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Abstract
We study geometric variations of the discriminating code problem. In the discrete
version of the problem, a finite set of points P and a finite set of objects S are given
in R

d . The objective is to choose a subset S∗ ⊆ S of minimum cardinality such that
for each point pi ∈ P , the subset S∗

i ⊆ S∗ covering pi satisfies S∗
i �= ∅, and each

pair pi , p j ∈ P , i �= j , we have S∗
i �= S∗

j . In the continuous version of the problem,
the solution set S∗ can be chosen freely among a (potentially infinite) class of allowed
geometric objects. In the 1-dimensional case (d = 1), the points in P are placed on a
horizontal line L , and the objects in S are finite-length line segments aligned with L
(called intervals). We show that the discrete version of this problem is NP-complete.
This is somewhat surprising as the continuous version is known to be polynomial-
time solvable. This is also in contrast with most geometric covering problems, which
are usually polynomial-time solvable in one dimension. Still for the 1-dimensional
discrete version, we design a polynomial-time 2-approximation algorithm. We also
design a PTAS for both discrete and continuous versions in one dimension, for the
restriction where the intervals are all required to have the same length. We then study
the 2-dimensional case (d = 2) for axis-parallel unit square objects. We show that
both continuous and discrete versions are NP-complete, and design polynomial-time
approximation algorithms that produce (16 ·OPT +1)-approximate and (64 ·OPT +
1)-approximate solutions respectively, using roundingof suitably defined integer linear
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programming problems. Finally, we apply our techniques to a related variant of the
discrete problem, where instead of points and geometric objects we just have a set
S of objects. The goal is to select a small subset S∗ of objects so that all objects of
S are discriminated by their intersection with the objects of S∗. This problem can
be viewed as a graph problem by stating it in terms of the vertices of the geometric
intersection graph of S. Under this graph-theoretical form, it is known as the identifying
code problem. We show that the identifying code problem for axis-parallel unit square
intersection graphs (in d = 2) can be solved in the same manner as for the discrete
version of the discriminating code problem for unit square objects described above,
and all our positive approximation results still hold in this setting.

Keywords Discriminating code · Identifying code · Approximation algorithm ·
Segment stabbing · Geometric hitting set

1 Introduction

We consider geometric versions of the Discriminating Code problem, which are
variations of classical geometric covering problems. Here, a set of point sites P =
{p1, p2, . . . , pn} is given inRd . Let S be a set of geometric objects (i.e. closed curves
along with their interior) in Rd , where each si ∈ S has a unique identification. We use
Si ⊆ S to denote the set of objects containing pi ∈ P . The objective is to choose a
minimum-size subset S∗ ⊆ S of objects such that (i) the subset S∗

i ⊂ S∗ containing
pi is not an empty set for each i = 1, 2, . . . , n, and (ii) each pair of points pi , p j ∈ P ,
i �= j , satisfy S∗

i �= S∗
j . Thus, (i) suggests that each pi has an identification, and (ii)

suggests that pi and p j (i �= j) are discriminated by at least one element in S∗
i or S∗

j .
From now onwards, we will use d to denote d-dimension for some integer d.

In the discrete version, both P and S are given as input. In the continuous version,
only the points in P are given, and the objects can be chosen freely (among some
infinite class of allowed objects).

The problem is motivated as follows. Consider a terrain that is difficult to navigate.
A set of sensors, each assigned a unique identification number (id), are deployed in
that terrain, all of which can communicate with a single base station. If a region of
the terrain suffers from some specific problem, a subset of sensors will detect that and
inform the base station. From the id’s of the alerted sensors, one can uniquely identify
the affected region, and a rescue team can be sent. The covering zone of each sensor
can be represented by an object in S. In the arrangement of these objects (that is, the
partition of the plane into cells defined by the union of boundaries of all objects, each
cell corresponds to a face of this union [11]) divides the entire plane into regions. A
representative point of each region may be considered as a site. The set P consists of
some of those sites. We need to determine the minimum number of sensors such that
no two sites in P are covered by the same set of ids. Apart from coverage problems
in sensor networks, this problem has applications in fault detection, heat prone zone
in VLSI circuits, disaster management, environmental monitoring, localization and
contamination detection [27, 37], to name a few.
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The general version of the problem has been formulated as a combinatorial problem
in a bipartite graph in [7, 8] as follows.

Problem: Minimum Discriminating Code (Min- Disc- Code)
Input: A connected bipartite graph G = (U ∪ V , E), where E ⊆ {(u, v)|u ∈
U , v ∈ V }.
Output:Aminimum-size subsetU∗ ⊆ U such thatU∗∩N (v) �= ∅ for all v ∈ V ,
and U∗ ∩ N (v) �= U∗ ∩ N (v′) for every pair v, v′ ∈ V , v �= v′.

In the geometric version of theMin- Disc- Code problem introduced in [3], which
will be further referred to asG- Min- Disc- Code, the two sets of nodes in the bipartite
graph G are U = S, a set of geometric objects, and V = P , a set of points in R

d ; an
object in S is adjacent to all the points in P that it contains. (Graph G is called the
incidence graph of (P, S).) The id of a point p ∈ P with respect to the set S is the
union of the id’s of the subset S′ ⊆ S that contains p. Given an instance (P, S), two
points pi , p j ∈ P are called twins if each member in S that contains pi also contains
p j , and vice-versa. An instance (P, S) of G- Min- Disc- Code is twin-free if no two
points in P are twins. As mentioned earlier, for a twin-free instance, a subset of S that
can uniquely assign id’s to all the points in P is said to discriminate the points of P
and is called a discriminating code. In the discrete version of the problem, the set S of
objects is also given along with the set of points P as the input; the objective is to find
a subset S∗ ⊆ S of minimum cardinality that is a discriminating code for the points
in P . In the continuous version, we can freely choose the objects S∗ in R

d such that
each point gets a unique id, and the size of the set S∗ is minimum. The two problems
are formally stated as follows.

Problem: Continuous- G- Min- Disc- Code (for objects of a prescribed type)

Input: A point set P to be discriminated.
Output: A minimum-size set S∗ of objects of the prescribed type, placed anywhere in the
region under consideration, that discriminates the points in P .

Problem: Discrete- G- Min- Disc- Code

Input: A point set P to be discriminated, and a set of objects S to be used for the
discrimination.
Output: A minimum-size subset S∗ ⊆ S that discriminates all points in P .

We can use [20] to show the following.

Proposition 1 Checking whether a given instance (P, S) of Discrete- G- Min-

Disc- Code with |P| = n and |S| = m is twin-free can be done in time O(m · n).

Proof It is known that checking whether a graph has twins (vertices with the same
neighbourhood) can be done in linear time (in terms of the number of vertices and
edges) using the technique of partition refinement (see Algorithm 2 from [20, Sec-
tion 3]). As mentioned before, our geometric instance (P, S) can be associated to its
incidence graph G = (U ∪ V , E) and is twin-free if and only if there is no pair of
graph-twins inside V in G. Thus, we can build the graph G in linear time by directly
using the description of (P, S), and then applying the linear-time algorithm from [20].
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The graph G hasm+n vertices and O(m ·n) edges and thus, the running time follows
��

Note that one can also use the above method to decide whether an instance P of
Continuous- G- Min- Disc- Code is twin-free, by computing all feasible equiva-
lence classes of objects that can be placed (with respect to the intersections with P).
However, in general there can be as many as 2|P| such equivalence classes, and it
might not always be trivial to compute them: this would depend on the context.

A well-studied special case of Min- Disc- Code for graphs is the problem Mini-

mum Identifying Code, initially defined in [22] as follows (where N [vi ] denotes
the set of vertices adjacent to vi , together with vi itself):

Problem: Minimum Identifying Code (Min- ID- Code)
Input: A graph G = (V , E).
Output: A subset V ∗ ⊆ V of minimum size such that V ∗ is a dominating set,
and V ∗ ∩ N [vi ] �= V ∗ ∩ N [v j ] for every pair vi , v j ∈ V , i �= j .

TheMin- ID- Code problem is a special case of Min- Disc- Code [7, 16]: indeed,
given a graph G, let B(G) denote the closed neighbourhood incidence bipartite graph
ofG (one part consists of the vertex set ofG, and the other part, of the (multi-)set of all
closed neighbouroods of vertices of G; a closed neighbourhood vertex is adjacent to
all the vertices it contains). Then, Min- ID- Code for G is equivalent to Min- Disc-

Code for B(G). Both Min- ID- Code and Min- Disc- Code are NP-complete [7–9].
A polynomial-time algorithm is available for Min- Disc- Code on trees [8]. It was
shown that Min- ID- Code for graphs (and thus Min- Disc- Code) is log-APX hard
[26], and this holds even for split graphs, bipartite graphs, co-bipartite graphs [16],
and for bipartite graphs of girth 6 [6]. However, for line graphs and planar graphs,
Min- ID- Code remains NP-complete but constant factor approximation algorithms
are available (see [17] and [4], respectively).

Min- ID- Code was studied in particular for the related setting of geometric inter-
section graphs, for example on unit disk graphs [31] and interval graphs [6, 15, 18]. The
problem remains NP-complete for these graph classes, and a 6-approximation algo-
rithmexists for interval graphs [6]. For unit interval graphs, the computational hardness
is not known, but a polynomial-time approximation scheme (PTAS) algorithm is given
in the second author’s PhD thesis [15]. A PTAS also exists forMin- ID- Code on pla-
nar graphs [4].

1.1 Further RelatedWork

In the context of the above-mentioned practical applications, the Discrete- G-

Min- Disc- Code problem in 2D was defined in [3], where an integer programming
formulation (ILP) of the problem was given along with an experimental study. The
Continuous- G- Min- Disc- Code problem was introduced under a different name
in [19], and shown to be NP-complete for disks in 2D, but polynomial-time in 1D
(even when the intervals are restricted to have bounded length). These two problems
are related to the class of geometric covering problems, for which also both the dis-
crete and continuous version are studied extensively [25]. A related problem is the
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Test Cover problem [12], which is similar to Min- Disc- Code (but defined on
hypergraphs). It is equivalent to the variant of Min- Disc- Code where the covering
condition “U∗ ∩ N (v) �= ∅” is not required. Thus, a discriminating code is a test
cover, but the converse may not be true, since there may exist a vertex uncovered by
a test cover. Geometric versions of Test Cover have been studied under various
names. For example, the separation problems in [5, 10, 21] can be seen as continuous
geometric versions of Test Cover in 2D, where the objects are half-planes. Similar
problems are also sometimes called shattering problems, see [34].

More references on several coding mechanisms on graphs based on different
applications, namely locating-dominating sets, open locating dominating sets, met-
ric dimension, etc, and their computational hardness results are available in [15, 18].

1.2 Our Results

We show thatDiscrete- G- Min- Disc- Code in 1D using interval objects of arbitrary
length, is NP-complete by using a polynomial time reduction from a restricted version
of the 3-SAT problem. Here, the challenge is to overcome the linear nature of the
problemand to transmit the information across the entire constructionwithout affecting
intermediate regions. This result is in contrast with Continuous- G- Min- Disc-

Code in 1D, which is polynomial-time solvable [19]. This is also in contrast with
most geometric covering problems, which are often polynomial-time solvable in 1D
[25].

We then design a simple polynomial-time 2-factor approximation algorithm for
Discrete- G- Min- Disc- Code in 1D, that is much simpler than that published in the
preliminary version of this paper [13].

Wealsodesign aPTASfor bothDiscrete- G- Min- Disc- Code andContinuous-
G- Min- Disc- Code in 1D, when all the objects are required to have the same (unit)
length. In this context, it needs to be mentioned once again that Continuous- G-
Min- Disc- Code for arbitrary intervals is polynomially solvable [19].

We also study both problems in 2D for axis-parallel unit square objects, which form
a natural extension of 1D intervals to the 2D setting. The continuous version is known
to be NP-complete for unit disks [19], and we show that the reduction can be adapted
to our setting, for both the continuous and discrete cases.

We then design polynomial-time constant-factor approximation algorithms for both
problems in that setting. The approximation factors are 16 and 64 for the continuous
and discrete problem respectively.1 To obtain these algorithms, we re-formulate our
problems into a problem of stabbing line segments in 2D, which can be reduced to a
geometric Hitting Set problem.

Our results on Discriminating Code problems are summarized in Table 1.
Finally, we consider the related Min- Id- Code problem restricted to unit square

graphs (geometric intersection graphs for 2D axis-parallel unit squares). We show
that Min- Id- Code for unit square graphs can be solved in the same manner as the
Discrete- G- Min- Disc- Code problem for axis-parallel unit square objects, and

1 Note that, the (4 + ε) factor approximation algorithms presented in the conference version of this paper
[13] were wrong and the algorithms have been corrected here.
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Table 1 Summary of our results on G- Min- Disc- Code problems

Object type Continuous- G- Min- Disc- Code Discrete- G- Min- Disc- Code

Hardness Algorithm Hardness Algorithm

1D intervals – Polynomial-time
([19])

NP-hard (Thm. 6) 2-approx.
(Thm. 8)

1D bounded
intervals

– Polynomial-time
([19])

Open 2-approx.
(Thm. 8)

1D unit intervals Open PTAS (Cor. 12) Open PTAS(Thm. 11)

2D axis-parallel
unit squares

NP-hard
(Thm.14)

(16 · OPT + 1)-
approx.
(Thm. 17)

NP-hard (Thm. 14) (64 · OPT + 1)-
approx.
(Thm. 18)

our approximation results for Discrete- G- Min- Disc- Code still hold forMin- Id-

Code on this class of graphs.

1.3 Structure of the Paper

We start with our results about G- Min- Disc- Code in 1D in Sect. 2. We then present
our results on G- Min- Disc- Code for axis-parallel unit squares in 2D in Sect. 3. Our
results aboutMin- ID- Code for unit square intersection graph is presented in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 TheG-MIN-DISC-CODE Problem in 1D

It has been shown that Continuous- G- Min- Disc- Code is polynomial-time solv-
able in 1D [19]. Thus, in this section we focus on Discrete- G- Min- Disc- Code.

An instance (P, S) of the Discrete- G- Min- Disc- Code problem is a set P =
{p1, . . . , pn} of points and a set S of m intervals of arbitrary lengths placed on a real
line R. Assuming that the points are sorted with respect to their x-coordinate values,
we define n + 1 gaps G = {g1, . . . , gn+1}, where g1 = (−∞, p1), gi = (pi−1, pi )
for 2 ≤ i ≤ n, and gn+1 = (pn,∞).

Observe that (i) if both endpoints of an interval s ∈ S lie in the same gap of G, then
it can not discriminate any pair of points; thus s is useless, and (ii) if more than one
interval in S have both their endpoints in the same twogaps, say ga = (pa, pa+1), gb =
(pb, pb+1) ∈ G, then both of them discriminate exactly the same point-pairs. Thus,
they are redundant and we need to keep only one interval among them. In a linear
scan, we can first eliminate the useless and redundant intervals. From now onwards,
m will denote the number of intervals, none of which are useless or redundant. Hence,
m may be O(n2) in the worst case.
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2.1 NP-Completeness

The Discrete- G- Min- Disc- Code problem is in NP, since given a subset S′ ⊆ S,
one can test in polynomial time whether the problem instance (P, S′) is twin-free (i.e.,
whether the id of every point in P induced by S′ is unique) by Proposition 1.

We prove the NP-hardness of Discrete- G- Min- Disc- Code using a polynomial-
time reduction from the 3-SAT-2l problem (defined below).

Problem: 3-SAT-2l
Input:Acollection ofm clausesC = {c1, c2, . . . , cm}where each clause contains
at most three literals, over a set of n Boolean variables X = {x1, x2, . . . , xn}, and
each literal appears at most twice.
Output: A truth assignment of X such that each clause is satisfied (if it exists).

Theorem 2 ( [40]) 3-SAT-2l is NP-complete.

Proof It is stated in [40, Theorem 2.1] that “Boolean satisfiability is NP-complete
when restricted to instances with 2 or 3 variables per clause and at most 3 occurrences
per variable”. The following simple argument can be used to derive the statement.
Consider a formula with 2 or 3 variables per clause and at most 3 occurrences per
variable. If the same literal appears exactly three times in the formula, it means its
negation never appears, so we might as well set its variable so that this literal is true,
and remove all clauses containing that variable. We then get an equivalent formula.
By doing this repeatedly, we obtain an equivalent instance where each literal appears
at most twice. Thus, Theorem 2.1 from [40] implies that 3-SAT-2l is NP-complete.

��
Given an instance (X ,C) of 3-SAT-2l, we construct in polynomial time an instance

(P, S) = Γ (X ,C) of the Discrete- G- Min- Disc- Code problem on the real line
R. The main challenge of this reduction is to be able to connect variable and clause
gadgets, despite the linear nature of our 1D setting. The basic idea is that we will
construct an instance where some specific set of critical point-pairs will need to be
discriminated (all other pairs being discriminated by some partial solution forced by
our gadgets). Let us start by describing our basic gadgets.

Definition 3 A covering gadget Π consists of three intervals I , J , K and four points
p1, p2, p3 and p4 satisfying p1 ∈ I , p2 ∈ I ∩ J , p3 ∈ I ∩ J ∩ K and p4 ∈ J ∩ K
as in Fig. 1. Every other interval of the construction will either contain all four points,
or none. There may exist a set of points in K \ {I ∪ J }, depending on the need of the
reduction.

Observation 1 The points p1, p2, p3, p4 can only be discriminated by choosing all three
intervals I , J , K in the solution.

Proof Follows from the fact that none of the intervals inΓ (X ,C), that is not a member
of the covering gadget Π can discriminate the four points in Π . Moreover, if we do
not choose I , then p3, p4 are not discriminated. If we do not choose J , p1, p2 are not
discrimnated. If we do not choose K , p2, p3 are not discriminated (see Fig. 1). ��
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Fig. 1 A covering gadget Π , and its schematic representation

Fig. 2 A clause gadget Π(ci ), and its schematic representation

The idea of the covering gadget is to forcefully cover the points placed in K \ {I ∪
J }, so that they are covered by K (which needs to be in any solution), and hence
discriminated from all other points of the construction.

Let us now define the gadgets modeling the clauses and variables of the 3-SAT-2l
instance.

Definition 4 Let ci be a clause of C . The clause gadget for ci , denoted Gc(ci ), is
defined by a covering gadgetΠ(ci ) along with two points pci , p

′
ci placed in K\{I ∪ J }

(see Fig. 2).

The idea behind the clause gadget is that some interval that ends between points
pci , p

′
ci will have to be taken in the solution, so that this pair gets discriminated.

Definition 5 Let x j be a variable of X . The variable gadget for x j , denoted Gv(x j ), is
defined by a covering gadgetΠ(x j ), and five points p1x j , . . . , p

5
x j placed consecutively

in K \ {I ∪ J }. We place six intervals I 0x j , I
1
x j , I

2
x j , I

0
x j
, I 1x j , I

2
x j
, as in Fig. 3.

• Interval I 0x j starts between p1x j and p2x j , and ends between p3x j and p4x j .

• Interval I 0x j starts between p2x j and p3x j , and ends between p4x j and p5x j .

• Interval I 1x j starts between p2x j and p3x j , and ends after p5x j .

• Interval I 2x j starts between p4x j and p5x j , and ends after p5x j .

• Interval I 1x j starts between p1x j and p2x j , and ends after p5x j .

• Interval I 2x j starts between p3x j and p4x j , and ends after p5x j .

(The end-point of the four intervals, namely I 1x j , I
1
x j
, I 2x j , I

2
x j
, will be determined at

the time of construction of the whole instance.)

In a variable gadget Gv(x j ), the intervals I 1x j and I 2x j represent the two possible

occurrences of literal x j , while I 1x j and I 2x j represent the two possible occurrences of
x j . The right end points of each of these four intervals will be in the clause gadget
of the clause where the occurrence of that literal takes place. An example for the
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Fig. 3 Variable gadget for variable x j

Fig. 4 The instance Γ (X ,C) for the formula (X ,C) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

construction of Γ (X ,C) is shown in Fig. 4. We assume that every literal appears in at
least one clause.2

• For each variable xi ∈ X , Γ (X ,C) contains a variable gadget Gv(xi ).
• The gadgets Gv(x1),Gv(x2), . . . ,Gv(xn) are positioned consecutively, in this
order, without overlap.

• For each clause c j ∈ C , Γ (X ,C) contains a clause gadget Gc(c j ).
• The gadgets Gc(c1),Gc(c2), . . . ,Gc(cm) are positioned consecutively, in this
order, to the right of the placement of the variable gadgets, without overlap.

• For every variable xi , assume xi appears in clauses ci1 and ci2 , and xi appears in
ci3 and ci4 (possibly i1 = i2 or i3 = i4). Then, we extend the intervals I 1xi , I

1
xi
, I 2xi ,

I 2xi so that I
1
xi ends between pci1 and p′

ci1
, I 2xi ends between pci2 and p′

ci2
, I 1xi ends

between pci3 and p′
ci3
, and I 2xi ends between pci4 and p′

ci4
.

Let CΠ be the union of the discriminating codes (i.e., all intervals of type I , J , K ,
as mentioned in Observation 1) of all covering gadgets of type Π(xi ) of Γ (X ,C).

Consider any covering gadget Π1. By Observation 1, the points p1, p2, p3, p4 are
discriminated among each other by the set CΠ , and they are discriminated from all
other points of Γ (X ,C), since they are the only ones to be covered by one of the

2 If a literal does not appear in any clause, then we can assign a truth value to its variable so that all its
occurrences are true, and further ignore this variable.
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intervals I , J from Π1. Moreover, all the points covered by the interval K from Π1
are discriminated from all the points not covered by K . Thus, overall, all point-pairs
of Γ (X ,C) are discriminated by CΠ , except the following critical point-pairs:

• The point-pairs among the five points p1xi , . . . , p
5
xi of each variable gadgetGv(xi ),

and
• The point-pair {pc j , p′

c j } of each clause gadget Gc(c j ).

In the proof of the following main result of this section, we will demonstrate, in
particular, that if there exists a truth assignment of the variables in X such that all the
clauses in C are satisfied, then the critical point-pairs are also discriminated.

Theorem 6 Discrete- G- Min- Disc- Code in 1D is NP-complete.

Proof We prove that (X ,C) is satisfiable if and only if Γ (X ,C) has a discriminating
code of size 6n + 3m. In both parts of the proof, we will consider the set CΠ defined
above. Each variable gadget and clause gadget contains one covering gadget. Thus,
|CΠ | = 3(n + m).

Consider first some satisfying truth assignment of X . We build a solution set C as
follows. First, we put all intervals of CΠ in C. Then, for each variable xi , if xi is true,
we add intervals I 0xi , I

1
xi and I 2xi to C. Otherwise, we add intervals I

0
xi
, I 1xi and I 2xi to C.

Notice that |C| = 6n+3m. As observed before, it suffices to show that C discriminates
the point-pair {pc j , p′

c j } of each clause gadget Gc(c j ), and the points p1xi , . . . , p
5
xi of

each variable gadget Gv(xi ). (All other pairs are discriminated by CΠ .)
Since the assignment is satisfying, each clause c j contains a true literal li ∈ {xi , xi }.

Then, one interval of Gv(xi ) is in C and discriminates pc j and p′
c j . Furthermore,

consider a variable xi . Point p1xi is discriminated from p2xi , . . . , p
5
xi as it is the only

one not covered by any of I 0xi , I
1
xi , I

2
xi , I

0
xi
, I 1xi , and I 2xi . If xi is true, p

2
xi is covered by

I 0xi ; p
3
xi is covered by I 0xi and I 1xi ; p

4
xi is covered by I 1xi ; p

5
xi is covered by I 1xi and I 2xi .

If xi is false, p2xi is covered by I 1xi ; p
3
xi is covered by I 0xi and I 1xi ; p

4
xi is covered by

I 0xi , I
1
xi
and I 2xi ; p

5
xi is covered by I 1xi and I 2xi . Thus, in both cases, the five points are

discriminated, and C is discriminating, as claimed.
For the converse, assume that C is a discriminating code ofΓ (X ,C) of size 6n+3m.

By Observation 1, CΠ ⊆ C. Thus there are 3n intervals of C that are not in CΠ .
First, we show that C \ CΠ contains exactly three intervals of each variable gadget

Gv(xi ). Indeed, it cannot contain less than three, otherwise we show that the points
p1xi , . . . , p

5
xi cannot be discriminated. To see this, note that each consecutive pair

{psxi , ps+1
xi } (1 ≤ s ≤ 4) must be discriminated, thus C must contain one interval with

an endpoint between these two points. There are four such consecutive pairs inGv(xi ),
thus if C\CΠ contains at most two intervals of Gv(xi ), it must contain I 0xi and I 0xi . But

now, the points p1xi and p5xi are not discriminated, a contradiction.
Let us now show how to construct a truth assignment of (X ,C). Notice that at

least one of I 0xi and I 0xi must belong to C, otherwise some points of Gv(xi ) cannot be

discriminated. If I 0xi ∈ C but I 0xi /∈ C , then necessarily I 1xi ∈ C to discriminate p2xi and

p3xi , and I 2xi ∈ C to discriminate p4xi and p5xi . In this case, we set xi to true. Similarly, if
I 0xi ∈ C but I 0xi /∈ C, then necessarily I 1xi ∈ C to discriminate p1xi and p2xi , and I 2xi ∈ C
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to discriminate p3xi and p4xi . In this case, we set xi to false. Finally, if both I 0xi and
I 0xi belong to C, the third interval of C\CΠ in Gv(xi ) may be any of the four intervals

covering p5xi . If this third interval is I
1
xi or I

2
xi , we set xi to true; otherwise, we set it to

false.
Observe that when we set xi to true, none of I 1xi and I 2xi belongs to C; likewise,

when we set xi to false, none of I 1xi and I 2xi belongs to C. Thus, our truth assignment
is coherent. As for every clause c j , the point-pair {pc j , p′

c j } is discriminated by C,
one interval correspoding to a true literal discriminates it. The obtained assignment is
satisfying, completing the proof. ��

2.2 A 2-Approximation Algorithm

We next design a 2-approximation algorithm for Discrete- G- Min- Disc- Code in
1D by carefully choosing at most n intervals to discriminate the n points of P . We
remark that this algorithm is substantially simpler than the one from the preliminary
version of this paper [13].

First, we will need the following proposition, already observed in [19].

Proposition 7 ( [19])Any solutionof Discrete- G- Min- Disc- Codeand Continuous-
G- Min- Disc- Code in 1D for inputs of n points has size at least n+1

2 .

Proof In order to discriminate the consecutive points in P , for any feasible solution
SOL for P , every gap between two consecutive points will contain an end-point of at
least one interval in SOL . There exist n − 1 gaps for the n points in P . But we must
also have intervals covering the first point and the last point, which amounts to n + 1
positions for the end-points of intervals of SOL . Thus, any solution has size at least
(n + 1)/2. ��
Theorem 8 There exists a 2-factor approximation algorithm solving Discrete- G-

Min- Disc- Code in 1D, that runs in O(m logm) time and O(m) space.

Proof We assume that the points of P = {p1, . . . , pn} of the instance (P, S) are
sorted in increasing order with respect to their x-coordinate values. At Step i , our
partial solution Si ⊆ S will have the property that it covers and discriminates all the
points in {p1, . . . , pi } (using at most i intervals). Thus, at step n, Sn is a valid solution
for (P, S) of size at most n.

For the first step, we let S1 consist of any interval that contains p1. For the next
steps, we assume that i iterations have already been executed, and thus we have
computed the set Si that discriminates Pi = {p1, . . . , pi }. We now consider the set
Pi+1 = {p1, . . . , pi+1}. We distingish three cases as follows.

Case 1 The id of pi+1 using the intervals in Si is non-null and is different from the
id of every point p ∈ Pi . Here, simply let Si+1 = Si , that is, Si is already a
feasible solution for Pi+1.

Case 2 The id of pi+1 using the intervals in Si is null, that is, no interval of Si covers
pi+1. Here, we choose any arbitrary interval s ∈ S that covers pi+1. Thus,
we have Si+1 = Si ∪ {s}. As the members in Pi are already discriminated up
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to i-th iteration, they remain discriminated by Si+1 (even if the new interval
covers a subset of Pi ).

Case 3 The id of pi+1 using the intervals in Si is non-null, but is the same as the id of
some p j ∈ Pi ( j < i). Note that, in such a case the id of pi+1 can match with
at most one element of Pi as the id’s of Pi are all distinct with respect to Si .
Here, we choose an interval s of S that can discriminate p j and pi+1. Such
an interval always exists as we have already checked that (P, S) is twin-free.
Thus, Si+1 = Si ∪ {s} is our valid partial solution.

As we have inserted at most one interval at each iteration, |Sn| ≤ n. By Proposi-
tion 7, |Sn| ≤ 2OPT − 1 and the 2-approximation factor follows.

We now analyze the time and space complexity.Wewill use two tree data structures
for processing the points in P and the intervals in S efficiently. These are a height-
balanced binary tree TH , and a priority search tree TP .

TH : It is a binary tree in which the depth of the two subtrees of every node does not
differ bymore than 1 [24]. A height-balanced binary tree with n nodes has height
Θ(log n). Each operation (lookup, insertion or deletion) takes time Θ(log n) in
the worst case.

TP : A priority search tree [11, 29] is a hybrid of a priority queue and a binary search
tree. It stores a set of 2-dimensional points (a pair of real numbers) for the
efficient answering of 1.5-dimensional queries in a one-side open query box of
the form (−∞, a] × [b, c]. In other words, it can report/count the points whose
x-coordinate is smaller than a, and y-coordinate lies in the range [b, c]. The pre-
processing time and space complexities of this data structure are O(n log n) and
O(n) respectively; the time complexity for reporting/counting a 1.5-dimensional
query is O(s + log n)/O(log n), where s is the number of points returned by the
search.

Before the start of the algorithm, we compute a TP data structure with a set of pairs
of reals (�(s), r(s)) corresponding to the segments S, where �(s) and r(s) denote the
coordinates of the left and right end-point of the interval s ∈ S (on the x-axis). The
preprocessing time and space required for TP are O(m logm) and O(m) (m = |S|)
respectively. Identifying the intervals in S that contains a point p ∈ P and does not
contain a point q ∈ P is equivalant to a 1.5-dimensional range query with the query
box (−∞, x(p)] × (x(p), x(q)), where x(p) denotes the x-coordinate of the point p.

The height-balanced binary tree TH stores the groups generated after processing the
intervals in Si , and is updated at the end of each iteration i . A group is a maximal set of
pairwise intersecting intervals of Si . These groups are totally ordered in the sense that
a pair of consecutive groups share only their common end-point. Each group contains
at most one point of Pi . Since |Si | ≤ i , and the number of groups created with |Si |
is 2 × |Si | + 1, the size of the data structure TH for storing the groups during the
entire execution is O(n). While processing pi+1, this tree structure is used to identify
an appropriate interval to cover the point pi+1 in O(log n) time. As a result, we also
know which case to follow for discriminating pi+1. The cost of maintenance of TH

after each iteration is also O(log n)
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If Case 2 happens, we need to identify an interval s ∈ S that covers pi+1, i.e., a
segment with �(s) < x(pi+1) < r(s), or in other words, a pair of reals (�(s), r(s))
that lies in the range box (−∞, x(pi+1)] × [x(pi+1),∞).

If Case 3 happens, then we need to choose a segment s ∈ S satisfying
either x(p j ) < �(s) < x(pi+1) < r(s) i.e., (�(s), r(s)) ∈ (x(p j ), x(pi+1)] ×

[x(pi+1),∞)

or �(s) < x(p j ) < r(s) < x(pi+1) i.e., (�(s), r(s)) ∈ (−∞, x(p j )] ×
[x(p j ), x(pi+1)).

As mentioned earlier, in either of the cases such an element can be found in the data
structure TP in O(logm) time. Thus, the only task that remains is to modify the data
structure TH after inserting s = [a, b] ∈ TH . Let a and b lie in the groups gα = [θ1, θ2]
and gβ = [ψ1, ψ2], respectively. Now, gα and gβ is to be deleted from TH and four
intervals [θ1, a], [a, θ2], [ψ1, b] and [b, ψ2] need to be inserted in TH . If = [a, b] lies
entirely in the same group [θ1, θ2], then [θ1, θ2] is split into three groups [θ1, a], [a, b]
and [b, θ2]. Surely, we need to attach p j and pi+1 to the appropriate interval groups to
which they belong. This needs another O(log n) time. Thus, processing pi+1 requires
O(logm + log n) time in the worst case.

The construction ofTP needsO(m logm) time andO(m) space [28, 29]. Processing
n points requires O(n(log n + logm)) time as explained in the previously. As n =
O(m), the result follows. ��

2.3 A PTAS for the Unit Interval Case

We now design a PTAS for the 1D case where all intervals in S have the same length.
The following observation (which was also made in the related setting of identi-

fying codes of unit interval graphs [15, Proposition 5.12]) plays an important role in
designing our PTAS.

Observation 2 In an instance (P, S) of Discrete- G- Min- Disc- Code in 1D, if the
objects in S are intervals of the same length, then discriminating all the pairs of
consecutive points in P is equivalant to discriminating all the pairs of points in P.

Proof Assume that we have a set S′ ⊆ S that covers all points and discriminates all
consecutive point-pairs, but two non-consecutive points pi and p j (i < j) are not
discriminated. Since pi and p j are covered by the same set of intervals of S′ and the
intervals are of same (unit) length, they must be at a distance at most 1 apart. Now,
since they are not consecutive, pi+1 lies between pi and p j . Since S′ discriminates pi
and pi+1, there is an interval I ∈ S′ with an endpoint in the gap gi = [pi , pi+1]. If it
is the right endpoint, I covers pi but not p j , a contradiction. Thus, it must be the left
endpoint. But since the distance between pi and p j is at most 1, I contains p j (but
not pi ), again a contradiction. ��

For a given ε > 0, we choose � nε
4 � points, namely q1, q2, . . . , q� nε

4 � ∈ P , called

the reference points, as follows: q1 is the � 2
ε
�-th point of P from the left, and for

each i = 1, 2, . . . , � nε
4 �, the number of points in P between every consecutive pair

(qi , qi+1) is � 4
ε
� (both inclusive). The number of points to the right of q� nε

4 � may be
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less than � 2
ε
�. For each reference point qi , we choose two intervals I 1i , I 2i ∈ S such

that both I 1i , I 2i contain (span) qi , and the left (resp. right) endpoint of I 1i (resp. I 2i )
have the minimum x-coordinate (resp. maximum x-coordinate) among all intervals in
S that span qi . Observe that all the points in P that lie in the rangeGi = [�(I 1i ), r(I 2i )]
are covered, where �(I 1i ) and r(I 2i ) are the x-coordinates of the left endpoint of I 1i and
the right endpoint of I 2i , respectively. These ranges will be referred to as group-ranges.
Since the endpoints of the intervals are distinct, the span of a group-range is strictly
greater than 1.

We now define a block as follows. Observe that the rangesGi andGi+1 may or may
not overlap. If several consecutive rangesGi ,Gi+1, . . . ,Gk are pairwise overlapping,
then the horizontal range [�(I 1i ), r(I 2k )] forms a block. The region between a pair of
consecutive blocks will be referred to as a free region. We use B1, B2, . . . , Bl to
name the blocks in order, and F0, F1, . . . , Fl to name the free regions (from left to
right). The points in each block are covered. Here, the remaining tasks are (i) for each
block, choose intervals from S such that consecutive pairs of points in that block are
discriminated, and (ii) for each free region, choose intervals from S such that all its
points are covered, and the pairs of consecutive points are discriminated.

Observation 3 There exists no interval I ∈ S that contains both a point in Fi and a
point in Fi+1.

Proof Note that, Fi and Fi+1 are sepatated by the block Bi+1. If there exists an interval
I that contains a point in Fi and a point in Fi+1, then I will contain the point q j ∈ Bi+1
just to the right of Fi , which is the reference point of the leftmost group-range G j of
the block Bi+1. This contradicts the existence of I ∈ S. Also, the size of I then has to
be greater than one, which is impossible. ��
Thus, the discriminating code for a free region Fi is disjoint from that of its neighboring
free region Fi+1. So, we can process the free regions independently.

2.3.1 Processing of a Free Region

Let the neighboring group-ranges of a free region Fi be Ga and Ga+1, respectively.
There are at most 4

ε
points lying between the reference points ofGa andGa+1. Among

these, several points of P to the right (resp. left) of the reference point of Ga (resp.
Ga+1) are inside block Bi (resp. Bi+1). Thus, there are at most 4

ε
points in Fi . Let

SFi ⊆ S be a set whose intervals cover at least one point of Fi . Note that, though we
have deleted all the redundant intervals of S, there may exist several intervals in S
whose one endpoint lies in a gap inside that free region, and their other endpoint lies
in distinct gaps of the neighboring block. In Fig. 5, there are some blue intervals which
are redundant with respect to the points Fi ∩ P , but are non-redundant with respect
to the whole point set P . However, the number of such intervals is at most 4

ε
due to

the definition of (I 1i , I 2i ) of the right-most group-range of the block Bi and left-most
group-range of the block Bi+1.

Thus, we have |SFi | = O(1/ε2). We consider all possible subsets of intervals of
SFi , and test each of them for being a discriminating code for the points in Fi . Let Di
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Fig. 5 Demonstration of
redundant edges in a free region
which are non-redundant in the
problem instance (P, S)

be all possible different discriminating codes of the points in Fi , with |Di | = 2O(1/ε2)

in the worst case.

2.3.2 Processing of a Block

Consider a block Bi ; its neighboring free regions are Fi and Fi+1. Consider two
discriminating codes d ∈ Di and d ′ ∈ Di+1. We create a graph Gi = (Vi , Ei ) whose
nodes Vi correspond to the gaps of Bi which are not discriminated by the intervals used
in Di and Di+1. Each edge e ∈ Ei corresponds to an interval in S that discriminates
pairs of consecutive points corresponding to two different nodes (gaps) of Vi . Now, we
can discriminate each non-discriminated pair of consecutive points in Bi by computing
aminimum edge-cover ofGi in O(|Vi |2) time [30]. Asmentioned earlier, all the points
in Bi are covered. Thus, the discrimination process for the block Bi is over. We will
use θ(d, d ′) to denote the size of a minimum edge-cover of Bi using d ∈ Di and
d ′ ∈ Di+1.

2.3.3 Computing a Discriminating Code for P

We now create a multipartite directed graph H = (D,F). Its i-th partite set corre-
sponds to the discriminating codes in Di , and D = ∪l

i=0Di . Each node d ∈ D has
its weight equal to the size of the discriminating code d. A directed edge (d, d ′) ∈ F
connects two nodes d and d ′ of two adjacent partite sets, say d ∈ Di and d ′ ∈ Di+1,
and has its weight equal to θ(d, d ′). For every pair of partite sets Di and Di+1, we
connect every pair of nodes (d, d ′), d ∈ Di and d ′ ∈ Di+1, where i = 0, 1, . . . , l − 1.
Every node of D0 is connected to a node s with weight 0, and every node of Dl is
connected to a node t with weight 0.

Lemma 9 The minimum weight s-t path in H is a lower bound on the size of the
optimum discriminating code for (P, S), where the weight of a path is equal to the
sum of costs of all the vertices and edges on that path.

Proof Let Π be the minimum weight s-t path in the graph H , which corresponds to
a set of intervals S′ ⊆ S. To show, |S′| ≤ |Sopt |, where Sopt ⊆ S corresponds to
the minimum weight discriminating code. For a contradiction, let |S′| > |Sopt |. As
Sopt is a discriminating code, the points of every free region Fi are discriminated by
a subset, say δi ∈ S. Since, we maintain all the discriminating codes in Di , surely
the subset δi ∈ Di . Let bi ⊂ S be the set of intervals that span the points of the
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block Bi . As Sopt is a discriminating code, the points in Bi are discriminated by the
intervals in bi ∪ δi ∪ δi+1. Thus, the set of intervals βi = bi\(δi ∪ δi+1) discriminate
the pair of points of Bi that are not discriminated by δi ∪ δi+1. Observe that, for every
i = 0, 1, . . . , l, we have δi ∈ Di . Moreover, there exists a path Πopt that connects
δi , i = 0, 1, . . . , l, whose each edge (δi , δi+1) has cost equal to |βi |. Thus, we have
the contradiction that Πopt is a path in H having cost less than that of Π . ��

The set of intervals may not form a discriminating code for P , as the points in
a block may not all be covered. However, the additional intervals {(I 1i , I 2i ), i =
1, 2, . . . , � nε

2 �} ensure that the optimum size of the discriminating code satisfies
Sopt ≥ � n+1

2 � due to the fact that we have (n + 1) gaps, and each interval in S
covers exactly 2 gaps. This fact, along with Lemma 9 implies:

Lemma 10 |SOL| ≤ (1 + ε)Sopt .

Proof By Lemma 9, |S′| ≤ Sopt . The number of extra intervals to cover the blocks is
nε
2 . Again,

n
2 ≤ MEC(P) ≤ Sopt , whereMEC(P) is the size ofminimumedge-cover

of the graph G created with the points in P and the intervals in S. Thus, |SOL| ≤
(1 + ε)Sopt . ��

We now analyze the time complexity of the algorithm. Note that, the number of
possible discriminating codes in a free region is 2O(1/ε2). Thus, in the graph H , the
number of edges between a pair of consecutive partite sets Di and Di+1 is |Di | ×
|Di+1| = 2O(1/ε2). As the computation of the cost of an edge between the setsDi and
Di+1 invokes the edge-cover algorithm of an undirected graph, it needs O(|Bi |2) time
[30]. Thus, the total running time of the algorithm is A+ B, where A is the total time
of generating the edge costs, and B is the time for computing a shortest path of H .

We have A ≤ ∑� nε
4 �

i=1 2O(1/ε2) × O(|Bi |2). As the Bi ’s are mutually disjoint, we get

A = O(n2 × 2O(1/ε2)). Moreover, B = O(|F |) = O( n
ε

× 2O(1/ε2)) [39].
In order to reduce the space requirement of the algorithm, we generate partite sets

of the multipartite graph H one by one, and compute the length of the shortest path
from s up to each node of that set. Initially, the length of the path up to a node d ∈ D0
is |d|. While generating Di+1, the nodes in Di are available along with the length of
the shortest path χ(d) up to each node d ∈ Di from s. Now, we execute the following
steps:

Step 1 We generate the nodes of Di+1, and initialize their cost χ(.) with ∞.
Step 2 For each pair of nodes (d, d ′), d ∈ Di , d ′ ∈ Di+1, do the following:

• Compute the edge cost θ(d, d ′), which is the size of the edge-cover of the
block Bi using the discriminating codes d of the free region Fi and d ′ of the
free region Fi+1. This needs O(|Bi |2) time using the matching algorithm of
an undirected graph [30].

• Compute the length of the shortest path from s to d ′ using the edge (d, d ′),
which is χ∗ = χ(d) + θ(d, d ′) + |d ′|.

• If the computed length is less than the existing value of χ(d ′), then update
χ(d ′) with χ∗.
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As the number of discriminating codes in each partite set is 2O(1/ε2) in the worst
case which are computed online while considering the (i + 1)-th partite set, and each
discriminating code is of length at most O( 1

ε
), we have the following result.

Theorem 11 The Discrete- G- Min- Disc- Code problem in 1D for unit interval
objects admits a PTAS: for every ε > 0, there is a (1 + ε)-factor approximation
algorithm with time complexity 2O(1/ε2)n2 using 1

ε
2O(1/ε2)n2 space.

Moreover, in this unit interval setting,weeasily reduce an instanceof Continuous-
G- Min- Disc- Code problem to an instance of Discrete- G- Min- Disc- Code

problem by first computing the O(n2) possible non-redundant unit intervals. Thus:

Corollary 12 The Continuous- G- Min- Disc- Code problem in 1D for unit interval
objects has a PTAS with the same approximation factor, time and space complexity as
those for Discrete- G- Min- Disc- Code.

3 TheG-MIN-DISC-CODE Problem in 2D

Here, the point set P = {p1, p2, . . . , pn} is given in R
2, and the shape of allowed

objects used for covering and discriminating the points of P are axis-parallel squares
of equal size. We will use the term unit square to refer to these objects.

3.1 NP-Completeness

In [19], it has been shown that Continuous- G- Min- Disc- Code for unit disks in
2D is NP-complete. They reduced the P3-Partition- Grid problem, stated below, to
Continuous- G- Min- Disc- Code for unit disks in 2D. We will modify their reduc-
tion and apply it to Continuous- G- Min- Disc- Code for axis-parallel unit squares
in 2D.

A grid graph is a graph whose vertices are positioned in Z
2, and a pair of vertices

are adjacent if they are at Euclidean distance 1 [41].

Problem: P3- Partition- Grid [41]
Input: A grid graph G.
Output: A partition of the vertices of G into disjoint P3-paths, where a P3-path
is a path with three vertices.

Given an instance G of P3-Partition- Grid, we construct an instance PG (a point
set) for Continuous- G- Min- Disc- Code as follows. For every vertex v of G with
coordinates (x, y), we create a point p(v)with coordinates (x, y) and add it to PG . The
construction from [19] stops here, and we will now slightly change it. For each point
p(v) with coordinates (x, y), we replace it by a point with coordinates (y− x, y+ x),
that is, we rotate the whole point set by an angle of π/4 and stretch it by a factor of√
2 (See Fig. 6 for an illustration).

Lemma 13 A P3-partition for G = (V , E) exists if and only if there exists a set of
2|V |
3 axis-parallel unit squares discriminating the points in PG.
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Fig. 6 a A grid graph G. b Its corresponding geometric instance PG , where the dashed axis-parallel unit
squares are those covering two points each

Proof The key idea is to notice that any axis-parallel unit square can contain at most
two points of PG , and if it contains two, then it contains two points corresponding to
vertices of G joined by an edge (the center of the square is then placed at the middle-
most position of the line segment joining the two points). Moreover, any two points
corresponding to an edge of G can be covered by some axis-parallel unit square in
that way. Three points corresponding to the three vertices of a P3-path v1v2v3 in G
can be discriminated using two unit squares s and s′, centered at the mid-points of
the two segments joining (p(v1), p(v2)) and (p(v2), p(v3)), respectively. Now, p(v1)
is covered by s only, p(v3) by s′ only, and p(v2) by both. Thus, if a P3-partition of
G exists, we have our solution of size 2|V |

3 to the Continuous- G- Min- Disc- Code

problem.
Conversely, assume that we have 2|V |

3 axis-parallel unit squares that discriminate
all points of PG . Recall that every square can cover at most two points. For any square
s covering two points p(v1), p(v2), we necessarily have that v1v2 is an edge in G.
Moreover, one of p(v1), p(v2) needs to be covered by a second square s′ (so that the
two points are discriminated). Thus, any solution needs at least 2|V |

3 squares, and any
solution of exactly this size will consist of disjoint sets of three points covered by two
squares (one point covered by both squares, and the other two, by one of the squares
each). These three points must correspond to three vertices of G forming a P3. Thus,
we obtain our P3-partition of G, as claimed. ��

Lemma 13 leads to the following result:

Theorem 14 Continuous- G- Min- Disc- CodeandDiscrete- G- Min- Disc- Code

for axis-parallel unit squares in 2D are NP-complete.

Proof The statement follows directly from Lemma 13 in the case of Continuous-
G- Min- Disc- Code. Let SG contain the set of all axis-parallel unit squares that cover
two points of PG . For Discrete- G- Min- Disc- Code, we can simply modify the
reduction by creating the instance (PG , SG) from G. ��
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Fig. 7 Schematic of the breaking-up of the problem

3.2 Approximation Algorithms

We formulate an approximation algorithm by extending the ideas for the 1D case,
described in Sect. 2.2. We will use the techniques of rounding some suitable Integer
Linear Programmes (ILPs). Here, our goal is to choose a set Q of points in R

2 of
minimum cardinality such that (i) every point of P is covered by at least one axis-
parallel unit square among those centered at the points in Q (covering condition) and
(ii) for every pair of points pi , p j ∈ P (i �= j), there exists at least one square in
Q whose boundary intersects the interior of the line segment [pi , p j ] exactly once
(discrimination condition).

We transform our Continous- G- Min- Dic- Code problem into an equivalent
problem of segment stabbing (which will be defined below). The segment stabbing
problem can also be seen as a hitting set problem of a pair of shapes, called L-shapes.
Each of these L-shape hitting set problems is further split into two hitting set problems
of unit-height rectangles (or unit-width rectangles). A schematic representation of this
process is shown in Fig. 7.

We define the set of line segments L(P) = {[pi , p j ] for all pi , p j ∈ P, i �= j}.
Thus, the discrimination condition leads to the following problem (where by stabbing
a line segment � by a unit square s, we mean that exactly one end-point of � lies inside
s).

Problem: Minimum Segment- Stabbing Set (Min- Seg- Stab- Set)

Input: A set L of segments in 2D.
Output: A minimum-size set S of axis-parallel unit squares in 2D such that each
segment is stabbed by some square of S.

In fact,Min- Seg- Stab- Set for the input segments L(P) is equivalent to the Test
Cover problem for P using axis-parallel unit squares as tests. As in the edge-cover
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Fig. 8 Object that needs to be hit corresponding to segment � = [a, b], where (a) length(�) ≥ 1 and (b)
length(�) < 1

formulation of Discrete- G- Min- Disc- Code problem in 1D (see Sect. 2.2), here
also a feasible solution of Min- Seg- Stab- Set ensures the following:

Observation 4 Every feasible solution Φ of Min- Seg- Stab- Set (a) discriminates
every point-pair in P, and (b) at most one point is not covered by any square in Φ.

In order to discriminate the two endpoints of a member � = [a, b] ∈ L(P), we
need to consider the two cases: length(�) ≥ 1 and length(�) < 1, where length(�)

denotes the length of �. In the former case, if a center is chosen in any one of the unit
squares D(a) and D(b), the segment � is stabbed, where D(q) is the axis parallel unit
square centered at a point q. However, more generally in the second case, to stab �,
we need to choose a center in the region (D(a)\D(b)) ∪ (D(b)\D(a)). In Fig. 8 the
shaded region is the feasible region for placing the center of the unit squares to stab
a line segment in L(P). We define a set of distinct objects O corresponding to the
elements of L(P), where each object corresponds to the feasible region of placing
the center of a stabbing square of an element of L(P). Thus, the Min- Seg- Stab-

Set problem reduces to a Hitting- Set problem, where the objective is to choose a
minimum number of points in R

2, such that each object in O contains at least one of
those chosen points.

3.2.1 The Hitting-Set Problem

We use the technique followed in [1] to solve this problem. Consider the arrangement
A of the objects inO. Create a set Q of points by choosing one point in each cell ofA.
Thus, the size of the set Q is polynomial in the size of the set P . A square centered at
a point q inside a cell A ∈ A will stab all the segments whose corresponding objects
have common intersection region A. For each point qα ∈ Q, we use an indicator
variable xα , and can write an integer linear programming (ILP) problem as follows.
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Z0 :min
|Q|∑

α=1

xα,

subject to σ1(�) + σ2(�) ≥ 1 for each segment � = [a, b] ∈ L(P),

where σ1(�) =
∑

qα∈Q∩(D(a)\D(b))

xα,

σ2(�) =
∑

qα∈Q∩(D(b)\D(a))

xα,

and xα ∈ {0, 1} for all points qα ∈ Q.

As the ILP problem is NP-hard [35], we relax the integrality condition of the
variables xα for all qα ∈ Q from Z0, and solve the corresponding LP problem in
polynomial time.

Z0 :min
|Q|∑

α=1

xα

subject to σ1(�) + σ2(�) ≥ 1 ∀ � = [a, b] ∈ L(P),

and 0 ≤ xα ≤ 1 ∀ qα ∈ Q.

Observe that in the optimum solution OPT 0 of Z0, for each constraint (corre-
sponding to a segment � ∈ L(P)), at least one of σ1(�) or σ2(�) will be greater than
or equal to 1

2 . We now define two sets, namely O1 and O2. If σ1(�) ≥ 1
2 then we put

� in the set O1, and if σ2(�) ≥ 1
2 then put � in the set O2. In other words, we choose

to hit the objects (D(pi ) \ D(p j )) for all �i j = [pi , p j ], i < j , if σ1(�i j ) ≥ 1
2 , and

choose to hit the objects (D(p j )\D(pi )) for all �i j = [pi , p j ], i < j , if σ2(�i j ) ≥ 1
2 .

It needs to be mentioned that, for a constraint corresponding to a point-pair � = [a, b]
both σ1(�) ≥ 1

2 and σ2(�) ≥ 1
2 may happen. In that case � may be considered in any

one the sets O1, O2 arbitrarily. We form a new ILP as follows:

Z1 :min
|Q|∑

α=1

xα

subject to σ1(�) ≥ 1 ∀ � ∈ O1,

σ2(�) ≥ 1 ∀ � ∈ O2,

and xα ∈ {0, 1} ∀ qα ∈ Q.

We use Z1 to denote the LP corresponding to the ILP Z1, OPT0 and OPT1,
the optimal solutions of Z0 and Z1 respectively, and OPT 0 and OPT 1 the optimal
solutions of Z0 and Z1 respectively. Observe that 2OPT 0 produces a feasible solution
to Z1. Thus,

OPT 1 ≤ 2OPT 0 (≤ 2OPT0). (1)

123



Algorithmica (2023) 85:1850–1882 1871

Fig. 9 An L-shaped object, which is the union of a type A and a type B object

However, as the values of the variables in OPT 1 are fractional, it is not possible to
generate a solution of Z0 from OPT 1. Observe the objectsO1 ∪O2 considered in Z1
are either a unit square, or a L-shaped object for which one of the length or the width
is 1. Thus, our objective is to solve the L- Hit problem, stated below.

3.2.2 The L-HIT Problem

Here, given a set of L-shaped objects as defined above, and a set of points Q, we wish
to choose a minimum-size set of points in Q to hit all the L-shaped objects inO1∪O2.

We can view an L-shaped object as the union of two rectangles of type A and B,
where each type A rectangle has height 1 and width less than or equal to 1 and each
type B rectangle has width 1 and height less than 1 (see Fig. 9). (Thus, unit squares
are considered to be type A rectangles.)

While solving Z1, for each constraint (with respect toO1 andO2) any one or both of
the following cases may happen: (a) the sum of variables whose corresponding points
lie in a type A rectangle is ≥ 1

2 , and (b) the sum of variables whose corresponding
points lie in a type B rectangle is ≥ 1

2 . We accumulate all the rectangles in the set
A (resp. B) where condition (a) (resp. condition (b)) is satisfied. The objective is to
choose a minimum number of points in Q to hit all the rectangles in A and B. We
formulate two ILPs’ ZA and ZB corresponding to twoMin- UHR- Hit- Set problems
with the set of rectangles A and B respectively, as stated below.

Problem:Minimum Unit- Height Rectangle Hitting Set (Min- UHR- Hit- Set)

Input: A set R of unit-height rectangles in R2.
Output: A set of points that hits all the members ofR.

A PTAS for the Min- UHR- Hit- Set problem is known [32]; however it cannot
be used in Eq. (1) since that does not guarantee any approximation factor for the
optimum solution of the corresponding LP problem. However, the Min- UHR- Hit-

Set problem for a set of rectanglesR = A (resp. B) can be formulated as an ILP ZA
(resp. ZB) as follows:

ZA : min
∑|Q|

α=1 xα, ZB : min
∑|Q|

α=1 xα,

subject to
∑

qα∈Ai∩Q xα ≥ 1,∀ rectangle Ai ∈ A, subject to
∑

qα∈Bi∩Q xα ≥ 1,∀ rectangle Bi ∈ B,

and xα ∈ {0, 1},∀ α ∈ Q. and xα ∈ {0, 1},∀ α ∈ Q.
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Fig. 10 Demonstration of splitting the plane into unit-width horizontal strips; λi s’ denote the horizontal
lines defining the strips

Denoting by ZA and ZB the LP version of ZA and ZB, and OPTA and OPTB
the optimum solutions for ZA and ZB respectively, we observe that 2OPT 1 gives
a feasible solution to both ZA and ZB simultaneously. Note that, as the variables
participating in OPT 1 and OPT 2 may not be disjoint, it is not possible to write
OPTA + OPTB = 2OPT 1. However, ZA ≤ 2OPT 1 and ZB ≤ 2OPT 1. Thus
by Eq. (1), we have

OPTA + OPTB ≤ 4OPT 1 ≤ 8OPT 0. (2)

For solving the Min- UHR- Hit- Set problem, we use a similar approximation
scheme as the one for unit-height rectangles described in [2]. Here, R2 is split using
x-axis parallel lines from a setL = {λ1, λ2, . . .} such that λi and λi+1 are at distance 1
of each other, and such that each rectangle is hit by one of the lines of L. Thus, each
rectangle in A is intersected by exactly one line of L (assuming that no rectangle in
A is aligned with a line in L). See Fig. 10 for a visual representation.

LetAeven (resp.Aodd ) denote the set of rectangles inA that are intersected by even
(resp. odd) numbered lines ofL. Now, denoting by ZA, Z(Aeven) and Z(Aodd) the ILP
of the hitting set problems corresponding to the set of rectangles A, Aeven and Aodd

respectively, OPTA, OPT (Aeven) and OPT (Aodd) as the optimum solutions of
these problems, and OPTA, OPT (Aeven) and OPT (Aodd) as the optimum solutions
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of the corresponding LP problems, we have

OPT (Aeven) ≤ OPTA and OPT (Aodd) ≤ OPTA.

Now, combining these two inequalities, we have

OPT (Aeven) + OPT (Aodd) ≤ 2OPTA. (3)

We will now need the following lemma.

Lemma 15 If there exists a horizontal line λ that stabs a set of axis-parallel rectangles
D, then the optimum hitting set for the setD can be computed in polynomial time using
the LP relaxation of the corresponding ILP problem.

Proof LetΠ be the optimal hitting set for the rectangles inD. Consider the intersection
of the elements of D with the line λ. As λ intersects all the members in D, if we shift
every member of Π on λ it will not miss to hit any rectangle ofD that it was hitting in
its earlier position. Thus, our problem reduces to hitting a set of intervals obtained by
the intersection of λ with the rectangles in D. Considering the arrangement of those
intervals and choosing a point in each cell of the arrangement, we can formulate this
hitting set problem as an ILP. Again, since the coefficient matrix corresponding to
the constraints of this ILP satisfies the consecutive-1-property, we can get the optimal
solution of this ILP by solving its LP relaxation [38]. ��

Denoting by Z(Ai ) the hitting set problem with the set of rectangles intersected
by λi ∈ L, OPT (Ai ) and OPT (Ai ) as the optimum solutions for the ILP and
LP versions of Z(Ai ), and Lemma 15, we have OPT (Aodd) = OPT (Aodd) =
OPT (A1) + OPT (A3) + . . .. The reason is that for the problem Z(Aodd) none of
the rectangles inAi overlap with any rectangle inA j , for all i, j odd and i �= j . Thus,
the hitting set problem for those instances can be solved independently. Similarly, we
have OPT (Aeven) = OPT (Aeven) = OPT (A2) + OPT (A4) + · · · .

Equations (2), (3) and the subsequent discussions lead to the following. Considering
the previously computed optimal solutions SOL(ZA) and SOL(ZB) for ZA and ZB,
which, by the previous discussions, together form a solution for Z0, we obtain the
following chain of inequalities.
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|SOL(ZA)| + |SOL(ZB)| = |SOL(Aeven)| + |SOL(Aodd)| + |SOL(Beven)|
+ |SOL(Bodd)|

= OPT (Aeven) + OPT (Aodd) + OPT (Beven)

+ OPT (Bodd) by Lemma 15

≤ 2 × (OPT (ZA) + OPT (ZB))by Equation (3)

≤ 16 × OPT 0 by Equation (2)

≤ 16 × OPT0.

(4)

Thus, we have proved the following.

Lemma 16 The aforesaid algorithm computes a 16-factor approximate solution for
Min- Seg- Stab- Set.

Weaccumulate the hitting set for type A rectangles corresponding to each horizontal
line and the hitting set for type B rectangles corresponding to each vertical line in a
set Q∗. By Observation 4, at most one point in P may not be covered by the squares
centered at the points of Q∗. Thus, we may require at most one extra square to cover
that uncovered point. Thus, we have the following.

Theorem 17 There exists a polynomial-time algorithm for theContinuous- G- Min-

Disc- Code problem for axis-parallel unit squares which produces a solution of size
at most 16 · OPT + 1, where OPT is the size of an optimal solution.

3.3 Approximation Algorithm forDISCRETE-G-MIN-DISC-CODE

In this section, we modify the algorithm of Sect. 3.2 for Continuous- G- Min- Disc-

Code to solveDiscrete- G- Min- Disc- Code. Recall that here, in addition to the set
of points P (in R

2), the set S of axis-parallel unit squares is also given in the input.
As in Sect. 3.2, Discrete- G- Min- Disc- Code reduces to the discrete version of the
Min- UHR- Hit- Set problem, whose objective is to hit a set O of unit width/height
rectangles by choosing aminimum cardinality subset of a given set of points Q. Unlike
the continuous version (Lemma 15), the discrete version of the hitting set problem for
a set of unit-height rectangles intersected by a horizontal line cannot be solved in
polynomial time, since the points to be used for hitting the rectangles are already
specified (cannot be chosen suitably). However, if we can design an LP-based α-
factor approximation algorithm for the discrete version of Min- UHR- Hit- Setwhen
the unit-height rectangles are intersected by a single horizontal line, then we can use
it to get a 16α-factor approximation algorithm for the discrete version of Discrete-
G- Min- Disc- Code problem (see Eqs. (3) and (4)). (By LP-based we mean that we
must be able to compute a solution that is at most α times the optimal solution size
of the LP for Discrete- Min- UHR- Hit- Set when all rectangles are intersected by
a horizontal line.)

We will describe an LP-based 4-factor approximation algorithm for theDiscrete-
Min- UHR- Hit- Set problem where the rectangles are hit by a horizontal line (see
Lemma 22 stated at the end of the section). Thus, this will imply the following.
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Theorem 18 There exists a polynomial-time algorithm for the Discrete- G- Min-

Disc- Code problem for axis-parallel unit squares which produces a solution of size
at most 64 · OPT + 1, where OPT is the size of an optimal solution.

3.3.1 DISCRETE-MIN-UHR-HIT-SET for Rectangles Stabbed by a Single
Horizontal Line

Let us first solve a restricted version of the Discrete- Min- UHR- Hit- Set problem,
where the input is a set of axis-parallel unit-height rectangles R intersected by a single
horizontal line λ and a set of points Q (see Fig. 11). The objective is to choose a
minimum number of points from Q to hit all the rectangles in R. This problem can be
formulated as the following ILP.

Uλ :min
∑

qα∈Q
xα

Subject to σ1(r) + σ2(r) ≥ 1, for all r ∈ R,

where σ1(r) (resp. σ2(r)) is the sum of the variables corresponding to the points in
Q above (resp. below) the line λ that lie inside the rectangle r . We will use OPTλ to
denote the optimum solution of this ILP.

On the basis of the LP relaxation of this ILP, we can partition the rectangles into
two groups: Ra and Rb, such that Ra (resp. Rb) contains the rectangles whose solution
in the LP relaxation satisfies σ1(r) ≥ σ2(r) (resp. σ1(r) < σ2(r)). The rectangles in
Ra (resp. Rb) will thus be assumed to be hit by the points in Qa (resp. Qb) that lie
above (resp. below) the line λ; Qa ∪ Qb = Q, Qa ∩ Qb = ∅.

Let Ua
λ and Ub

λ be the ILPs for the minimum hitting set problems for the rectangles
in Ra and points in Qa (resp. Rb and Qb). As in the relation of OPTA, OPTB and

Fig. 11 An instance of discrete hitting set of unit-height rectangles stabbed by a horizontal line
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Fig. 12 The instance where the rectangles above the horizontal line are considered

OPT 1 in Eq. (2), here also denoting by OPT
a
λ and OPT

b
λ as the optimum solutions

of the LP relaxation of Ua
λ and Ub

λ , respectively, we have

OPT
a
λ + OPT

b
λ ≤ 2OPT λ (5)

due to the fact that Qa and Qb are disjoint point sets and 2OPT λ is a feasible solution

of both the problems Ua
λ and Ub

λ. Now, we concentrate on solving the ILP Ua
λ . The

problem Ub
λ can be solved in a similar manner.

3.3.2 Approximation Algorithm for SolvingUa
�

We have a set of rectangles Ra , each one having its bottom boundary aligned with
a horizontal line λ, and a set of points Qa ⊆ Q that lie above the line λ. The objective
is to find a subset of Qa of minimum size, say OPT a , to hit all the members in Ra

(see Fig. 12).
Note that this problem can be solved in polynomial time by a dynamic programming

technique similar to the one used in [23]. However, in order to plug-in the solution of
this problem into Eq. (5), we need that the solution is obtained using the LP relaxation
of its corresponding ILP formulation (it may not be optimal, but we need a guaranteed
approximation factor).

We will use known techniques from the literature to get an integer-valued 2-factor
approximation algorithm for the ILP problem Ua

λ obtained from its LP solution (see
Eq. (6)).

Ua
λ :min

∑

qα∈Qa

xα

Subject to
∑

qα∈Qa∩r
xα ≥ 1 for all r ∈ Ra,

xα ∈ {0, 1} for all qα ∈ Qa

(6)

Definition 19 Let ε > 0 be fixed and consider a set system (X ,R). A set N ⊆ X is
an ε-net of (X ,R) if for every subset S ∈ R for which |S| ≥ ε|X |, N contains a point
of S.
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Fig. 13 Illustration of the existence of a 2
ε -size ε-net for the set system (Qa , Ra)

In other words, an ε-net is a hitting set of the set system over X containing only
large enough sets of R.

Lemma 20 ([36]) For a set system (Qa, Ra) and a horizontal line λ such that Qa is a
set of points lying above λ and Ra is a set of rectangles each having their base on λ,
for every positive ε > 0, an ε-net of size 2

ε
can be constructed in polynomial time.

Proof We split the half-plane above the line λ into disjoint vertical strips such that
each strip contains � εn

2 � points (see Fig. 13). Now, from each strip, we choose the
bottom-most points. This is an ε-net of size 2

ε
for the set system (Qa, Ra) due to

the fact that for any rectangle containing at least εn points, its horizontal span must
contain that of a strip, and hence the corresponding rectangle is hit by the point chosen
in that strip. ��

The following theorem is proved in [14].

Theorem 21 ([14]) An ε-net of size d
ε
for a set system (X ,R) with ε = 1/OPT ,

where OPT is the optimal value of the LP for Hitting Set on (X ,R), is a hitting
set of (X ,R) of size at most d · OPT .

Finally, plugging-in Lemma 20 and Theorem 21 with d = 2 in Eq. (5), we have
the following result needed to complete the proof of Theorem 18.

Lemma 22 In polynomial time, one can compute a solution for Discrete- Min-

UHR- Hit- Set when all rectangles are intersected by a horizontal line, whose size is
at most 4 times the optimal value of the corresponding LP.

4 MIN-ID-CODE for Geometric Intersection Graphs

In this section, we will use techniques similar to those used in the previous sections
and apply them to the setting of the graph problemMin- ID- Code, for the intersection
graph of axis-parallel unit squares (unit square graphs). To the best of our knowledge,
Min- ID- Codewas not yet studied for unit square intersection graphs in the literature.
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Fig. 14 Possible intersection patterns of a pair of axis-parallel unit squares (full lines): the dotted square
around each square corresponds to the locations where a square centered at this point will intersect the
enclosed unit square

Fig. 15 Feasible regions for placing the center of the square s ∈ I D for discriminating si , s j ∈ S: three
possible situations

Here, the input is a set S of axis-parallel unit squares in 2D. In the graphG = (V , E),
the nodes in V = {v1, . . . , vn} correspond to the squares in S; an edge ei j = {vi , v j } ∈
E if the squares corresponding to vi , v j intersect.

Note that it is not known in the literature whether Min- Id- Code on unit square
graphs is NP-hard, however, the techniques from [31] used for unit disk graphs can
most certainly be applied to prove it.

We can reformulateMin- ID- Code for unit square graphs in geometric terms: the
objective is to compute a subset Sopt ⊆ S of minimum cardinality such that each
square in S intersects some square in Sopt , and for each pair of squares si , s j ∈ S,
there exists a square σ ∈ Sopt such that (σ ∩ si �= ∅ and σ ∩ s j = ∅) or (σ ∩ si = ∅
and σ ∩ s j �= ∅). If we do only satisfy the discrimination constraint, then in order to
satisfy the domination constraint, we may need to include at most one more square
from S in Sopt .

Let S′ ⊆ S be an identifying code for the set of squares in S. A square σ ∈ S′
intersects a square si ∈ S if the center of σ is placed inside the square δ centered
at the center of s and the side-length of δ is twice the side-length of s (shown using
dotted line around si in Fig. 14). In order to satisfy the discrimination constraint among
si , s j ∈ S, the center of a square σ ∈ S′ must be placed inside δi∇δ j , where ∇ is the
symmetric difference operator, i.e., (δi\δ j ) ∪ (δ j\δi ). In Fig. 14, different patterns of
intersection of a pair si , s j ∈ S are depicted, along with their covering regions δi , δ j .
Thus, in order to satisfy the discrimination constraint (si , s j ), we need to place the
center of a square σ ∈ S′ in the regions shown in Fig. 15.
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Thus, as inSect. 3.2,we can solveMin- ID- Code for unit square graphs by solving a
problem of hitting the feasible regions corresponding to each pair of squares si , s j ∈ S
using the centers of the squares in S. The objective will be to choose the minimum
number of hitting squares from S. Thus, the same techniques as in Sect. 3.2 can be
applied, and we obain the following theorem.

Theorem 23 Min- ID- Code has a polynomial-time approximation algorithm for unit
square graphs (if the unit square intersection model of the input graph is known) that
produces a solution of size at most 64 ·OPT +1, where OPT is the size of an optimal
solution.

5 Conclusion

We have seen that Discrete- G- Min- Disc- Code is NP-complete, even in 1D. This
is in contrast withmost covering problems and toContinuous- G- Min- Disc- Code,
which are polynomial-time solvable in 1D [19, 25].

We also proposed a simple 2-factor approximation algorithm for the Discrete-

G- Min- Disc- Code problem in 1D, and a PTAS for a special case where each
interval in the set S is of unit length. It seems challenging to determine whether
Discrete- G- Min- Disc- Code problem in 1D becomes polynomial-time for unit
intervals. As noted in [19], this would be related to Min- ID- Code on unit inter-
val graphs, which also remains unsolved [18]. In fact, it also seems to be unknown
whether Continuous- G- Min- Disc- Code problem in 1D remains polynomial-time
solvable with the restriction that each interval is of unit length. However our PTAS
algorithm for Discrete- G- Min- Disc- Code problem in 1D also produces a PTAS
for the Continuous- G- Min- Disc- Code problem. We also do not know whether a
PTAS exists for the general 1D case.

In 2D, both Continuous- G- Min- Disc- Code and Discrete- G- Min- Disc-

Code problems areNP-complete evenwhen Smust be a set of axis-parallel unit square
objects. We propose polynomial-time constant factor approximation algorithms for
both Continuous- G- Min- Disc- Code and Discrete- G- Min- Disc- Code using
the rounding of the relaxation of integer programming to linear programming. The
question remains whether there exists any algorithm with better constant approxima-
tion or a PTAS.

We remark that all our results for axis-parallel unit squares also hold when the
objects are axis-parallel rectangles of a specified (same) size i.e., the shape of all the
rectangles match in height and width.

As we observed, all the techniques for designing approximation algorithms for
solving Discrete- G- Min- Disc- Code problems in 2D work for solving the Min-

ID- Code problem for an intersection graph of a set of axis-parallel rectangles of same
size. It is an interesting problemwhether similar approximation algorithms exist,where
the objects in S are unit disks, or arbitrary axis-parallel rectangles.

In the recent literature, a problem known as Red- Blue Separation is being
studied. In this problem, given a set R of red-colored points and a set B of blue-colored
points in the plane, the objective is to find at most k geometric objects that separate
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R from B, that is, each cell in the arrangement of these geometric objects contains
points of at most one color (see [33] and the references in that paper). The problem G-

Min- Disc- Code studied here can be seen as one where each point has different color.
Our techniques for both the continuous and discrete versions of G- Min- Disc- Code

problemswill alsowork for theRed- Blue- Separation Problemwith axis-parallel
rectangles of same size in the continuous and discrete cases, respectively. Here, instead
of considering segments joining every pair of points in the given point set, we join each
red point in the set R with each point in the set B of blue points, and solve the segment
stabbing problem with a set of rectangles (suitably positioned in the continuous case
and a given set of rectangles in the discrete case). The approximation factors of both
these problems will be the same as those obtained for the corresponding version of
G- Min- Disc- Code.
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