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We introduce the Red-Blue Separation problem on graphs, where we are given a graph 
G = (V , E) whose vertices are colored either red or blue, and we want to select a (small) 
subset S ⊆ V , called red-blue separating set, such that for every red-blue pair of vertices, 
there is a vertex s ∈ S whose closed neighborhood contains exactly one of the two vertices 
of the pair. We study the computational complexity of Red-Blue Separation, in which one 
asks whether a given red-blue colored graph has a red-blue separating set of size at most a 
given integer. We prove that the problem is NP-complete even for restricted graph classes. 
We also show that it is always approximable in polynomial time within a factor of 2 ln n, 
where n is the order of the input graph. In contrast, for triangle-free graphs and for graphs 
of bounded maximum degree, we show that Red-Blue Separation is solvable in polynomial 
time when the size of the smaller color class is bounded by a constant. However, on 
general graphs, we show that the problem is W [2]-hard even when parameterized by the 
solution size plus the size of the smaller color class. We also consider the problem Max 
Red-Blue Separation where the coloring of the graph is not part of the input. Here, given 
an input graph G , we want to determine the smallest integer k such that, for every possible 
red-blue coloring of G , there is a red-blue separating set of size at most k. We show that
Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum degree, but 
can be approximated in polynomial time within a factor of O (ln2 n), where n is the order 
of the input graph. We derive tight bounds on the cardinality of an optimal solution of
Max Red-Blue Separation, showing that it can range from logarithmic in the graph order, 
up to the order minus one. We also give bounds with respect to related parameters. For 
trees however, we prove an upper bound of two-thirds the order.
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1. Introduction

We introduce and study the Red-Blue Separation problem on graphs. Separation problems for discrete structures have 
been studied extensively from various perspectives. In the 1960s, Rényi [30] introduced the Separation problem for set 
systems (a set system is a collection of sets over a set of vertices), which has been rediscovered by various authors in 
different contexts, see e.g. [2,6,22,29].

In this problem, one is given a set system, that is, a collection S of sets over a set V of vertices. One wishes to select 
a solution subset C of sets in S to separate every pair of vertices, that is, for every pair of vertices, there is a set of C
that contains one vertex but not the other (in other words, for each vertex, the subset of sets in C containing it is unique). 
These problems have numerous applications in areas such as monitoring and fault-detection in networks [32], biological 
testing [29], and machine learning [25].

Some special cases, which are extensively studied as well, are as follows. The graph version of Separation (where the 
sets of the input set system are the closed neighborhoods of a graph and the set system vertices are the graph vertices), 
is called Identifying Code [4,16,17,23]. The geometric version of Separation (where the sets of the input set system are 
geometric objects and the set system vertices are points), called Geometric Discriminating Code or Point Separation, is 
also extensively studied, see [5,11,18,20].

The Red-Blue Separation problem, which we study here, is a red-blue colored version of Separation, where instead 
of all pairs, we only need to separate red vertices from blue vertices. In the general version of the Red-Blue Separation

problem, one is given a set system (V , S) consisting of a set S of subsets of a set V of vertices which are either blue or 
red; one wishes to separate every blue from every red vertex using a solution subset C of S (here a set of C separates two 
vertices if it contains exactly one of them). Motivated by machine learning applications, a geometric-based special case of
Red-Blue Separation has been studied in the literature, where the vertices of V are points in the plane and the sets of S
are half-planes [7].

A classic topic in algorithms and discrete mathematics is the problem Set Cover over set systems, that generalizes 
both Geometric Set Cover problems and the graph problem Dominating Set. Similarly, as explained above, the set system 
problem Separation generalizes both the Geometric Discriminating Code problem and the graph problem Identifying Code. 
It is thus natural to initiate the study of the graph version of Red-Blue Separation. That is the goal of this paper.

Problem definition In the graph setting, we are given a graph G and a red-blue coloring c : V (G) → {red, blue} of its vertices, 
and we want to select a (small) subset S of vertices, called red-blue separating set, such that for every red-blue pair of vertices 
r, b (say), there is a vertex from S whose closed neighborhood contains exactly one of r or b. Equivalently, N[r] ∩ S �=
N[b] ∩ S , where N[x] denotes the closed neighborhood of vertex x; the set N[x] ∩ S is called the code of x (with respect to 
S), and thus all codes of blue vertices are different from all codes of red vertices. The smallest size of a red-blue separating 
set of (G, c) is denoted by sepRB(G, c). Note that if a red and a blue vertex have the same closed neighborhood, they cannot 
be separated. Thus, for simplicity, we will consider only twin-free graphs, that is, graphs where no two vertices have the 
same closed neighborhood. Also, for a twin-free graph, the vertex set V (G) is always a red-blue separating set as all the 
vertices have a unique subset of neighbors. We have the following associated computational problem.

Red-Blue Separation

Input: A red-blue colored twin-free graph (G, c) and an integer k.
Question: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is not part of the input. For a given graph G , we 
thus define the parameter max-sepRB(G) which denotes the largest size, over each possible red-blue coloring c of G , of a 
smallest red-blue separating set of (G, c). The associated decision problem is stated as follows.

Max Red-Blue Separation

Input: A twin-free graph G and an integer k.
Question: Do we have max-sepRB(G) ≤ k?

In Fig. 1, to note the difference between sepRB and max-sepRB, a path of 6 vertices P6 is shown, where the vertices are 
colored red or blue.

Our results We show that Red-Blue Separation is NP-complete even for restricted graph classes such as planar bipartite 
sub-cubic graphs, in the setting where the two color classes3 have equal size. We also show that the problem is NP-hard to 
approximate within a factor of (1 − ε) ln n for every ε > 0, even for split graphs4 of order n, and when one color class has 

3 One class consists of vertices colored red and the other class consists of vertices colored blue.
4 A graph G = (V , E) is called a split graph when the vertices in V can be partitioned into an independent set and a clique.
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Fig. 1. A path of 6 vertices where (a) sepRB(P6, c) = 1 and (b) max-sepRB(P6) = 3. The square vertices are blue, the round ones are red; the members of 
the red-blue separating set are circled. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

size 1. On the other hand, we show that Red-Blue Separation is always approximable in polynomial time within a factor of 
2 ln n. In contrast, for triangle-free graphs and for graphs of bounded maximum degree, we prove that Red-Blue Separation

is solvable in polynomial time when the smaller color class is bounded by a constant (using algorithms that are in the 
parameterized class XP, with the size of the smaller color class as parameter). However, on general graphs, the problem is 
shown to be W [2]-hard even when parameterized by the solution size plus the size of the smaller color class. (This is in 
contrast with the geometric version of separating points by half-planes, for which both parameterizations are known to be 
fixed-parameter tractable [3,24].)

As the coloring is not specified, max-sepRB(G) is a parameter that is worth studying from a structural viewpoint. We 
show that the associated decision problem Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum 
degree, but can be approximated in polynomial time within a factor of O (ln2 n).

We also study the possible values for max-sepRB(G). We show the existence of tight bounds on max-sepRB(G) in terms 
of n, the order of the graph G , proving that it can range from 	log2 n
 up to n − 1 (both bounds are tight). For trees, 
however, we prove bounds involving the number of support vertices (i.e. which have a leaf neighbor), which imply that 
max-sepRB(G) ≤ 2n

3 . We also give bounds in terms of the (non-colored) separation number.
An extended abstract of this paper was presented in the conference IWOCA’22 and appeared in the proceedings as [10]. 

The present paper includes all the proofs that were missing from the conference version.

Related work Red-Blue Separation has been studied in the geometric setting of red and blue points in the Euclidean 
plane [3,5,28]. In this problem, one wishes to select a small set of (axis-parallel) lines such that any two red and blue 
points lie on the two sides, respectively, of one of the solution lines. The motivation stems from the Discretization prob-
lem for two classes and two features in machine learning, where each point represents a data point whose coordinates 
correspond to the values of the two features, and each color is a data class. The problem is useful in a preprocessing step 
to transform the continuous features into discrete ones, with the aim of classifying the data points [7,24,25]. This problem 
was shown to be NP-hard [7] but 2-approximable [5] and fixed-parameter tractable when parameterized by the size of a 
smallest color class [3] and by the solution size [24]. A polynomial time algorithm for a special case was recently given 
in [28].

The Separation problem for set systems (also known as Test Cover and Discriminating Code) was introduced in the 
1960s [30] and widely studied from a combinatorial point of view [1,2,6,22] as well as from the algorithmic perspective 
for the settings of classical, approximation and parameterized algorithms [8,12,29]. The associated graph problem is called
Identifying Code [23] and has also been extensively studied (see [26] for an online bibliography with almost 500 references 
as of January 2022); geometric versions of Separation have been studied as well [11,18,20]. The Separation problem is 
also closely related to the VC Dimension problem [33] which is very important in the context of machine learning. In VC 
Dimension, for a given set system (V , S), one is looking for a (large) set X of vertices that is shattered, i.e., for every possible 
subset of X , there is a set of S whose trace on X is the subset. This can be seen as “perfectly separating” a subset of S
using X ; see [4] for more details on this connection.

Another way of transferring the problem definition of the geometric Red-Blue Separation problem to graphs, is the
Multicut problem [9,27], where separation is achieved by disconnecting the graph rather than by dominating the vertices. 
Here, one is given a graph G and a set of vertex-pairs, and one wishes to select a minimum-size set S of vertices or edges 
of the graph so that the two vertices of every input pair belong to two distinct connected components of the graph G \ S . 
If one was given a red-blue colored graph and wished to separate every red vertex from every blue vertex in this way, then 
one may set as the input pairs of the Multicut problem, all possible red-blue vertex pairs.

Structure of the paper We start with the algorithmic results on Red-Blue Separation in Section 2. In Subsection 2.1 we 
consider the complexity of Red-Blue Separation and in Subsection 2.2 we give algorithms for the problem. We then present 
the bounds on max-sepRB in Section 3. In particular, Subsection 3.1 considers general lower bounds, Subsection 3.2 considers 
general upper bounds and Subsection 3.3 considers bounds for trees. Then, in Section 4, we give an approximation algorithm 
for Max Red-Blue Separation (using a bound from Section 3) and show that it is an NP-hard problem. We conclude in 
Section 5.

2. Complexity and algorithms for RED-BLUE SEPARATION

We will prove some algorithmic results for Red-Blue Separation by reducing to or from the following problems.
3
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Set Cover

Input: A set of elements U , a family S of subsets of U and an integer k.
Question: Does there exist a cover C ⊆ S , with |C| ≤ k such that 

⋃
C∈C C = U ?

Dominating Set

Input: A graph G = (V , E) and an integer k.
Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V , N[v] ∩ D �= ∅?

Subsection 2.1 contains hardness results on Red-Blue Separation and Subsection 2.2 contains algorithms for the problem.

2.1. Hardness

In this subsection, we show that Red-Blue Separation is an NP-hard problem on subcubic bipartite planar graphs, that 
it is hard to approximate, and that the problem is W [2]-hard when parameterized by the solution size.

Theorem 1. Red-Blue Separation cannot be approximated within a factor of (1 − ε) · ln n for any ε > 0 even when the smallest 
color class has size 1 and the input is a split graph of order n, unless P = NP. Moreover, Red-Blue Separation is W[2]-hard when 
parameterized by the solution size together with the size of the smallest color class, even on split graphs.

Proof. For an instance ((U , S), k) of Set-Cover, we construct in polynomial time an instance ((G, c), k) of Red-Blue 
Separation where G is a split graph and one color class has size 1. The statement will follow from the hardness of ap-
proximating Min Set Cover proved in [13], and from the fact that Set Cover is W[2]-hard when parameterized by the 
solution size [14].

We create the graph (G, c) by first creating vertices corresponding to all the sets and the elements. We connect a vertex 
ui corresponding to an element i ∈ U to a vertex v j corresponding to a set S j ∈ S if ui ∈ S j . We color all these vertices 
blue. We add two isolated blue vertices b and b′ . We connect all the vertices of type ui ∈ U to each other. Also, we add a 
red vertex r and connect all vertices ui ∈ U to r. Now, note that the vertices U ∪ {r} form a clique whereas the vertices v j
along with b and b′ form an independent set. Thus, our constructed graph (G, c) with the coloring c is a split graph. See 
Fig. 2.

Claim 1.1. S has a set cover of size at most k if and only if G has a red-blue separating set of size at most k + 1.

Proof of claim. Let C be a set cover of (U , S) of size k. We construct a red-blue separating set S of (G, c) of size k + 1 as 
follows. For each set s j ∈ S selected in the set cover C , we choose the corresponding vertex v j in S . We also include the 
vertex r in S . Observe that some blue vertices may have the empty code and the red vertex has itself as the code. Also, the 
vertices ui are dominated by the vertices v j and have some unique code different from r. Therefore, S is a separating set 
of (G, c) of size k + 1.

Conversely, consider a red-blue separating set S of (G, c) of size k′ = k + 1. Since the vertices in U ∪ {r} form a 
clique, choosing any vertex from this set will not separate any two vertices of the clique. Hence, to separate r from the 
vertices in U , each vertex in U has to be dominated by a vertex in S . Furthermore, these vertices form a set cover. 
Moreover, at least one of vertices b and r is dominated by a vertex. Thus, there exists a set cover of size at most 
k′ − 1 = k. (�)

This completes the proof of the theorem. �
Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic graphs of girth at least 12 when the color classes have 
almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar sub-cubic graphs with girth at least 12 that 
contain some degree-2 vertices [34]. We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k′) of Red-Blue 
Separation, where k′ = k + 1 and the number of red and blue vertices in c differ by at most 2.

Construction We create two disjoint copies of G namely H B and H R and color all vertices of H B blue and all vertices of 
H R red. Select an arbitrary vertex v of degree 2 in G (we may assume such a vertex exists in G by the reduction of [34]) 
and look at its corresponding vertices v R ∈ V (H R) and v B ∈ V (H B). We connect v R and v B with the head u1 of the path 
u1, u2, u3, u4 as shown in Fig. 3. The tail of the path, i.e. the vertex u4, is colored blue and the remaining three vertices 
u1, u2 and u3 are colored red. Our final graph H is the union of H R , H B and the path u1, u2, u3, u4 and the coloring c
as described. Note that if G is a connected bipartite planar sub-cubic graph of girth at least g , then so is H (since v was 
selected as a vertex of degree 2). We make the following claim.
4
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Fig. 2. Reduction from Set Cover to Red-Blue Separation of Theorem 1. Vertex r is red, the others are blue.

Fig. 3. Reduction from Dominating Set to Red-Blue Separation of Theorem 2. Vertices v B and u4 are blue, the others are red.

Claim 2.1. The instance (G, k) is a YES-instance of Dominating Set if and only if sepRB(H, c) ≤ k′ = k + 1.

Proof of claim. ( =⇒ ) Let D be a dominating set of G of size k. We construct a red-blue separating set S of (H, c) of size 
at most k + 1 as follows. For each vertex in D , include its corresponding vertex in H R in S . Also include in S , the vertex 
u2 ∈ V (H). Observe that all blue vertices have the empty code and all red vertices have some non-empty code. Therefore S
is a separating set of (H, c) of size at most k + 1.

( ⇐= ) Consider a red-blue separating set S of (H, c) of size k′ . Let us assume that the red vertices of (H, c) did not get 
the empty code. The argument when the blue vertices do not get the empty code is similar. Then, the set S also dominates 
V (H R) ∪ {u1, u2, u3}. Since u3 can only be dominated by a vertex x in {u2, u3, u4}, the vertices in V (H R) are dominated by 
S ′ = S \ {x}. If S ′ = S ′ ∩ V (HG), then the set D formed by choosing the corresponding vertices of S ′ in G is a dominating 
set of size k = k′ − 1. Otherwise, S ′ \ {u1} = S ′ ∩ V (H R), and the set D , formed by choosing the corresponding vertices of 
S ′ \ {u1} together with x, in G is a dominating set of G of size at most k = k′ − 1. (�)

This completes the proof of the theorem. �
In the previous reduction, we could choose any class of instances for which Dominating Set is known to be NP-hard. 

We could also simply take two copies of the original graph and obtain a coloring with two equal color class sizes (but then 
we obtain a disconnected instance). In contrast, in the geometric setting, the problem is fixed-parameter-tractable when 
parameterized by the size of the smallest color class [3], and by the solution size [24]. It is also 2-approximable [5].

We can also provide another reduction, as follows.

Theorem 3. Red-Blue Separation is NP-hard even when the input is a subcubic planar bipartite graph of girth at least 12 and the size 
of the smallest color class is k + 1.

Proof. We reduce from Dominating Set.
Dominating Set is NP-hard when the input graph is a subcubic planar bipartite graph of girth at least 12 [34]. We reduce 

an instance (G, k) of the Dominating Set to an instance ((H, ck+1), k) of Red-Blue Separation where ck+1 is a coloring of H
with the minimum color class being of size at most k + 1.

Construction Without loss of generality let us assume the smaller sized color class to be red. For H we create a copy G H
of G with all its vertices colored blue and an independent set I of size k + 1 all its vertices colored red vertices (see Fig. 4). 
We now make the following claim.

Claim 3.1. (G, k) is a YES-instance of Dominating Set if and only if ((H, ck+1), k) is a YES-instance of Red-Blue Separation.

Proof of claim. ( =⇒ ) Let D be a dominating set of G . We construct a red-blue separating set of (H, ck+1) by selecting the 
corresponding vertices of D in G H . Since D is a dominating set of G , all blue vertices receive a non-empty code. The red 
vertices on the other hand receive the empty code and we have a valid separating set.
5
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Fig. 4. Construction from an instance of Dominating Set to an instance of Red-Blue Separation where size of the smaller color class is bounded. In H , the 
square vertices are blue, the round ones are red.

Fig. 5. A reduction instance from Red-Blue Separation of (G, c) (where the square vertices are blue, the round ones are red) to Set Cover of (U , S). The 
separating set in the colored graph (G, c) and the corresponding set cover in the set system (U , S) has been highlighted.

( ⇐= ) Let (H, ck+1) have a separating set C of size at most k. Since there are k + 1 independent red vertices, there will 
be at least one red vertex which receives the empty code. So, in order for C to be a valid separating set, all blue vertices 
must receive some non-empty code. This implies that C ∩ V (G H ) is a dominating set of G H of size at most k and which 
implies a dominating set of G of size at most k. (�)

This completes the proof. �
2.2. Positive algorithmic results

In this subsection, we design an approximation algorithm for Red-Blue Separationwhich runs in polynomial-time, some 
bounds for the problem based on the size of the color classes, and finally show that if the graph is triangle-free or has a 
small maximum degree �, then there exists a polynomial-time algorithm if the size of the smaller color class is constrained 
by a constant.

We start with a reduction to Set Cover implying an approximation algorithm.

Proposition 4. Red-Blue Separation has a polynomial-time (2 lnn)-factor approximation algorithm, where n is the input graph’s 
order.

Proof. We reduce Red-Blue Separation to Set Cover. Let ((G, c), k) be an input instance of Red-Blue Separation. We reduce 
it to an instance ((U , S), k) of Set Cover. For each red-blue vertex pair (r, b) in G , create an element in U . For each vertex 
v in G create a set in S with elements (r, b) in U such that v is in the closed neighborhood of exactly one of r and b in G . 
See Fig. 5. Observe that a set cover C of size k corresponds to a separating set S of size at most k and vice versa. The greedy 
algorithm for Set Cover has an approximation factor of ln |U | + 1. Since, in our case |U | ≤ n2/4, the resulting approximation 
factor for Red-Blue Separation is at most ln(n2/4) + 1 ≤ 2 ln n. �
Proposition 5. Let (G, c) be a red-blue colored triangle-free and twin-free graph with the two color classes R and B. Then, 
sepRB(G, c) ≤ 3 min{|R|, |B|}.

Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c). First, we add all 
red vertices to S . It remains to separate every red vertex from its blue neighbors. If a red vertex v has at least two neighbors, 
we add (any) two such neighbors to S . Since G is triangle-free, no blue neighbor of v is in the closed neighborhood of both 
these neighbors of v , and thus v is separated from all its neighbors (see vertex v1 in Fig. 6). If v had only one neighbor 
w , and it was blue, then we separate w from v by adding one arbitrary neighbor of w (other than v) to S . Since G is 
triangle-free, v and w are separated (see vertex v2 in Fig. 6). Thus, we have built a red-blue separating set S of size at most 
3|R|. �
6
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Fig. 6. Illustration of Proposition 5: here v1 has just one blue neighbor hence w1 is added in S . v2’s neighbors w2 and w3 are also included in S . The 
square vertices are blue, the round ones are red.

Fig. 7. Illustration of Proposition 6: the two cases when the vertices v and w are (a) not adjacent and (b) adjacent. The square vertices are blue, the round 
ones are red.

Proposition 6. Let (G, c) be a red-blue colored twin-free graph with maximum degree � ≥ 3. Then, sepRB(G, c) ≤ � min{|R|, |B|}.

Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c). Let v be any 
red vertex. If there is a blue vertex w whose closed neighborhood contains all neighbors of v (w could be a neighbor of v), 
we add both v and w to S (see Fig. 7(a)). If v is adjacent to w , since they cannot be twins, there must be a vertex z that 
can separate v and w; we add z to S (see Fig. 7(b)). Now, v is separated from every blue vertex in G .

If such a vertex w does not exist, then we add all neighbors of v to S . Now again, v is separated from every vertex of 
G . Thus, we have built a red-blue separating set S of size at most �|R|. �

The previous propositions imply that Red-Blue Separation can be solved in XP time for the parameter “size of a smallest 
color class” on triangle-free graphs and on graphs of bounded degree (by a brute-force search algorithm). This is in contrast 
with the fact that in general graphs, it remains hard even when the smallest color class has size 1 by Theorem 1.

Theorem 7. Red-Blue Separation on graphs whose vertices belong to the color classes R and B can be solved in time O (n3 min{|R|,|B|})
on triangle-free graphs and in time O (n�min{|R|,|B|}) on graphs of maximum degree �.

3. Extremal values and bounds for max-sepRB

We denote by sep(G) the smallest size of a (non-colored) separating set of G , that is, a set that separates all pairs of 
vertices. We will use the relation max-sepRB(G) ≤ sep(G), which clearly holds for every twin-free graph G .

Subsection 3.1 contains lower bounds for max-sepRB(G), subsection 3.2 contains general upper bounds and subsection 3.3
gives (almost tight) bounds for trees.

3.1. Lower bounds for general graphs

In this subsection, we give a tight general lower bound for max-sepRB and consider the relationship between sep(G) and 
max-sepRB(G).

We can have a large twin-free colored graph with solution size 2 (for example, in a large blue path with a single red 
vertex, two vertices suffice). We show that in every twin-free graph, there is always a coloring that requires a large solution.

Theorem 8. For any twin-free graph G of order n ≥ 1 and n /∈ {8, 9, 16, 17}, we have max-sepRB(G) ≥ 	log2(n)
.

Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. There are 2n different red-blue colorings of G . For 
each such coloring c, we have sepRB(G, c) ≤ k. Consider the set of vertex subsets of G which are separating sets of size k
for some red-blue colorings of G . Notice that each red-blue coloring has a separating set of cardinality k. There are at most (n) ≤ nk such sets.
k

7
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Consider such a separating set S and consider the set I(S) of subsets S ′ of S for which there exists a vertex v of G
with N[v] ∩ S = S ′ . Let i S be the number of these subsets: we have i S ≤ 2|S| ≤ 2k . If S is a separating set for (G, c), then 
all vertices having the same intersection between their closed neighborhood and S must receive the same color by c. Thus, 
there are at most 2i S ≤ 22k

red-blue colorings of G for which S is a separating set. Hence, we have

2n ≤ (n
k

)
22k

, which implies

2n ≤ nk22k
, which implies

n ≤ k log2(n) + 2k

We now claim that this implies that k ≥ log2(n − log2(n) log2(n)). Suppose to the contrary that this is not the case, then 
we would obtain:

n < log2(n − log2(n) log2(n)) log2(n) + n − log2(n) log2(n)

n < log2(n) log2(n) + n − log2(n) log2(n)

And thus n < n, a contradiction. Since k is an integer, we actually have k ≥ �log2(n − log2(n) log2(n))�. To conclude, 
one can check that whenever n ≥ 70, we have �log2(n − log2(n) log2(n))� ≥ 	log2(n)
. Moreover, if we compute values for 
2n − (n

k

)
22k

when 1 ≤ n ≤ 69 and k = 	log2(n)
 − 1, then we observe that this is negative only when n ∈ {8, 9, 16, 17}. Thus, 
	log2(n)
 is a lower bound for max-sepRB(G) as long as n /∈ {8, 9, 16, 17}. �

The bound of Theorem 8 is tight for infinitely many values of n.

Proposition 9. For any integers k ≥ 1 and n = 2k, there exists a graph G of order n with max-sepRB(G) = k.

Proof. We build G as follows. Let S = {s1, . . . , sk} be a set of k vertices. Let T be another set of vertices (disjoint from S). 
For every subset S ′ of S of size at least 2, we add a vertex v S ′ to T and we join it to all vertices of S ′ and T . The set T
induces a clique. Finally, we add an isolated vertex v∅ to G . To see that max-sepRB(G) ≤ k, notice that S is a separating set 
of G (regardless of the coloring).

If k = 1, the coloring with s1 Red and v∅ Blue shows that max-sepRB(G) ≥ 1.
If k = 2, color s1 and s2 Red and v{1,2} and v∅ Blue. To separate v{1,2} from s1 (respectively s2), s2 must belong to any 

separating set (respectively s1), which shows that max-sepRB(G) ≥ 2.
If k ≥ 3, color v S Blue and the other vertices Red. For each subset S ′ of S with |S ′| = k − 1, in order to separate v S from 

v S ′ , any separating set needs to contain si where {si} = S \ S ′ . This shows that max-sepRB(G) ≥ k. �
We next relate parameter max-sepRB to other graph parameters.

Theorem 10. Let G be a graph on n vertices. Then, sep(G) ≤ min{�log2(n)� · max-sepRB(G), �log2(�(G) + 1)� · max-sepRB(G) +
γ (G)}, where γ (G) is the domination number of G and �(G) its maximum degree.

Proof. Let G be a graph on 2k−1 + 1 ≤ n ≤ 2k vertices for some integer k. We denote each vertex by a different k-length 
binary word x1x2 · · · xk where each xi ∈ {0, 1}. Moreover, we give k different red-blue colorings c1, . . . , ck such that vertex 
x1x2 · · · xk is red in coloring ci if and only if xi = 0 and blue otherwise. For each i, let Si be an optimal red-blue separating set 
of (G, ci). We have |Si | ≤ max-sepRB(G) for each i. Let S = ⋃k

i=1 Si . Now, |S| ≤ k · max-sepRB(G) = �log2(n)� · max-sepRB(G). 
We claim that S is a separating set of G . Assume to the contrary that for two vertices x = x1x2 · · · xk and y = y1 y2 · · · yk , 
N[x] ∩ S = N[y] ∩ S . For some i, we have yi �= xi . Thus, in coloring ci , vertices x and y have different colors and hence, there 
is a vertex s ∈ ci such that s ∈ N[y]�N[x], a contradiction which proves the first bound.

Let S be an optimal red-blue separating set for such a coloring c and let D be a minimum-size dominating set in G; 
S ∪ D is also a red-blue separating set for coloring c. At most �(G) +1 vertices of G may have the same closed neighborhood 
in D . Thus, we may again choose �log2(�(G) + 1)� colorings and optimal separating sets for these colorings, each coloring 
(roughly) halving the number of vertices having the same vertices in the intersection of separating set and their closed 
neighborhoods. Since each of these sets has size at most max-sepRB(G), we get the second bound. �

We do not know whether the previous bound is reached, but as seen next, there are graphs G such that sep(G) =
2 max-sepRB(G).

Proposition 11. Let G = Kk1,...,kt be a complete t-partite graph for t ≥ 2, ki ≥ 5 odd for each i. Then sep(G) = n − t and 
max-sepRB(G) = (n − t)/2.

Proof. Let us have t parts G1, . . . , Gt with vertex sets V (Gi) = {vi
1, . . . , v

i
ki
}. Let c be such a coloring in G that sepRB(G, c) =

max-sepRB(G). Observe that S is a separating set in G if and only if |S ∩ V (Gi)| ≥ ki − 1. Indeed, if we have vi , vi /∈ S , then 
j h

8
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N[vi
j] ∩ S = N[vi

h] ∩ S since N(vi
j) = N(vi

h). Moreover, each vertex in S is separated from vertices not in S and each vertex 
in V (Gi) is separated from vertices in V (G j). Thus, sep(G) = n − t .

Next we form a red-blue separating set S ′ for coloring c. For each part, we choose to set S ′ every vertex which has 
the less common color in that part (however, we choose at least two vertices to S ′ from each part). Observe that |S ′| ≤∑t

i=1
ki−1

2 = (n − t)/2. Moreover as above, we can see that S ′ is a red-blue separating set with the help of fact that if vi
j /∈ S ′

and vi
h /∈ S ′ , then vi

j and vi
h have the same color.

Finally, we show that max-sepRB(G) ≥ (n − t)/2. Observe that if we have u, v ∈ V (Gi) and u, v /∈ S , then N[u] ∩ S =
N[v] ∩ S . Thus, any two vertices u, v ∈ V (Gi) \ S must have the same color. If each part has (ki + 1)/2 red vertices and 
(ki − 1)/2 blue vertices, then we require at least 

∑t
i=1(k1 − 1)/2 = (n − t)/2 vertices in S . �

3.2. Upper bound for general graphs

In this subsection, we first show that in every twin-free graph we have max-sepRB(G) ≤ n − 1 and then show that this 
bound is tight.

We will use the following classic theorem in combinatorics to show that we can always spare one vertex in the solution 
of Max Red-Blue Separation.

Theorem 12 (Bondy’s Theorem [2]). Let V be an n-set with a family A = {A1, A2, . . . , An} of n distinct subsets of V . There is an 
(n − 1)-subset X of V such that the sets A1 ∩ X, A2 ∩ X, A3 ∩ X, . . . , An ∩ X are still distinct.

Corollary 13. For any twin-free graph G on n vertices, we have max-sepRB(G) ≤ sep(G) ≤ n − 1.

Proof. Regardless of the coloring, by Bondy’s theorem, we can always find a set of size n − 1 that separates all pairs of 
vertices. �

This bound is tight for every even n for complements of half-graphs (studied in the context of identifying codes in [16]).

Definition 14 (Half-graph [15]). For any integer k ≥ 1, the half-graph Hk is the bipartite graph on vertex sets {v1, . . . , vk} and 
{w1, . . . , wk}, with an edge between vi and w j if and only if i ≤ j.

The complement Hk of Hk thus consists of two cliques {v1, . . . , vk} and {w1, . . . , wk} and with an edge between vi and 
w j if and only if i > j.

Proposition 15. For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.

Proof. The upper bound follows from Corollary 13.
Consider the red-blue coloring c such that vi is Blue whenever i is odd and Red, otherwise. If k is odd, wi is Red 

whenever i is odd and Blue, otherwise. If k is even, wi is Blue whenever i is odd and Red, otherwise.
For any integer i between 1 and k − 1, vi and vi+1 have different colors and can only be separated by wi . Likewise, 

wi and wi+1 have different colors and can only be separated by vi+1. This shows that {w1, . . . , wk−1} and {v2, . . . , vk}
must belong to any separating set of (Hk, c). Finally, consider w1 and vk . They also have different colors and can only be 
separated by either v1 or wk . This shows that we need at least n − 1 vertices in any separating set. �
3.3. Upper bound for trees

In this subsection, we show that a much better upper bound holds for trees. In particular, we offer three general upper 
bounds for max-sepRB(T ) when T is a tree. Furthermore, we also show that one of our bounds is almost tight for an infinite 
family of trees.

Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T ). Vertices adjacent to leaves are called 
support vertices, and the set of support vertices of T is denoted S(T ). We denote �(T ) = |L(T )| and s(T ) = |S(T )|. The set of 
support vertices with exactly i adjacent leaves is denoted Si(T ) and the set of leaves adjacent to support vertices in Si(T )

is denoted Li(T ). Observe that |L1(T )| = |S1(T )|. Moreover, let L+(T ) = L(T ) \ L1(T ) and S+(T ) = S(T ) \ S1(T ). We denote 
the sizes of these four types of sets by si(T ), �i(T ), s+(T ) and �+(T ), respectively.

For trees, we can show the following result, which is in contrast with the situation for general graphs (or even split 
graphs, as highlighted by Theorem 1).

Theorem 16. Let T be a tree on n ≥ 3 vertices and let c be a coloring with exactly one red (or blue) vertex. We have sepRB(T , c) ≤ 2.

Proof. Let T be a tree on at least three vertices with coloring c such that there is exactly one red vertex v ∈ V (T ).
9
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Fig. 8. Construction of C1 from C ′
1 where the boxed elements represent members of the set.

Fig. 9. Illustration of various cases for C1 in Claim 17.1.

Let us assume first that v /∈ L(T ). Thus, v has at least two neighbors w and u. If we now include w and u in the 
separating set S , then v is the only vertex in T which has two adjacent vertices in S and hence, S is a red-blue separating 
set in T for coloring c.

On the other hand, if v ∈ L(T ), u ∈ N(v) and w ∈ N(u) \{v}, then S = {v, w} is a red-blue separating set in T for coloring 
c, and sepRB(T , c) ≤ 2. �

To prove our upper bound for trees, we need Theorems 17 and 18.

Theorem 17. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ n+s(T )
2 .

Proof. Observe that the claim holds for stars (select the vertices of the smallest color class among the leaves, and at least 
two leaves). Thus, we assume that s(T ) ≥ 2. Let c be a coloring of T such that max-sepRB(T ) = sepRB(T , c).

We build two separating sets C1 and C2; the idea is that one of them is small. We choose a non-leaf vertex x and add 
to the first set C ′

1 every vertex at odd distance from x and every leaf. If there is a support vertex u ∈ S1(T ) ∩ C ′
1 and an 

adjacent leaf v ∈ L1(T ) ∩ N(u), we create a separating set C1 from C ′
1 by shifting the vertex away from leaf v to some vertex 

w ∈ N(u) \ L(T ). We construct in a similar manner sets C ′
2 and C2, except that we add the vertices at even distance from x

to C ′
2 (including x itself) and do the shifting when u ∈ S1(T ) has even distance to x. Sets C1 and C2 have been previously 

considered in [17, Theorem 6]. See Fig. 8.

Claim 17.1. Both C1 and C2 are separating sets.

Proof of claim. Let us first consider set C1. See Fig. 9 for helpful illustrations of different cases we go through in the following 
arguments. Let us first show that each leaf v ∈ L(T ) is separated from all other vertices by C1. Let u ∈ N(v) be the adjacent 
support vertex. If d(x, v) is odd, then v ∈ C1 and |N(u) ∩ C1| ≥ 2. Hence, v is separated from every other vertex. If d(v, x) is 
even and v ∈ L+(T ), then v ∈ C1 and |N[u] ∩ C1| ≥ 3. Hence, v is again separated from other vertices. If d(v, x) is even and 
10
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Fig. 10. Comparison of the sets C ′
1 and C ′

2 where the vertices highlighted in green belong to the sets C ′
1 \ (L(T ) ∪ S+(T ) ∪ N S3(T )) and C ′

2 \ (L(T ) ∪ S+(T ) ∪
N S3(T )), respectively.

v ∈ L1(T ), then v /∈ C1, u ∈ C1 and |N[u] ∩C1| ≥ 2 due to the shift when we form C1 from C ′
1. If we have N[w] ∩C1 = {u} for 

some w �= u and w /∈ L(T ), then d(w, x) is even and we have |N[w] ∩ C1| ≥ 2, a contradiction. Thus, any leaf v is separated 
from each other vertex.

Let us then consider a vertex w /∈ L(T ) with odd distance d(w, x), then w ∈ C1. Moreover, each neighbor u ∈ N(w) has 
even distance to x and is either a leaf which is separated from w or has at least two neighbors with odd distances to x and 
hence, |C1 ∩ N(u)| ≥ 2 and u is separated from w . Finally, if w /∈ L(T ) and d(w, x) is even, then w /∈ C ′

1 and |N(w) ∩ C1| ≥ 2. 
Since there are no 3-cycles nor 4-cycles in a tree, w is separated from all other vertices.

The proof that also C2 is a separating set is similar. We only swap evens and odds. Hence, the claim follows. (�)

Let us denote by N S3(T ) a smallest set of vertices in T such that for each vertex v ∈ S3(T ) which has N(v) ∩ S+(T ) = ∅, 
we have at least one vertex u ∈ N(v) \ L(T ) in N S3(T ) (such a set exists since T is not a star).

We assume that out of the two sets C ′
1 and C ′

2, C ′
a (a ∈ {1, 2}) has less vertices among the vertices in V (T ) \ (L(T ) ∪

S+(T ) ∪ N S3(T )). In particular, it contains at most half of those vertices and we have |C ′
a \ (L(T ) ∪ S+(T ) ∪ N S3(T ))| ≤

(n − �(T ) − s+(T ) − |N S3(T )|)/2. In Fig. 10, a comparison of the sets C ′
1 and C ′

2 is shown. Next, we will construct set C
from C ′

a . Let us start by having each vertex in C ′
a be in C . Let us then, for each support vertex u ∈ S+(T ), remove from C

every adjacent leaf w ∈ L+(T ) ∩ N(u) such that w is in the more common color class within the vertices in N(u) ∩ L+(T )

in coloring c. We then add some vertices to C as follows. For u ∈ Si(T ), i ≥ 4, we add u to C and some leaves so that there 
are at least two vertices in N(u) ∩ C . We have at most |L(T ) ∩ N[u]|/2 + 1 vertices in C ∩ (N[u] ∩ L(T ) ∪ {u}).

For i = 3, we add u and any v ∈ N S3(T ) ∩ N(u) \ C , depending on which one already belongs to C . Then, if all leaves in 
N(u) have the same color, we add one of them to C . Hence, we have |C ∩ (L3(T ) ∪ N S3(T ))|/s3(T ) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u /∈ C ′
a , we add u and one of the two leaves to C . If the two 

leaves have the same color and u ∈ C ′
a , we add a non-leaf neighbor of u to C . If the leaves have different colors, one of 

them, say v , has the same color as u. We add u to C and shift the vertex in C in the leaves so that v is in C . We added at 
most two vertices to C in this case. Notice that now we have S+(T ) ⊆ C .

Each time, we added to C at most half of the considered vertices in N(u), and at most one other additional vertex. After 
these changes, we shift some vertices in C away from L1(T ) the same way we built Ca from C ′

a . As |C ′
a \ (L(T ) ∪ S+(T ) ∪

N S3(T ))| ≤ (n − �(T ) − s+(T ) − |N S3(T )|)/2, we get:

|C | ≤ n − �(T ) − s+(T ) − |N S3(T )|
2

+ �1(T ) + �+(T ) + |N S3(T )|
2

+ s+(T )

= n + �1(T ) + s+(T )

2
= n + s(T )

2
.

Claim 17.2. C is a red-blue separating set for coloring c.

Proof of claim. Since Ca is a separating set and Ca \ C ⊆ L+(T ), if two vertices w, v are not separated by C , then they were 
separated by a leaf in L+(T ) in Ca . Moreover, there exists a support vertex u ∈ S+(T ) such that v, w ∈ N[u]. Recall that 
S+(T ) ⊆ C and hence, u ∈ C . If w and v are both leaves, then they have the same color and do not need to be separated. 
In the following, we go through all the other possibilities for w and v .

Assume first that w, v /∈ L(T ) and d(w, v) = 1 and let us say, without loss of generality, that d(w, x) is of such parity 
that w ∈ C ′

a (and w ∈ C ). Notice that we have w = u or v = u in this case. Moreover, since there are no cycles in T , the 
parities of d(w, x) and d(v, x) differ. Thus, there exists some vertex b ∈ N(v) \ N[w] such that the parity of d(b, x) equals 
to the parity of d(w, x). Thus, b ∈ C ′

a . If b is not a leaf, then b ∈ C and b separates w and v . Thus, b ∈ L(T ). However, if 
b ∈ L1(T ), then b ∈ C and if b ∈ L+(T ), then v ∈ S+(T ) and there exists a leaf in C adjacent to v separating v and w , a 
contradiction. When d(w, v) = 2, neither of w or v are in C since they cannot be separated. Again, we can find some vertex 
b in C that will separate them as in the previous case.

Moreover, since there are no cycles in T , the parities of d(w, x) and d(v, x) differ. Thus, there exists some vertex b ∈
N(v) \ N[w] such that the parity of d(b, x) equals to the parity of d(w, x). If b is not a leaf, then b ∈ C and b separates w and 
v . Thus, b ∈ L(T ). However, if b ∈ L1(T ), then b ∈ C and if b ∈ L+(T ), then v ∈ S+(T ) and there exists a leaf in C adjacent 
to v separating v and w , a contradiction. When d(w, v) ≥ 2, we notice that this case cannot occur since v, w ∈ N[u] and at 
least one of these two vertices is adjacent to a leaf in N(u).
11
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Finally, we have the case where exactly one of the two vertices is a leaf, let us say v ∈ L(T ) and since v ∈ N(u), we have 
v ∈ L+(T ). Assume first that d(v, w) = 2. Thus, v, w /∈ C . However, then we again have b ∈ C such that b ∈ N(w) \ {u}, either 
due to the parity of d(x, b) or because b is a leaf. As the last case we have u = w and v ∈ L+(T ) ∩ N(u). If u /∈ C ′

a , then, 
by parity, u has an adjacent non-leaf vertex in C since T is not a star. On the other hand, if u ∈ C ′

a , then if u ∈ S2(T ) and 
the two leaves have the same color, there is again a non-leaf neighbor in C . If u ∈ S2(T ) and the two leaves have different 
colors, then there is a leaf of the same color, in N(u), as u which is in C . If u ∈ S3(T ), then u has a non-leaf neighbor in 
N S3(T ) ∩ C or in S+(T ) ∩ C . If u ∈ Si(T ) for i ≥ 4, then u has at least two adjacent leaves which are in C . Hence, w and v
are either separated or they have the same color. (�)

This completes the proof of the theorem. �
The upper bound of Theorem 17 is tight. Consider, for example, a path on eight vertices. Also, the trees presented in 

Proposition 20 are within 1/2 from this upper bound. In the following theorem, we offer another upper bound for trees 
which is useful when the number of support vertices is large. The following theorem has been previously considered for 
total dominating identifying codes (under the term differentiating-total dominating set) in [21].

Theorem 18. For any tree T of order n ≥ 5, sep(T ) ≤ n − s(T ).

Proof. Let us choose for each support vertex u ∈ S(T ) exactly one adjacent leaf v ∈ L(T ) and say that these vertices form 
the set S ′ . Next, we form the separating set S = V (T ) \ S ′ . Notice that |S| = n − s(T ). In the following, we show that S is a 
separating set in T .

Observe that if v /∈ S , then v is a leaf and no support vertex has two adjacent leaves which do not belong to S . Thus, 
vertices which do not belong to S are pairwise separated. Since S ′ ⊆ L(T ), T [S] is a connected induced subgraph of T . 
Moreover, as n ≥ 5, we have |N[w] ∩ S| ≥ 2 for each vertex w ∈ S . Thus, vertices in S are separated from vertices which are 
not in S . Finally, any two vertices w, w ′ ∈ S are separated since |V (T [S])| ≥ 3; hence, each closed neighborhood is unique 
in T [S]. �

The following corollary is a direct consequence of Theorems 17 and 18. Indeed, we have max-sepRB(T ) ≤ min{n −
s(T ), (n + s(T ))/2}.

Corollary 19. For any tree T of order n ≥ 5, we have max-sepRB(T ) ≤ 2n
3 .

We next show that Corollary 19 (and Theorem 17) is not far from tight.

Proposition 20. For any k ≥ 1, there is a tree T of order n = 5k + 1 with max-sepRB(T ) = 3(n−1)
5 = n+s(T )−1

2 .

Proof. Consider the tree T formed by taking k disjoint copies P 1, . . . , Pk of a path of order 6 and identifying one endpoint 
of each path into one single vertex x. We consider the coloring that colors x red, and all other vertices are colored red-blue-
red... following the bipartition of the tree. Let vi

1, . . . , v
i
5 be the vertices of P i distinct from x, where x is adjacent to vi

1. 
In order to separate vi

5 from vi
4, we need vi

3 in any red-blue separating set. To separate vi
4 from vi

3, we need either vi
2 or 

vi
5. To separate vi

3 from vi
2, we need either vi

1 or vi
4. Thus, we need at least three vertices of P i in any red-blue separating 

set, which shows that max-sepRB(T ) ≥ 3k. To see that max-sepRB(T ) ≤ 3k, one can see that the set consisting of all vertices 
vi

1, v
i
3, v

i
5 separates all pairs of vertices. Finally, since s(T ) = k and n − 1 = 5k, we get that n+s(T )−1

2 = 3k = 3(n−1)
5 . �

4. Complexity and approximation for MAX RED-BLUE SEPARATION

We first design an approximation algorithm for Max Red-Blue Separation using Theorem 10 and an approximation 
algorithm from [19]. After that we show that Max Red-Blue Separation is NP-hard.

Theorem 21. Max Red-Blue Separation can be approximated within a factor of O (ln2 n) on graphs of order n in polynomial time.

Proof. Let A be a polynomial-time (2 ln n + 1)-approximation algorithm for the Separation problem [19]. For any graph G , 
let S(G) denote the separating set returned by A on the input graph G . Using Theorem 10, we have

|S(G)| ≤ (2 ln n + 1) · sep(G)

≤ (2 ln n + 1) · �log2 n� · max-sepRB(G)

Hence, algorithm A is a polynomial-time O (ln2 n)-approximation algorithm for Max Red-Blue Separation. �

12
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Fig. 11. A domination gadget on vertices v1 and v2 and its schematic representation.

The problem Max Red-Blue Separation does not seem to be naturally in the class NP (it is in the second level of the 
polynomial hierarchy). Nevertheless, we show that it is NP-hard.

Theorem 22. Max Red-Blue Separation is NP-hard even for graphs of maximum degree 12.

Proof. We reduce from the following NP-hard version of 3-SAT [31].

3-SAT-2l

Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over n Boolean variables X = {x1, . . . , xn}, and 
each literal appears at most twice.
Question: Is there an assignment of X where each clause has a true literal?

Construction Given an instance σ of 3-SAT-2l with m clauses and n variables, we create an instance (H, k) of Max Red-Blue 
Separation, where k = 4m + 9n. We first explain the construction of a domination gadget.

A domination gadget on vertices v1 and v2, denoted by H(v1, v2), consists of 16 vertices including v1 and v2. This gadget 
will ensure that v1, v2 are dominated by the local solution of the gadget (and thus, separated from the rest of the graph). 
See Fig. 11 for reference. The vertices v1 and v2 may be connected to each other or to some other vertices outside the 
domination gadget as represented by the dashed edges incident to them. Both v1 and v2 are also connected to the vertices 
u1 to u4 as shown in the figure. Next we have a clique K10 consisting of the vertices {p1, p2, . . . , p6, q1, q2, . . . , q4}. Every 
vertex pi is connected to a unique pair of vertices from {u1, u2, u3, u4} and every vertex q j is connected to a unique triple 
of vertices from {u1, u2, u3, u4}. For example in the figure we have p4 connected with the pair of vertices u2 and u3 and q3
connected with the triplet of vertices u1, u3 and u4.

The graph H consists of one variable gadget per variable and one clause gadget per clause. The variable gadget for a 
variable x consists of the graph H(xa, xb) and H(x, x) with additional edges (xa, xb), (xa, x) and (xa, x). The clause gadget for 
a clause C = (x ∨ y ∨ z) (say) is H(ca, cb), where ca is connected to the vertices cb, x, y and z. See Fig. 12 for an illustration. 
Observe that since each literal can appear at most twice therefore, the maximum degree of H is 12, determined by the qi ’s 
in each domination gadget.

Let us illustrate an example instance for the reduction (see Fig. 13). In this example, we have the formula as (w ∨ x ∨
y) ∧ (x ∨ y ∨ z). Thus, we have two clauses c1 = w ∨ x ∨ y and c2 = x ∨ y ∨ z and four variables w, x, y and z. Corresponding 
to each clause and each variable, we have a clause gadget and a variable gadget respectively (as described earlier). The 
domination gadget attached with both the clause and variable gadgets is shown below to increase readability. We have 
shown one possible coloring in this instance with a large solution size.

Claim 22.1. max-sepRB(H) = sep(H).

Proof of claim. It is clear that max-sepRB(H) ≤ sep(H), since any set that separates all pairs of vertices also separates all 
red-blue pairs, for any possible coloring.

We will now prove that sep(H) ≤ max-sepRB(H) by providing a specific coloring, and showing that for this coloring, any 
(optimal) solution also separates all pairs of vertices.

Consider a coloring c of H , where for each domination gadget H(v1, v2), all pi ’s are colored blue and all q j ’s are colored 
red, or vice versa. For each variable x, the vertices xa and xb are given different colors. For each clause C , the vertices ca

and cb are also colored differently. The rest of the vertices are colored arbitrarily.
13
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Fig. 12. Variable and clause gadgets.

Consider a (minimum) red-blue separating set S of H with respect to the coloring c. For each domination gadget 
H(v1, v2), the vertices u1 to u4 must be included in S . This is because for each uh ∈ H(v1, v2), there exist pi, q j ∈ H(v1, v2)

such that N[pi]�N[q j] = {uh}, where � denotes the symmetric difference between two sets. Since pi and q j are given dif-
ferent colors, uh is the only vertex which separates them and has to be included in S .

Observe that, for each variable x, the vertices u1 to u4 of the domination gadget H(xa, xb) separate the vertices xa and 
xb from the rest of H . Therefore, they only need to be separated between themselves. The same reasoning holds for the 
vertices x and x, for each variable x, as well as for the vertices ca and cb , for each clause C .

For each variable x, at least one of the vertices x or x must be included in S in order to separate the vertices xa

and xb as they are colored differently. This also separates vertices x and x, if they are assigned different colors. For each 
clause C = (x ∨ y ∨ z) (say), at least one of the vertices x, y or z needs to be included in S (if not already included) in 
order to separate the vertices ca and cb as they are also colored differently. The set S must contain a subset of vertices 
from the set {x, x | x ∈ X} which separates the vertices ya and yb for all variables y, and the vertices ca and cb for all 
clauses C .

Since the size of set S is minimum, it is a minimum red-blue separating set of H with respect to the coloring c. We will 
now show that S is also a separating set of (uncolored) H . Observe that for each domination gadget H(v1, v2), the vertices 
from u1 to u4 (which are in S) separate all (uncolored) pi ’s and q j ’s from the rest of the vertices in H . This is because the 
intersection of the set {u1, u2, u3, u4} and the closed neighborhood of each pi or q j is unique. The vertices u1 to u4 are also 
separated from the remaining vertices.

Also, since the vertices u1 to u4 are included in S for all domination gadgets of H , therefore going by the previ-
ous explanation we only need to separate the vertex pairs (xa, xb), (x, x) and (ca, cb). But the construction of S is such 
that all these pairs of vertices are already separated by S . Therefore S is also a separating set of H . This proves our
claim. (�)

Claim 22.2. If σ is satisfiable, sep(H) = k and otherwise, sep(H) > k, where k = 4m + 9n.

Proof of claim. Consider a separating set S of H . For each domination gadget H(v1, v2), the vertices u1 to u4 must be 
included in S as these are the only vertices which can separate all the pi ’s and q j ’s of H(v1, v2) and themselves. Also, 
for each variable x, one of the vertices x or x must also be included in S in order to separate xa and xb . Thus, a total of 
4(m + 2n) + n = 4m + 9n vertices are needed in S . This implies that sep(H) ≥ k = 4m + 9n.
14
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Fig. 13. An example to show the reduction from 3-SAT-2l to Max Red-Blue Separation. The square vertices are blue, the round ones are red.

If σ is satisfiable, then with respect to a satisfying assignment, we include for each variable x, the vertex x if it is 
assigned true, or the vertex x, if it is assigned false. These vertices also separate ca and cb for all clauses C . Therefore, S is 
a separating set of H and sep(H) = k.

On the contrary, if σ is not satisfiable, then S is not a separating set of H as there exists some clause C for which ca

and cb are not separated. Since all vertices in S are necessary to be included, any separating set of H is a strict superset of 
S , and sep(H) > k. (�)

From Claim 22.1 and Claim 22.2 it follows that σ is satisfiable if and only if max-sepRB(H) ≤ k = 4m + 9n. Since the 
maximum degree of H is 12 and 3-SAT-2l is NP-hard, Max Red-Blue Separation is also NP-hard for graphs with maximum 
degree 12. �
5. Conclusion

We have initiated the study of Red-Blue Separation and Max Red-Blue Separation on graphs, problems which seem nat-
ural given the interest that their geometric version has gathered, and the popularity of its “non-colored” variants Identifying 
Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Separation can be as small as 2, even for large 
instances; however, we have seen that this is not possible for Max Red-Blue Separation since max-sepRB(G) ≥ 	log2(n)
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for twin-free graphs of order n. Moreover, max-sepRB(G) can be as large as n − 1 in general graphs, yet, on trees, it is at 
most 2n/3 (we do not know if this is tight, or if the upper bound of 3n/5, which would be best possible, holds). However, 
the upper bound of Theorem 17, which is based on the number of support vertices, is tight for trees. It would also be 
interesting to see if other interesting upper or lower bounds can be shown for other graph classes.

We have shown that sep(G) ≤ �log2(n)� · max-sepRB(G). Is it true that sep(G) ≤ 2 max-sepRB(G)? As we have seen, this 
would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it does not naturally belong to NP. Is the problem 
actually hard for the second level of the polynomial hierarchy?
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