. Assume for a contradiction that it is not a vertex
cover of G, so, there is an edge uv with {u, v} ∩ M = ∅. Let E be the set of edges that are incident with u or with v (or
both), and E ′

= E \ {uv}. Then, for any two vertices x, y with x /∈ {u, v}, we have dG−E(x, y) = dG−E′ (x, y). In particular, this
is true when x ∈ M . Thus, we have P(M, E) = P(M, E ′), a contradiction. □

Nevertheless, it could remain interesting to study an intermediate concept, where we wish to monitor all sets of edges
of size at most a given constant. This has been done for example in the context of the metric dimension in [21].
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