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a b s t r a c t

Given a graph H , a graph G is called H-critical if G does not admit a homomorphism to
H , but any proper subgraph of G does. Observe that Kk−1-critical graphs are the standard
k-(colour)-critical graphs. We consider questions of extremal nature previously studied
for k-critical graphs and generalize them to H-critical graphs. After complete graphs,
the next natural case to consider for H is that of the odd-cycles. Thus, given integers
ℓ and k, ℓ ≥ k, we ask: what is the smallest order of a C2ℓ+1-critical graph of odd-
girth at least 2k + 1? Denoting this value by η(k, C2ℓ+1), we show that η(k, C2ℓ+1) = 4k
for 1 ≤ ℓ ≤ k ≤

3ℓ+i−3
2 (2k = i mod 3) and that η(3, C5) = 15. The latter means

that a smallest graph of odd-girth 7 not admitting a homomorphism to the 5-cycle is
of order 15. Computational work shows that there are exactly eleven such graphs on
15 vertices of which only two are C5-critical.

© 2021 Published by Elsevier B.V.

1. Introduction

A k-critical graph is a graph which is k-chromatic, but any of its proper subgraphs is (k − 1)-colourable. Extremal
questions on critical graphs are a rich source of research in graph theory. Many well-known results and conjectures deal
with this subject, see for example [5,9–11,23]. Typical questions are for example:

Problem. What is the smallest possible order of a k-critical graph having a certain property, such as low clique number,
high girth or high odd-girth?

For example, the existence of graphs of high girth and high chromatic number, proved by Erdős [7], is a starting
point of this problem. This fact implies that each of the above questions has a finite answer. The specific question of the
smallest 4-critical graph without a triangle has received considerable attention: Grötzsch built a graph on 11 vertices
which is triangle-free and not 3-colourable. Harary [14] showed that any such graph must have at least 11 vertices, and
Chvátal [4] showed that the Grötzsch graph is the only one on 11 vertices.

In the context of colouring, it is of interest to consider the odd-girth, that is, the size of a smallest odd-cycle of a graph,
rather than the girth, since every graph with no odd-cycle is 2-colourable. Extending the example of the Grötzsch graph,
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Mycielski [18] introduced a construction, now known as the Mycielski construction, to increase the chromatic number
without increasing the clique number. A generalization of this construction is used to build 4-critical graphs of high odd-
girth, more precisely the generalized Mycielski construction on C2k+1, denoted Mk(C2k+1), is a graph of odd-girth 2k + 1.
everal authors (starting with Stiebitz [27] and Payan [24]) showed that Mk(C2k+1) is 4-chromatic for any k ≥ 2 and in

fact 4-critical, thus providing an upper bound of 2k2 + k+1 for the minimum order η(k) of a 4-critical graph of odd-girth
t least 2k + 1. (We will later generalize the function η using the notion of homomorphism.) We refer to [13,21,28,29]
or several other proofs. Among these authors, Ngoc and Tuza [21] asked whether the upper bound η(k) ≤ 2k2 + k+ 1 is
ssentially optimal. The first quadratic lower bound for η(k) was established in [22] by considering a maximum induced
ipartite subgraph. Improving on this approach, Jiang in [16] proved η(k) ≥ (k− 1)2 + 2. Recently, Esperet and Stehlík [8]
roved that 2k2 + k + 1 is the correct bound for the special case of graphs where any two odd-cycles have a common
ertex.1

The current work is a first step towards generalizing these extremal questions for k-critical graphs to H-critical graphs,
efined using the terminology of homomorphisms. A homomorphism of a graph G to a graph H is a vertex-mapping that

preserves adjacency, i.e., a mapping ψ : V (G) → V (H) such that if x and y are adjacent in G, then ψ(x) and ψ(y) are
adjacent in H . If there exists a homomorphism of G to H , we may write G → H and we may say that G is H-colourable, or
that G maps to H . In the study of homomorphisms, it is usual to work with the core of a graph, that is, a minimal subgraph
which admits a homomorphism from the graph itself. It is not difficult to show that a core of any graph is unique up to
isomorphism. A graph is said to be a core if it admits no homomorphism to a proper subgraph. We refer to the book [15]
for a reference on these notions.

Homomorphisms generalize proper vertex-colourings. Indeed, a homomorphism of G to Kk is equivalent to a k-
olouring of G. However, the extension of the notion of colour-criticality to a homomorphism-based one is not much
tudied. As defined by Catlin [3], for a graph H , (we may assume H is a core), a graph G is said to be H-critical if G does
not have a homomorphism to H but any proper subgraph of G does. We thus have the following.

Observation 1. A graph G is k-critical if and only if it is Kk−1-critical.

This gives a large number of interesting extremal questions. By Observation 1, these questions are well-studied when H
is a complete graph. The next most accessible family of graphs H to be considered is the one of odd-cycles. For example,
the extremal question of the minimum number of edges of an H-critical graph on n vertices has been the subject of
extensive studies for H = Kn, see [17] for results and references on this subject. Recently, extensions of this study to
C5-critical graphs [6] and to C7-critical graphs [25] were performed. We note, furthermore, that the (2k + 1)-colouring
problem is captured by the C2k+1-colouring problem through a basic graph operation. For further details and extension
of the study to signed graphs we refer to [19].

In this work, we are interested in the order of a smallest C2ℓ+1-critical graph having the homomorphism property that
its odd-girth is at least a given value.2 We generally denote by η(k,H) the smallest order of a graph of odd-girth at least k
that has no homomorphism to H , and we ask the following.

Problem 2. Given positive integers k, ℓ, what is the smallest order η(k, C2ℓ+1) of a C2ℓ+1-critical graph of odd-girth at
least 2k + 1?

In this paper, we study Problem 2 when ℓ ≥ 2. As we discuss in Section 2, it follows from a theorem of Gerards [12]
that η(k, C2ℓ+1) ≥ 4k whenever ℓ ≤ k, and η(k, C2k+1) = 4k. We prove (in Section 3) that, surprisingly, η(k, C2ℓ+1) = 4k
whenever ℓ ≤ k ≤

3ℓ+i−3
2 (with 2k = i mod 3). We then prove (in Section 4) that η(3, C5) = 15. We conclude with further

research questions in the last section. Table 1 summarizes the known bounds for Problem 2 and small values of k and ℓ.
Note that the value of η(3, C5) indeed was the initial motivation of this work. In [1], we use the fact that η(3, C5) = 15

o prove that if a graph B of odd-girth 7 has the property that any series–parallel graph of odd-girth 7 admits a
omomorphism to B, then B has at least 15 vertices. The 15 vertices solution then strengthen at the same time results on
ircular and fractional colouring of this family of graphs. One may expect similar properties for other extremal solutions.

. Preliminaries

This section is devoted to the introduction of useful preliminary notions and results.

1 In fact, Ngoc and Tuza [21] equivalently asked for the value of the smallest constant c such that the odd-girth of any 4-chromatic graph of
order n is at most (c + o(1))

√
n. In this language, the tentative value η(k) = 2k2 + k + 1 translates to a value of

√
2n − 7/4 + 1/2 for the odd-girth

f a 4-chromatic graph of order n; this is also the formulation used in [8]. The result of Jiang [16] is formulated as a strict upper bound of 2
√
n+ 3

or the odd-girth of a 4-chromatic graph of order n.
2 This is a homomorphism property because any graph G has odd-girth at least 2k + 1 if and only if C does not map to G.
2k−1
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Table 1
Known values and bounds on the smallest order η(k, C2ℓ+1) of a C2ℓ+1-critical graph of odd-girth at least 2k+1. Bold values are proved in this paper

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

ℓ = 1 4 11 15–22 17–37 20–56 27–79 38–106 51–137
[14] [Theorem 11]–[24] [Corollary 12]–[24] [Corollary 7]–[24] [16–24] [16–24] [16–24]

ℓ = 2 3 8 15 17–37 20–56 24–79 28–106 32–137
[Corollary 5] [Theorem 11] [Corollary 12]–[24] [Corollary 7]–[24] [Corollary 7]–[24] [Corollary 7]–[24] [Corollary 7]–[24]

ℓ = 3 3 5 12 16 20–56 24–79 28–106 32–137
[Corollary 5] [Theorem 9] [Corollary 7]–[24] [Corollary 7]–[24] [Corollary 7]–[24] [Corollary 7]–[24]

ℓ = 4 3 5 7 16 20 24–79 28–106 32–137
[Corollary 5] [Theorem 9] [Corollary 7]–[24] [Corollary 7]–[24] [Corollary 7]–[24]

ℓ = 5 3 5 7 9 20 24 28 32–137
[Corollary 5] [Theorem 9] [Theorem 9] [Corollary 7]–[24]

ℓ = 6 3 5 7 9 11 24 28 32
[Corollary 5] [Theorem 9] [Theorem 9]

ℓ = 7 3 5 7 9 11 13 28 32
[Corollary 5] [Theorem 9]

ℓ = 8 3 5 7 9 11 13 15 32
[Corollary 5]

Circular chromatic number. We recall some basic notions related to circular colourings. For a survey on the matter,
onsult [30]. Given two integers p and q with gcd(p, q) = 1, the circular clique C(p, q) is the graph on vertex set
0, . . . , p − 1} with i adjacent to j if and only if q ≤ |i − j| ≤ p − q.

A homomorphism of a graph G to C(p, q) is called a (p, q)-colouring, and the circular chromatic number of G, denoted
χc(G), is the smallest rational

p
q

such that G has a (p, q)-colouring. Since C(p, 1) is the complete graph Kp, we have

χc(G) ≤ χ (G). On the other hand C(2ℓ + 1, ℓ) is the cycle C2ℓ+1. Thus C2ℓ+1-colourability is about deciding whether

χc(G) ≤ 2 +
1
ℓ
.

It is a well-known fact that C(p, q) → C(r, s) if and only if
p
q

≤
r
s
(e.g. see [30]), in particular we will use the fact that

C(12, 5) has a homomorphism to C(5, 2), that is, C5.

Odd-K4’s and a theorem of Gerards. The following notion will be central in our proofs. An odd-K4 is a subdivision of the
omplete graph K4 where each of the four triangles of K4 has become an odd-cycle [12]. Furthermore, we call it a (2k+1)-
dd-K4 if each such cycle has length exactly 2k + 1. Since subdivided triangles are the only odd-cycles of an odd-K4, the
dd-girth of a (2k+1)-odd-K4 is 2k+1. The following is an easy fact about odd-K4’s whose proof we leave as an exercise.

roposition 3. Let K be an odd-K4 of odd-girth at least 2k+ 1. Then, K has order at least 4k, with equality if and only if K is
(2k + 1)-odd-K4. Furthermore, in the last case any two disjoint edges of K4 are subdivided the same number of times when
onstructing K .

A (2k + 1)-odd-K4 is, more precisely, referred to as an (a, b, c)-odd-K4 if three edges of a triangle of K4 are subdivided
nto paths of length a, b and c respectively (by Proposition 3 this is true for all four triangles). Note that while the terms
‘odd-K4’’ or ‘‘(2k + 1)-odd-K4’’ refer to many non-isomorphic graphs, an (a, b, c)-odd-K4 (a + b + c = 2k + 1) is unique
p to a relabelling of vertices. See [20, Section 4.2.1] for some homomorphism properties of odd-K4’s.
An odd-K 2

3 is a graph obtained from three disjoint odd-cycles and three disjoint paths (possibly of length 0) joining
ach pair of cycles [12]. Thus, in such a graph, any two of the three cycles have at most one vertex in common (if the
ath joining them has length 0). Hence, an odd-K 2

3 of odd-girth at least 2k + 1 has order at least 6k.
In a graph G, a thread is a path in G where the internal vertices have degree 2 in G. For example, in an odd-K4 or in

n odd-K 2
3 , the paths of degree 2-vertices joining two vertices of degree at least 3 are threads.

heorem 4 (Gerards [12]). If G has neither an odd-K4 nor an odd-K 2
3 as a subgraph, then it admits a homomorphism to its

hortest odd-cycle.

We have the following corollary of Proposition 3 and Theorem 4.

orollary 5. For any positive integer k, we have η(k, C2k+1) = 4k.

Proof. Consider a C2k+1-critical graph G of odd-girth 2k+ 1. It follows from Theorem 4 that G contains either an odd-K4,
r an odd-K 2

3 . If it contains the latter, then G has at least 6k vertices. Otherwise, G must contain an odd-K4 of odd-girth
t least 2k + 1, and then by Proposition 3, G has at least 4k vertices. This shows that η(k, C ) ≥ 4k.
2k+1
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Moreover, no (2k+ 1)-odd-K4 admits a homomorphism to C2k+1. Indeed, assume by contradiction that there is such a
homomorphism ϕ of a (2k+1)-odd-K4, G, to C2k+1, and let x, y, z, t be the vertices of degree 3 of G. Consider the (2k+1)-
cycle C that passes through x, y, z. This cycle must be mapped surjectively to C2k+1 by ϕ. Thus, t must be identified
with some vertex of C by ϕ. If it is identified with a vertex of the xy-thread of G, then the (2k + 1)-cycle going through
, y, t would not be mapped surjectively to C by ϕ, a contradiction. The same argument applies to the xz-thread and the
z-thread, showing that t cannot be mapped and thus ϕ does not exist.
Since any (2k + 1)-odd-K4 has order 4k by Proposition 3, the latter paragraph shows that η(k, C2k+1) ≤ 4k. □

Since C2ℓ+3 maps to C2ℓ+1 and by transitivity of homomorphisms, a graph with no homomorphism to C2ℓ+1 also has
o homomorphism to C2ℓ+3. Thus:

bservation 6. Let k, ℓ be two positive integers. We have η(k, C2ℓ+1) ≥ η(k, C2ℓ+3).

We obtain this immediate consequence of Corollary 5 and Observation 6:

orollary 7. For any two integers k, ℓ with k ≥ ℓ ≥ 1, we have η(k, C2ℓ+1) ≥ 4k.

. Rows of Table 1: η(k, C2ℓ+1) for fixed ℓ

In this section, we study the behaviour of η(k, C2ℓ+1) when ℓ is a fixed value, that is, the behaviour of each row of
able 1. Note again that whenever ℓ ≥ k+1, we have η(k, C2ℓ+1) = 2k+1. As mentioned before, the first row (i.e. ℓ = 1)
s about the smallest order of a 4-critical graph of odd-girth 2k + 1 and we know η(k, C3) = Θ(k2) [22].

It is not difficult to observe that for fixed ℓ, the function η(k, C2ℓ+1) is strictly increasing, in fact with a little bit of
ffort we can even show the following.

roposition 8. For k ≥ ℓ, we have η(k + 1, C2ℓ+1) ≥ η(k, C2ℓ+1) + 2.

roof. Let G be a C2ℓ+1-critical graph of odd-girth 2k+3 and order η(k+1, C2ℓ+1). Consider any (2k+3)-cycle v0 · · · v2k+2
f G, and build a smaller graph by identifying v0 with v2 and v1 with v3. It is not difficult to check that the resulting graph
as odd-girth exactly 2k + 1 and does not map to C2ℓ+1 (otherwise, G would), proving the claim. □

While it is likely that for a fixed ℓ, the value of η(k, C2ℓ+1) grows quadratically in terms of k, we show, somewhat
surprisingly, that at least just after the threshold of k = ℓ, the function η(k, C2ℓ+1) only increases by 4 when ℓ increases
by 1, implying that Proposition 8 cannot be improved much in this formulation. More precisely, we have the following
theorem.

Theorem 9. For any k, ℓ ≥ 3 and ℓ ≤ k ≤
3ℓ+i−3

2 (where 2k = i mod 3), we have η(k, C2ℓ+1) = 4k.

To prove this theorem, we give a family of C2ℓ+1-critical odd-K4’s which are of odd-girth 2k + 1. This is done in the
next theorem, after which we give a proof of Theorem 9.

Theorem 10. Let p ≥ 3 be an integer. If p is odd, any (a, b, c)-odd-K4 with (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)} has no
homomorphism to C2p+1. If p is even, any (p − 1, p, p)-odd-K4 has no homomorphism to C2p+1.

Proof. Let (a, b, c) ∈ {(p−1, p−1, p), (p, p, p), (p−1, p, p)} and let K be an (a, b, c)-odd-K4. Let t , u, v, w be the vertices of
egree 3 in K with the tu-thread of length a, the uv-thread of length b and the tv-thread of length c. We now distinguish
wo cases depending on the parity of p and the values of (a, b, c).

ase 1. Assume that p is odd and (a, b, c) ∈ {(p − 1, p − 1, p), (p, p, p)}. By contradiction, we assume that there is a
omomorphism h of K to C2p+1. Then, the cycle Ctvw formed by the union of the tv-thread, the vw-thread and the tw-

thread is an odd-cycle of length a+b+c. Therefore, its mapping by h to C2p+1 must be onto. Thus, u has the same image by
h as some vertex u′ of Ctvw . Note that u′ is not one of t , v or w, indeed by identifying u with any of these vertices we obtain
a graph containing an odd-cycle of length p or 2p − 1; thus, this identification cannot be extended to a homomorphism
to C2p+1. Therefore, u′ is an internal vertex of one of the three maximal threads in Ctvw . Let Cu be the odd-cycle of length
a + b + c containing u and u′. After identifying u and u′, Cu is transformed into two cycles, one of them being odd. If
(a, b, c) = (p, p, p), then Cu has length 3p. Then, the two newly created cycles have length at least p+1, and thus at most
p − 1. If (a, b, c) = (p − 1, p − 1, p), then Cu has length 3p − 2, and the two cycles have length at least p and at most
p−2. In both cases, we have created an odd-cycle of length at most 2p−1. Hence, this identification cannot be extended
o a homomorphism to C2p+1, a contradiction.

ase 2. Assume that p is even and (a, b, c) = (p − 1, p, p), and that h is a homomorphism of K to C2p+1. Again, the image
of Ctvw by h is onto, and u has the same image as some vertex u′ of Ctvw . If u′

= t , identifying u and u′ produces an odd
(p− 1)-cycle, a contradiction. If u′

∈ {v,w}, then we get a (2p− 1)-cycle, a contradiction. Thus, u′ is an internal vertex of
ne of the three maximal threads in Ctvw . Let Cu be the odd-cycle of length 3p− 1 containing u and u′. As in Case 1, after
dentifying u and u′, Cu is transformed into two cycles, each of length at least p and at most 2p − 1; one of them is odd,
a contradiction. □
567
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Fig. 1. The two C5-critical graphs of order 15 and odd-girth 7.

We note that Theorem 10 is tight, in the sense that if p is odd and (a, b, c) ∈ {(p− 1, p− 1, p), (p, p, p)} or if p is even
and (a, b, c) = (p − 1, p, p), then an (a, b, c)-odd-K4 has a homomorphism to C2p−1.

We can now prove Theorem 9.

Proof of Theorem 9. By Corollary 7, we know that η(k, C2ℓ+1) ≥ 4k. We now prove the upper bound. Recall that
η(k, C2ℓ+1) ≤ η(k, C2ℓ−1). If 2k ≡ 0 (mod 3), then p =

2k+3
3 is an odd integer, and p ≤ ℓ. By Theorem 10, a (p−1, p−1, p)-

odd-K4, which has order 6p− 6 = 4k, has no homomorphism to C2p+1, and thus η(k, C2ℓ+1) ≤ η(k, C2p+1) ≤ 4k. Similarly,
if 2k ≡ 1 (mod 3), then p =

2k+2
3 is an even integer, and p ≤ ℓ. By Theorem 10, a (p − 1, p, p)-odd-K4, which has

rder 6p − 4 = 4k, has no homomorphism to C2p+1, and thus η(k, C2ℓ+1) ≤ η(k, C2p+1) ≤ 4k. Finally, if 2k ≡ 2 (mod 3),
hen p =

2k+1
3 is an odd integer, and p ≤ ℓ. By Theorem 10, a (p, p, p)-odd-K4, which has order 6p − 2 = 4k, has no

omomorphism to C2p+1, and thus η(k, C2ℓ+1) ≤ η(k, C2p+1) ≤ 4k. □

. The value of η(3, C5)

We now determine η(3, C5), which is not covered by Theorem 10. By Corollary 7, we know that η(3, C5) ≥ 12. In fact,
e will show that η(3, C5) = 15.
Examples of graphs of odd-girth 7 on 15 vertices are given in Fig. 1. In fact, using a computer search, Gordon Royle

private communication, 2016) has verified that these two graphs are the only two C5-critical graphs of order 15 and
dd-girth 7.
One may add a few edges to each of these two graphs without creating a shorter odd cycle. G. Royle reports that there

re eleven non isomorphic graphs built in this way. For the most symmetric of all these graphs two different presentations
re given in Fig. 2.
This implies that η(3, C5) ≤ 15. Next, we prove that this upper bound is tight.

heorem 11. Any graph G of order at most 14 and odd-girth at least 7 admits a homomorphism to C5, and thus η(3, C5) = 15.

roof. We consider a C5 on the vertex set {0, 1, 2, 3, 4} where vertex i is adjacent to vertices i + 1 and i − 1 (modulo
5). Thus, in the following, to give a C5-colouring we will give a colouring using elements of {0, 1, 2, 3, 4} where adjacent
pairs are mapped into (cyclically) consecutive elements of this set.

Given a graph G and a vertex v of it, we partition V (G) into four sets {v},N1(v),N2(v) and N3+ (v) where N1(v)
(respectively N2(v)) designates the set of vertices at distance exactly 1 (respectively 2) of v, and N3+ (v) the vertices at
distance 3 or more of v. Note that because of the odd-girth requirement for G, N1(v) and N2(v) are independent sets.

A proper 3-colouring of G[N3+ (v)] using colours c1, c2 and c3 is said to be v-special if:

(i) each vertex with colour c3 is an isolated vertex of G[N3+ (v)],
(ii) no vertex from N2(v) sees both colours c1 and c2.

A key observation is the following: given any graph G, if for some vertex v of G, there exists a v-special colouring of
G[N3+ (v)], then G maps to C5. Such a homomorphism is given by mapping c1-vertices to 0, c2-vertices to 1 and c3-vertices
to 3, and then extending as follows:

• for any vertex u in N (v), if u has a c -neighbour, map it to 4; otherwise, map it to 2,
2 1

568



L. Beaudou, F. Foucaud and R. Naserasr Discrete Applied Mathematics 319 (2022) 564–575

n
t

C

e
k

C

P
c

C

P
t

C
s

P
n

m

Fig. 2. Two drawings of a symmetric graph of odd-girth 7 which does not map to C5 .

• all vertices of N1(v) are mapped to 3,
• vertex v is mapped to 2 or 4.

Now, let G be a minimal counterexample to Theorem 11: G has odd-girth at least 7, has order at most 14, but does
ot map to C5. Note that G is connected, indeed G does not map to C5 if and only if one of its components does not map
o C5.

We first collect a few properties of G. The previous paragraph allows us to state our first claim.

laim 11.A. For no vertex v of G there is a v-special colouring of G[N3+ (v)].

Since G is a minimal counterexample, it cannot map to a subgraph of itself (which would be a smaller counterexample):

Claim 11.B. Graph G is a core. In particular, for any two vertices u and v of G, N(u) ̸⊆ N(v).

Recall that a walk between two vertices u and v is a sequence of (not necessarily distinct) vertices starting with u and
nding with v, where two consecutive vertices in the sequence are adjacent. A walk between u and v is a uv-walk, and a
-walk is a walk with k + 1 vertices counting multiplicity.

laim 11.C. For any two distinct vertices u and v of G, there is a uv-walk of length 5.

roof of claim. If not, identifying u and v would result in a smaller graph of yet odd-girth 7 which does not map to C5,
ontradicting the minimality of G. (□)

laim 11.D. Graph G has no thread of length 4 or more.

roof of claim. Once again, by minimality of G, if we remove a thread of length 4, the resulting graph maps to C5. But since
here is a walk of length 4 between any two vertices of C5, this mapping could easily be extended to G. (□)

Now we can state a more difficult claim.

laim 11.E. There is no vertex of G of degree 4 or more, nor a vertex of degree exactly 3 with a second neighbourhood of
ize 5 or more.

roof of claim. For a contradiction, suppose that a vertex v has degree 4 or more, or has degree 3 and a second
eighbourhood of size 5 or more.
By Claim 11.B, the neighbours of v should have pairwise distinct neighbourhoods, so that even if v has degree 4 or

ore, we must have |N2(v)| ≥ 4. Thus, by a counting argument (recall that G has at most 14 vertices), N3+ (v) has size at
most 5. Since G has odd-girth 7, this means G[N3+ (v)] is bipartite.

Suppose G[N3+ (v)] has at most one non-trivial connected component. Consider any proper 3-colouring of G[N3+ (v)]
such that colours c1 and c2 are used for the non-trivial connected component, and colour c3 is used for isolated vertices.
Then, no vertex of N2(v) can see both colours c1 and c2, as this would result in a short odd-cycle in G. Thus, any such
colouring is v-special. Hence, by Claim 11.A, we derive that G[N3+ (v)] has at least two non-trivial components. Since it

has order at most 5, it must have exactly two.
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Fig. 3. The two 2-colourings of N3+ (v) in the proof of Claim 11.E.

Assume now that both non-trivial connected components are isomorphic to K2. Consider all proper 3-colourings of
[N3+ (v)] such that colours c1 and c2 are used for the copies of K2 (the potentially remaining vertex being coloured
ith c3). Considering Claim 11.A, one may easily check that if none of these colourings is v-special, then there is a short
dd-cycle in G, which is a contradiction.
Hence, G[N3+ (v)] is isomorphic to the disjoint union of K2 and K2,1. Let u1 and u2 be the vertices of K2, and u3, u4 and

5 be the vertices of K2,1 such that u4 is the central vertex.
Let ϕ1 and ϕ2 be two proper 2-colourings of G[N3+ (v)] as follows: (i) ϕ1(u1) = ϕ1(u3) = ϕ1(u5) = c1 and ϕ1(u2) =

1(u4) = c2, and (ii) ϕ2(u2) = ϕ2(u3) = ϕ2(u5) = c1 and ϕ2(u1) = ϕ2(u4) = c2 (see Fig. 3).
Since ϕ1 is not v-special, there is either a vertex t1 adjacent to u2 and u3 (by considering the symmetry of u3 and u5),

r a vertex t ′1 adjacent to u1 and u4. Similarly, since ϕ2 is not v-special, either there is a vertex t2 adjacent to u1 and one to
3 and u5, or there is a vertex t ′2 adjacent to u2 and u4. If t ′1 exists, then in the subgraph induced by t ′1, t2 or t ′2, whichever
xists, and their neighbours we will find an odd-cycle of length at most 5. Similarly, t ′2 does not exist. Thus, t1 and t2 must
xist. Moreover, for a similar reason, t2 is not a neighbour of u3 and, therefor, it is a neighbour of u5.
Next, we show that u4 has degree at least 3. Suppose not, then it has degree exactly 2. Let ϕ3 be a partial C5-colouring

f G defined as follows: ϕ3(u1) = ϕ3(u5) = 0, ϕ3(u2) = 1, ϕ3(u3) = 3 and ϕ3(u4) = 4. Then, no vertex in N2(v) sees both 0
nd 1 (by odd-girth arguments). Thus, we can extend ϕ3 to N2(v) using only colours 2 and 4 on these vertices. Then, all
ertices of N1(v) can be mapped to 3 and v can be mapped to 2 and G → C5, a contradiction.
Hence, there exists a vertex t3 in N2(v) which is adjacent to u4. Note that, by the odd-girth condition, t3 has no other

eighbour in G[N3+ (v)] and, in particular, it must be distinct from t1 and t2. Vertices t1, t2 and t3 are in N2(v), so there
re vertices s1, s2 and s3 in N1(v) such that si is adjacent to ti for i between 1 and 3. Moreover, vertices t1, t2 and t3 are
airwise connected by a path of length 3. Therefore, their neighbourhoods cannot intersect, so that vertices s1, s2 and s3
re distinct.
Now, consider the partial C5-colouring ϕ3 again. We may extend ϕ3 to N2(v) by assigning colour 0 to neighbours of u4,

olour 4 to neighbours of u1 and u5, and colour 2 to the rest. If no vertex of N1(v) sees both colours 0 and 4 in N2(v), we
ay colour N1(v) with 1 and 3 and colour v with 2, which is a contradiction. Thus, there exists some vertex x in N1(v)
eeing both colours 0 and 4 in N2(v). The only vertices with colour 0 in N2(v) are neighbours of u4 so that x must be at
istance 2 from u4. Since there is no short odd-cycle in G, vertex x cannot be at distance 2 from u5. Thus, it is at distance 2
rom u1. Let t4 be the middle vertex of this path from x to u1. Now t4 is a neighbour of u1 which is distinct from t1, t2 and
3. By the symmetry between u1 and u2, there must be a fifth vertex t5 in N2(v) which is a neighbour of u2 and distinct
rom t1, t2, t3 and t4. Moreover, t5 has a neighbour y in N1(v) that is at distance 2 from u4. We can readily check that y is
istinct from x, s1 and s2. Thus, N1(v) has size at least 4 and N2(v) has size at least 5, which is a contradiction with the
rder of G (which should be at most 14). This concludes the proof of Claim 11.E. (□)

laim 11.F. G contains no 6-cycle.

roof of claim. Suppose, by contradiction, that G contains a 6-cycle C : v0, . . . , v5. For a pair vi and vi+2 (addition in indices
s done modulo 6) of vertices of C , the 5-walk connecting them (see Claim 11.C) is necessarily a 5-path because of the
dd-girth condition, and we denote it by P i. Furthermore, at most one inner-vertex of P i may belong to C , and if it does,
t must be a neighbour of vi or vi+2 (one can check that otherwise, there is a short odd-cycle in G).

Assume first that none of the six paths P i (0 ≤ i ≤ 5) has any inner-vertex on C . In this case, by Claim 11.E, we observe
hat the neighbours of vi in P i and P i+4 (addition in superscripts is done modulo 6) are the same. Let v′

i be this neighbour
f vi.
Vertices v′

i , i = 0, 1, . . . , 5 are all distinct, as otherwise we have a short odd-cycle in G. Let x and y be the two internal
ertices of P0 distinct from v′

0 and v′

2. By our assumption, x and y are distinct from vertices of C . We claim that they are
lso distinct from v′

i , i = 0, . . . , 5. Vertex x is indeed distinct from v′

0 and v′

2 by assumption. It is distinct from v′

1, v
′

3 and
′

4 as otherwise there will be a short odd-cycle. By the symmetry of x and y and by the same arguments, y is distinct from
′

0, v
′

1, v
′

2, v
′

4, v
′

5. Moreover, we cannot simultaneously have x = v′

5 and y = v′

3, otherwise we get a 5-cycle. Finally, if we
ave x = v′

5 then {v′

0, v1, y, v3, v
′

4} ⊆ N2(v5) and d(v5) ≥ 3, contradicting Claim 11.E. As a result, since |V (G)| ≤ 14, x and
are internal vertices of all P i’s. But then it easy to find a short odd-cycle.
Hence, we may assume that some path P i, say P1 without loss of generality, has (exactly) one inner-vertex on C .
ithout loss of generality, say v′

1 = v0 (recall that it is not possible that a vertex of P1 that is not a neighbour of v1 or
3 is on C). Let v0x1x2x3v3 be the 4-path connecting v0 and v3 (recall that at most one inner-vertex of P i belongs to C , so
/∈ C for i = 1, 2, 3). We next assume that P5 does not have any inner-vertex in C . Then, no vertex of P5 is a vertex from
i
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Fig. 4. Graphs used in the proof of Claim 11.F.

{x1, x2, x3}, for otherwise we have a short odd-cycle in G. But then, v0 violates Claim 11.E as {v′

5, v4, x2, v2, v
′

1} ⊆ N2(v0).
Therefore, an inner-vertex of P5 lies on C . Considering the odd-girth conditions and Claim 11.E, either v′

5 = v4, or the
neighbour of v1 on P5 is v2. As both cases are symmetric with respect to our assumptions so far, we may assume that
the second case holds without loss of generality. Thus, we have P5

: v5y1y2y3v2v1. Then, P1 and P5 are vertex-disjoint, for
otherwise we have a short odd-cycle in G.

Let us call G′, the 12-vertex subgraph induced by the vertices of C , P1 and P5. Notice that G′ also contains P0, P2, P3

nd P4. Moreover, the vertices and edges of C , P1 and P5 form a 7-odd K4, more precisely, a (1, 2, 4)-odd-K4. Now, because
of the odd-girth of G, and by Claim 11.E, one can check that the only possible third neighbour of v1 in G′, if any, is v4
(and vice-versa). Furthermore, within the set {x1, x2, x3, y1, y2, y3} of vertices, the only possible edges are those of the
form xiyi with i = 1, 2, 3. (See Fig. 4(i) for an illustration of G′.) We claim that G′ must be a subgraph of C(12, 5). Indeed,
even if these four optional edges are present, we obtain an isomorphic copy of C(12, 5): consider the isomorphism from
C(12, 5) to this graph, given by {0 : v0, 1 : v4, 2 : v2, 3 : v3, 4 : y2, 5 : x1, 6 : v5, 7 : v1, 8 : v3, 9 : y3, 10 : x2, 11 : y1}. (See
ig. 4(ii) for an illustration of C(12, 5).) Thus, the circular chromatic number of G′ is at most 12/5, implying that G′ has a
omomorphism to C5.
Hence, there is at least one vertex in G, that is not a vertex of G′. Using Claim 11.E, one can check that any vertex of
not in G′ can be adjacent only to x2 or to y2 (or both) and that there are at most two such vertices, one a neighbour
f x2 another a neighbour of y2. Without loss of generality (considering the symmetries of the graph), assume that x2
as an additional neighbour, v. Then, either v is also adjacent to y2 (then G has order 13), or v and y2 have a common
eighbour, say w. If v is adjacent to both x2 and y2, then the only edges induced by the set {x1, x2, x3, y1, y2, y3} are edges
n G′ (otherwise we have a short odd-cycle). But then, we exhibit a homomorphism of G to C5: map x3, y1, v to 0; x2, y2 to
; v1, x1, y3 to 2; v0, v2, v4 to 3; v3 and v5 to 4. This is a contradiction. Thus, v and y2 have a common neighbour w, and
oth v and w are of degree 2. We now create a homomorphic image of G by identifying v with y2 and w with x2. Then,
his image of G is again a subgraph of C(12, 5), and thus the circular chromatic number of G is at most 12/5, implying
hat G has a homomorphism to C5, a contradiction. This completes the proof of Claim 11.F. (□)

laim 11.G. G contains no 4-cycle.

roof of claim. Assume by contradiction that G contains a 4-cycle C : tuvw. As in the proof of Claim 11.F, there must be
wo 5-paths Ptv : ta1a2a3a4v and Puw : ub1b2b3b4w connecting t with v and u with w, respectively. Moreover, these two
aths must be vertex-disjoint because of the odd-girth of G. Thus, the union of C , Ptv and Puw forms a (1, 1, 5)-odd-K4,
. By assumption on the odd-girth of G, any additional edge inside V (K ) must connect an internal vertex of Ptv to an
nternal vertex of Puw . But any such edge would either create a short odd-cycle or a 6-cycle in G, the latter contradicting
laim 11.F. Thus, the only edges in V (K ) are those of K . If there is no additional vertex in G, we have two 5-threads in G,
ontradicting Claim 11.D; thus there is at least one additional vertex in G, say x, and perhaps a last vertex, y. Note that t ,
, v and w are already, in K , degree 3-vertices with a second neighbourhood of size 4, thus by Claim 11.E none of t , u, v,
, a1, a4, b1 and b4 are adjacent to any vertex not in K . Thus N(x),N(y) ⊆ {a2, a3, b2, b3, x, y}.
Assume that some vertex not in K (say x) is adjacent to two vertices of K . Then, these two vertices must be a vertex

n the tu-path of K (a2 or a3, without loss of generality it is a2) and a vertex on the vw-path of K (b2 or b3). By the
utomorphism of K that swaps v and w and reverses the vw-path, without loss of generality we can assume that the
econd neighbour of x in K is b3. Then, we claim that G has no further vertex. Indeed, if there is a last vertex y, since a2

nd b3 have already three neighbours, y must be adjacent to at least two vertices among {a3, b2, x}. If it is adjacent to
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both a3 and b2, we have a 6-cycle, contradicting Claim 11.F; otherwise, y is of degree 2 but part of a 4-cycle, implying
that G is not a core, a contradiction. Thus, G has order 13 and no further edge. We create a homomorphic image of G by
identifying x and a3. The obtained graph is a subgraph of C(12, 5). Hence, G has circular chromatic number at most 12/5
and a homomorphism to C5, a contradiction.

Thus, any vertex not in K has at most one neighbour in K . Since G has no 4-thread, one vertex not in K (say x) is
adjacent to one of a2 or a3 (without loss of generality, say a2), and the last vertex, y, is adjacent to one of b2 and b3 (as
before, by the symmetries of K we can assume it is b2). Moreover, x and y must be adjacent, otherwise they both have
degree 1. Also there is no further edge in G. But then, as before, we create a homomorphic image of G by identifying x
ith b2 and y with a2. The resulting graph is a subgraph of C(12, 5), which again gives a contradiction. This completes
he proof of Claim 11.G. (□)

Claims 11.F and 11.G imply that G has girth at least 7. To complete the proof, we note that since G has no
omomorphism to C5, it also has no homomorphism to C7. Thus, by Theorem 4, G must contain either an odd-K 2

3 or
an odd-K4 of odd-girth at least 7. Since such an odd-K 2

3 must have at least 18 vertices, G contains an odd-K4. Let H be
uch an odd-K4 of G. Since in fact its girth is at least 7, by Proposition 3 it has at least 12 vertices. We consider three cases,
epending on the order of H .

ase 1. Assume that |V (H)| = 12. By Proposition 3, H is a 7-odd-K4, in fact, it is an (a, b, c)-odd-K4 with a+b+c = 7. Since
has girth at least 7, we have only two possibilities: (i) (a, b, c) = (2, 2, 3) or (ii) (a, b, c) = (1, 3, 3). Each of these two

possible odd-K4’s is of diameter 4. Furthermore, in each case, the pairs at distance 4 are isomorphic (each pair consists
of two internal vertices of two disjoint threads of length 3). If G contains one more vertex than H , say x, then either x is
of degree at most 1, which contradicts Claim 11.B or it creates a cycle of length at most 6, which is not possible due to
the girth of G. Thus G has exactly two more vertices, say x and y and each of them is adjacent to at most one vertex in H .
These two neighbours of x and y are at distance 4 in H and x is adjacent to y. There are only two non-isomorphic such
possibilities. A homomorphism to C5 in each of these two possibilities is given in Fig. 5.

Case 2. Assume that |V (H)| = 13. Let the lengths of the four odd-cycles of H be l1, l2, l3 and l4. Using the fact that
l1 + l2 + l3 + l4 = 2|E(H)| = 30 we conclude that three of these cycles are of length 7 and the last one is of length 9.
Let a, b and c be the lengths of the three maximal threads of H whose union forms the 9-cycle. Let a′, b′ and c ′ be the
respective lengths of the corresponding pairwise disjoint threads. Then, we have a′

+ b′
+ c = 7 and a+ b+ c = 9, which

implies that a′
+ b′

= a+ b− 2. Together with the similar equalities a′
+ c ′

= a+ c − 2 and b′
+ c ′

= b+ c − 2, we obtain
that a = a′

+ 1, b = b′
+ 1 and c = c ′

+ 1. By the symmetries, we may assume that a ≤ b ≤ c. Considering that there are
cycles of lengths 2a′

+ 2b′
+ 2, 2a′

+ 2c ′
+ 2 and 2b′

+ 2c ′
+ 2 in H , we have either (i) a′

= b′
= c ′

= 2 or (ii) a′
= 1,

b′
= 2 and c ′

= 3. In the first case, the graph is of diameter 4 and thus there is no room for a 14th vertex; in the second
case, there is a unique pair at distance 5, which leads us to a unique possible graph on 14 vertices, by connecting a 14th
vertex to these two diametral vertices. Homomorphisms to C5 for each of these graphs are given in Fig. 6.

Case 3. Assume that |V (H)| = 14. Again, let l1, l2, l3 and l4 be the lengths of the four odd-cycles of H . Then, we have
l1 + l2 + l3 + l4 = 2|E(H)| = 32, and either (I) l1 = l2 = l3 = 7 and l4 = 11, or (II) l1 = l2 = 7 and l3 = l4 = 9.

For (I), we define a, b, c , a′, b′ and c ′ similarly as in Case 2. It is then implied that a = a′
+2, b = b′

+2 and c = c ′
+2.

Since a′, b′, c ′
≥ 1 we have a, b, c,≥ 3 and since a + b + c = 11 we have two possibilities: either a = b = 3, c = 5
or a = 3, b = c = 4. In the case (a, b, c) = (3, 3, 5), the vertex of degree 3 of H which is not on the face of size 11
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h

Fig. 6. The two graphs considered in Case 2.

Fig. 7. The first graph considered in Case 3, with (a, b, c) = (3, 4, 4).

as already five distinct vertices at distance 2, contradicting Claim 11.E. In the case (a, b, c) = (3, 4, 4), H is already of
diameter 5, thus H is the same as G. For this case a C5-colouring is given in Fig. 7.

For (II), assuming c ′ is the length of the common thread of the two cycles of length 9, a similar calculation as in Case 2
implies that a = a′, b = b′ and c ′

= c + 2. The possibilities are (i) a = 1, b = 3 and c = 3, (ii) a = 1, b = 4 and c = 2, (iii)
a = 2, b = 2 and c = 3, (iv) a = 2, b = 3 and c = 2, and (v) a = b = 3 and c = 1. As in each case, each pair of vertices
is on a common cycle of length at most 10, and since the girth is at least 7, G must be isomorphic to H . Then, a mapping
to C5 can readily be found (see Fig. 8). This case completes the proof as there is no counterexample to the statement of
the theorem. □

We now deduce the following consequence of Theorem 11 and Proposition 8, that improves the known lower bounds
on η(4, C5) and η(4, C3) (noting that for larger values of k, the bound of Corollary 7 is already stronger).

Corollary 12. We have η(4, C3) ≥ η(4, C5) ≥ 17.

5. Concluding remarks

In this work, we have started investigating the smallest order of a C2ℓ+1-critical graph of odd-girth 2k + 1. We have
determined a number of previously unknown values, in particular we showed that a smallest C5-critical graph of odd-
girth 7 is of order 15. In contrast to the result of Chvátal on the uniqueness of the smallest triangle-free 4-chromatic
graph [4], we have found more than one such graph: Gordon Royle showed computationally, that there are exactly eleven
such graphs (private communication, 2016) and Fig. 1 shows three of them.

Regarding Table 1, we do not know the growth rate in each row of the table. Perhaps it is quadratic; that would be to
say that for a fixed ℓ, η(k, C2ℓ+1) = Θ(k2). This is indeed true for ℓ = 1, as proved in [22].

Our last remark is about Theorem 9. We think that for any given k, Theorem 9 covers all values of k for which
η(k, C2ℓ+1) = 4k.

A similar problem of interest is to ask for the order of a smallest C2ℓ+1-critical graph of girth g . This question has not
been studied much. In this formulation, the Grötzsch graph is the smallest C -critical graph of girth 4. When girth 5 is
3
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Fig. 8. Five graphs considered in Case 3.

considered, then again a computational work of Gordon Royle showed that 21 vertices are needed and again the answer
is not unique [26]. See [9] for further studies.
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