
Theoretical Computer Science 970 (2023) 114061
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The RED-BLUE SEPARATION problem on graphs ✩,✩✩

Subhadeep Ranjan Dev a, Sanjana Dey b,∗,1, Florent Foucaud c, Ralf Klasing d,
Tuomo Lehtilä e,2

a ACM Unit, Indian Statistical Institute, Kolkata, India
b National University of Singapore, Singapore
c Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint Étienne, LIMOS, 63000 Clermont-Ferrand, France
d Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France
e University of Turku, Department of Mathematics and Statistics, Turku, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 November 2022
Received in revised form 11 May 2023
Accepted 29 June 2023
Available online 5 July 2023
Communicated by S. Saurabh

Keywords:
Separating sets
Dominating sets
Identifying codes

We introduce the Red-Blue Separation problem on graphs, where we are given a graph
G = (V , E) whose vertices are colored either red or blue, and we want to select a (small)
subset S ⊆ V , called red-blue separating set, such that for every red-blue pair of vertices,
there is a vertex s ∈ S whose closed neighborhood contains exactly one of the two vertices
of the pair. We study the computational complexity of Red-Blue Separation, in which one
asks whether a given red-blue colored graph has a red-blue separating set of size at most a
given integer. We prove that the problem is NP-complete even for restricted graph classes.
We also show that it is always approximable in polynomial time within a factor of 2 ln n,
where n is the order of the input graph. In contrast, for triangle-free graphs and for graphs
of bounded maximum degree, we show that Red-Blue Separation is solvable in polynomial
time when the size of the smaller color class is bounded by a constant. However, on
general graphs, we show that the problem is W [2]-hard even when parameterized by the
solution size plus the size of the smaller color class. We also consider the problem Max
Red-Blue Separation where the coloring of the graph is not part of the input. Here, given
an input graph G , we want to determine the smallest integer k such that, for every possible
red-blue coloring of G , there is a red-blue separating set of size at most k. We show that
Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum degree, but
can be approximated in polynomial time within a factor of O (ln2 n), where n is the order
of the input graph. We derive tight bounds on the cardinality of an optimal solution of
Max Red-Blue Separation, showing that it can range from logarithmic in the graph order,
up to the order minus one. We also give bounds with respect to related parameters. For
trees however, we prove an upper bound of two-thirds the order.

© 2023 Elsevier B.V. All rights reserved.

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.
✩✩ This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux - SysNum (ANR-10-IDEX-03-02). Ralf
Klasing’s research was partially supported by the ANR project TEMPOGRAL (ANR-22-CE48-0001). Florent Foucaud was partially financed by the IFCAM
project “Applications of graph homomorphisms” (MA/IFCAM/18/39), the ANR project GRALMECO (ANR-21-CE48-0004) and the French government IDEX-
ISITE initiative 16-IDEX-0001 (CAP 20-25). Tuomo Lehtilä’s research was supported by the Finnish Cultural Foundation and by the Academy of Finland grant
338797.

* Corresponding author.
E-mail address: info4.sanjana@gmail.com (S. Dey).

1 Most of the work of this author was done when she was at the Indian Statistical Institute, Kolkata, India.
2 Most of the work of this author was done when he was in Univ Lyon, Université Claude Bernard, CNRS, LIRIS - UMR 5205, F69622, France.
https://doi.org/10.1016/j.tcs.2023.114061
0304-3975/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2023.114061
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114061&domain=pdf
mailto:info4.sanjana@gmail.com
https://doi.org/10.1016/j.tcs.2023.114061

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
1. Introduction

We introduce and study the Red-Blue Separation problem on graphs. Separation problems for discrete structures have
been studied extensively from various perspectives. In the 1960s, Rényi [30] introduced the Separation problem for set
systems (a set system is a collection of sets over a set of vertices), which has been rediscovered by various authors in
different contexts, see e.g. [2,6,22,29].

In this problem, one is given a set system, that is, a collection S of sets over a set V of vertices. One wishes to select
a solution subset C of sets in S to separate every pair of vertices, that is, for every pair of vertices, there is a set of C
that contains one vertex but not the other (in other words, for each vertex, the subset of sets in C containing it is unique).
These problems have numerous applications in areas such as monitoring and fault-detection in networks [32], biological
testing [29], and machine learning [25].

Some special cases, which are extensively studied as well, are as follows. The graph version of Separation (where the
sets of the input set system are the closed neighborhoods of a graph and the set system vertices are the graph vertices),
is called Identifying Code [4,16,17,23]. The geometric version of Separation (where the sets of the input set system are
geometric objects and the set system vertices are points), called Geometric Discriminating Code or Point Separation, is
also extensively studied, see [5,11,18,20].

The Red-Blue Separation problem, which we study here, is a red-blue colored version of Separation, where instead
of all pairs, we only need to separate red vertices from blue vertices. In the general version of the Red-Blue Separation

problem, one is given a set system (V , S) consisting of a set S of subsets of a set V of vertices which are either blue or
red; one wishes to separate every blue from every red vertex using a solution subset C of S (here a set of C separates two
vertices if it contains exactly one of them). Motivated by machine learning applications, a geometric-based special case of
Red-Blue Separation has been studied in the literature, where the vertices of V are points in the plane and the sets of S
are half-planes [7].

A classic topic in algorithms and discrete mathematics is the problem Set Cover over set systems, that generalizes
both Geometric Set Cover problems and the graph problem Dominating Set. Similarly, as explained above, the set system
problem Separation generalizes both the Geometric Discriminating Code problem and the graph problem Identifying Code.
It is thus natural to initiate the study of the graph version of Red-Blue Separation. That is the goal of this paper.

Problem definition In the graph setting, we are given a graph G and a red-blue coloring c : V (G) → {red, blue} of its vertices,
and we want to select a (small) subset S of vertices, called red-blue separating set, such that for every red-blue pair of vertices
r, b (say), there is a vertex from S whose closed neighborhood contains exactly one of r or b. Equivalently, N[r] ∩ S �=
N[b] ∩ S , where N[x] denotes the closed neighborhood of vertex x; the set N[x] ∩ S is called the code of x (with respect to
S), and thus all codes of blue vertices are different from all codes of red vertices. The smallest size of a red-blue separating
set of (G, c) is denoted by sepRB(G, c). Note that if a red and a blue vertex have the same closed neighborhood, they cannot
be separated. Thus, for simplicity, we will consider only twin-free graphs, that is, graphs where no two vertices have the
same closed neighborhood. Also, for a twin-free graph, the vertex set V (G) is always a red-blue separating set as all the
vertices have a unique subset of neighbors. We have the following associated computational problem.

Red-Blue Separation

Input: A red-blue colored twin-free graph (G, c) and an integer k.
Question: Do we have sepRB(G, c) ≤ k?

It is also interesting to study the problem when the red-blue coloring is not part of the input. For a given graph G , we
thus define the parameter max-sepRB(G) which denotes the largest size, over each possible red-blue coloring c of G , of a
smallest red-blue separating set of (G, c). The associated decision problem is stated as follows.

Max Red-Blue Separation

Input: A twin-free graph G and an integer k.
Question: Do we have max-sepRB(G) ≤ k?

In Fig. 1, to note the difference between sepRB and max-sepRB, a path of 6 vertices P6 is shown, where the vertices are
colored red or blue.

Our results We show that Red-Blue Separation is NP-complete even for restricted graph classes such as planar bipartite
sub-cubic graphs, in the setting where the two color classes3 have equal size. We also show that the problem is NP-hard to
approximate within a factor of (1 − ε) ln n for every ε > 0, even for split graphs4 of order n, and when one color class has

3 One class consists of vertices colored red and the other class consists of vertices colored blue.
4 A graph G = (V , E) is called a split graph when the vertices in V can be partitioned into an independent set and a clique.
2

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 1. A path of 6 vertices where (a) sepRB(P6, c) = 1 and (b) max-sepRB(P6) = 3. The square vertices are blue, the round ones are red; the members of
the red-blue separating set are circled. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

size 1. On the other hand, we show that Red-Blue Separation is always approximable in polynomial time within a factor of
2 ln n. In contrast, for triangle-free graphs and for graphs of bounded maximum degree, we prove that Red-Blue Separation

is solvable in polynomial time when the smaller color class is bounded by a constant (using algorithms that are in the
parameterized class XP, with the size of the smaller color class as parameter). However, on general graphs, the problem is
shown to be W [2]-hard even when parameterized by the solution size plus the size of the smaller color class. (This is in
contrast with the geometric version of separating points by half-planes, for which both parameterizations are known to be
fixed-parameter tractable [3,24].)

As the coloring is not specified, max-sepRB(G) is a parameter that is worth studying from a structural viewpoint. We
show that the associated decision problem Max Red-Blue Separation is NP-hard, even for graphs of bounded maximum
degree, but can be approximated in polynomial time within a factor of O (ln2 n).

We also study the possible values for max-sepRB(G). We show the existence of tight bounds on max-sepRB(G) in terms
of n, the order of the graph G , proving that it can range from 	log2 n
 up to n − 1 (both bounds are tight). For trees,
however, we prove bounds involving the number of support vertices (i.e. which have a leaf neighbor), which imply that
max-sepRB(G) ≤ 2n

3 . We also give bounds in terms of the (non-colored) separation number.
An extended abstract of this paper was presented in the conference IWOCA’22 and appeared in the proceedings as [10].

The present paper includes all the proofs that were missing from the conference version.

Related work Red-Blue Separation has been studied in the geometric setting of red and blue points in the Euclidean
plane [3,5,28]. In this problem, one wishes to select a small set of (axis-parallel) lines such that any two red and blue
points lie on the two sides, respectively, of one of the solution lines. The motivation stems from the Discretization prob-
lem for two classes and two features in machine learning, where each point represents a data point whose coordinates
correspond to the values of the two features, and each color is a data class. The problem is useful in a preprocessing step
to transform the continuous features into discrete ones, with the aim of classifying the data points [7,24,25]. This problem
was shown to be NP-hard [7] but 2-approximable [5] and fixed-parameter tractable when parameterized by the size of a
smallest color class [3] and by the solution size [24]. A polynomial time algorithm for a special case was recently given
in [28].

The Separation problem for set systems (also known as Test Cover and Discriminating Code) was introduced in the
1960s [30] and widely studied from a combinatorial point of view [1,2,6,22] as well as from the algorithmic perspective
for the settings of classical, approximation and parameterized algorithms [8,12,29]. The associated graph problem is called
Identifying Code [23] and has also been extensively studied (see [26] for an online bibliography with almost 500 references
as of January 2022); geometric versions of Separation have been studied as well [11,18,20]. The Separation problem is
also closely related to the VC Dimension problem [33] which is very important in the context of machine learning. In VC
Dimension, for a given set system (V , S), one is looking for a (large) set X of vertices that is shattered, i.e., for every possible
subset of X , there is a set of S whose trace on X is the subset. This can be seen as “perfectly separating” a subset of S
using X ; see [4] for more details on this connection.

Another way of transferring the problem definition of the geometric Red-Blue Separation problem to graphs, is the
Multicut problem [9,27], where separation is achieved by disconnecting the graph rather than by dominating the vertices.
Here, one is given a graph G and a set of vertex-pairs, and one wishes to select a minimum-size set S of vertices or edges
of the graph so that the two vertices of every input pair belong to two distinct connected components of the graph G \ S .
If one was given a red-blue colored graph and wished to separate every red vertex from every blue vertex in this way, then
one may set as the input pairs of the Multicut problem, all possible red-blue vertex pairs.

Structure of the paper We start with the algorithmic results on Red-Blue Separation in Section 2. In Subsection 2.1 we
consider the complexity of Red-Blue Separation and in Subsection 2.2 we give algorithms for the problem. We then present
the bounds on max-sepRB in Section 3. In particular, Subsection 3.1 considers general lower bounds, Subsection 3.2 considers
general upper bounds and Subsection 3.3 considers bounds for trees. Then, in Section 4, we give an approximation algorithm
for Max Red-Blue Separation (using a bound from Section 3) and show that it is an NP-hard problem. We conclude in
Section 5.

2. Complexity and algorithms for RED-BLUE SEPARATION

We will prove some algorithmic results for Red-Blue Separation by reducing to or from the following problems.
3

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Set Cover

Input: A set of elements U , a family S of subsets of U and an integer k.
Question: Does there exist a cover C ⊆ S , with |C| ≤ k such that

⋃
C∈C C = U ?

Dominating Set

Input: A graph G = (V , E) and an integer k.
Question: Does there exist a set D ⊆ V of size k with ∀v ∈ V , N[v] ∩ D �= ∅?

Subsection 2.1 contains hardness results on Red-Blue Separation and Subsection 2.2 contains algorithms for the problem.

2.1. Hardness

In this subsection, we show that Red-Blue Separation is an NP-hard problem on subcubic bipartite planar graphs, that
it is hard to approximate, and that the problem is W [2]-hard when parameterized by the solution size.

Theorem 1. Red-Blue Separation cannot be approximated within a factor of (1 − ε) · ln n for any ε > 0 even when the smallest
color class has size 1 and the input is a split graph of order n, unless P = NP. Moreover, Red-Blue Separation is W[2]-hard when
parameterized by the solution size together with the size of the smallest color class, even on split graphs.

Proof. For an instance ((U , S), k) of Set-Cover, we construct in polynomial time an instance ((G, c), k) of Red-Blue
Separation where G is a split graph and one color class has size 1. The statement will follow from the hardness of ap-
proximating Min Set Cover proved in [13], and from the fact that Set Cover is W[2]-hard when parameterized by the
solution size [14].

We create the graph (G, c) by first creating vertices corresponding to all the sets and the elements. We connect a vertex
ui corresponding to an element i ∈ U to a vertex v j corresponding to a set S j ∈ S if ui ∈ S j . We color all these vertices
blue. We add two isolated blue vertices b and b′ . We connect all the vertices of type ui ∈ U to each other. Also, we add a
red vertex r and connect all vertices ui ∈ U to r. Now, note that the vertices U ∪ {r} form a clique whereas the vertices v j
along with b and b′ form an independent set. Thus, our constructed graph (G, c) with the coloring c is a split graph. See
Fig. 2.

Claim 1.1. S has a set cover of size at most k if and only if G has a red-blue separating set of size at most k + 1.

Proof of claim. Let C be a set cover of (U , S) of size k. We construct a red-blue separating set S of (G, c) of size k + 1 as
follows. For each set s j ∈ S selected in the set cover C , we choose the corresponding vertex v j in S . We also include the
vertex r in S . Observe that some blue vertices may have the empty code and the red vertex has itself as the code. Also, the
vertices ui are dominated by the vertices v j and have some unique code different from r. Therefore, S is a separating set
of (G, c) of size k + 1.

Conversely, consider a red-blue separating set S of (G, c) of size k′ = k + 1. Since the vertices in U ∪ {r} form a
clique, choosing any vertex from this set will not separate any two vertices of the clique. Hence, to separate r from the
vertices in U , each vertex in U has to be dominated by a vertex in S . Furthermore, these vertices form a set cover.
Moreover, at least one of vertices b and r is dominated by a vertex. Thus, there exists a set cover of size at most
k′ − 1 = k. (�)

This completes the proof of the theorem. �
Theorem 2. Red-Blue Separation is NP-hard for bipartite planar sub-cubic graphs of girth at least 12 when the color classes have
almost the same size.

Proof. We reduce from Dominating Set, which is NP-hard for bipartite planar sub-cubic graphs with girth at least 12 that
contain some degree-2 vertices [34]. We reduce any instance (G, k) of Dominating Set to an instance ((H, c), k′) of Red-Blue
Separation, where k′ = k + 1 and the number of red and blue vertices in c differ by at most 2.

Construction We create two disjoint copies of G namely H B and H R and color all vertices of H B blue and all vertices of
H R red. Select an arbitrary vertex v of degree 2 in G (we may assume such a vertex exists in G by the reduction of [34])
and look at its corresponding vertices v R ∈ V (H R) and v B ∈ V (H B). We connect v R and v B with the head u1 of the path
u1, u2, u3, u4 as shown in Fig. 3. The tail of the path, i.e. the vertex u4, is colored blue and the remaining three vertices
u1, u2 and u3 are colored red. Our final graph H is the union of H R , H B and the path u1, u2, u3, u4 and the coloring c
as described. Note that if G is a connected bipartite planar sub-cubic graph of girth at least g , then so is H (since v was
selected as a vertex of degree 2). We make the following claim.
4

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 2. Reduction from Set Cover to Red-Blue Separation of Theorem 1. Vertex r is red, the others are blue.

Fig. 3. Reduction from Dominating Set to Red-Blue Separation of Theorem 2. Vertices v B and u4 are blue, the others are red.

Claim 2.1. The instance (G, k) is a YES-instance of Dominating Set if and only if sepRB(H, c) ≤ k′ = k + 1.

Proof of claim. (=⇒) Let D be a dominating set of G of size k. We construct a red-blue separating set S of (H, c) of size
at most k + 1 as follows. For each vertex in D , include its corresponding vertex in H R in S . Also include in S , the vertex
u2 ∈ V (H). Observe that all blue vertices have the empty code and all red vertices have some non-empty code. Therefore S
is a separating set of (H, c) of size at most k + 1.

(⇐=) Consider a red-blue separating set S of (H, c) of size k′ . Let us assume that the red vertices of (H, c) did not get
the empty code. The argument when the blue vertices do not get the empty code is similar. Then, the set S also dominates
V (H R) ∪ {u1, u2, u3}. Since u3 can only be dominated by a vertex x in {u2, u3, u4}, the vertices in V (H R) are dominated by
S ′ = S \ {x}. If S ′ = S ′ ∩ V (HG), then the set D formed by choosing the corresponding vertices of S ′ in G is a dominating
set of size k = k′ − 1. Otherwise, S ′ \ {u1} = S ′ ∩ V (H R), and the set D , formed by choosing the corresponding vertices of
S ′ \ {u1} together with x, in G is a dominating set of G of size at most k = k′ − 1. (�)

This completes the proof of the theorem. �
In the previous reduction, we could choose any class of instances for which Dominating Set is known to be NP-hard.

We could also simply take two copies of the original graph and obtain a coloring with two equal color class sizes (but then
we obtain a disconnected instance). In contrast, in the geometric setting, the problem is fixed-parameter-tractable when
parameterized by the size of the smallest color class [3], and by the solution size [24]. It is also 2-approximable [5].

We can also provide another reduction, as follows.

Theorem 3. Red-Blue Separation is NP-hard even when the input is a subcubic planar bipartite graph of girth at least 12 and the size
of the smallest color class is k + 1.

Proof. We reduce from Dominating Set.
Dominating Set is NP-hard when the input graph is a subcubic planar bipartite graph of girth at least 12 [34]. We reduce

an instance (G, k) of the Dominating Set to an instance ((H, ck+1), k) of Red-Blue Separation where ck+1 is a coloring of H
with the minimum color class being of size at most k + 1.

Construction Without loss of generality let us assume the smaller sized color class to be red. For H we create a copy G H
of G with all its vertices colored blue and an independent set I of size k + 1 all its vertices colored red vertices (see Fig. 4).
We now make the following claim.

Claim 3.1. (G, k) is a YES-instance of Dominating Set if and only if ((H, ck+1), k) is a YES-instance of Red-Blue Separation.

Proof of claim. (=⇒) Let D be a dominating set of G . We construct a red-blue separating set of (H, ck+1) by selecting the
corresponding vertices of D in G H . Since D is a dominating set of G , all blue vertices receive a non-empty code. The red
vertices on the other hand receive the empty code and we have a valid separating set.
5

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 4. Construction from an instance of Dominating Set to an instance of Red-Blue Separation where size of the smaller color class is bounded. In H , the
square vertices are blue, the round ones are red.

Fig. 5. A reduction instance from Red-Blue Separation of (G, c) (where the square vertices are blue, the round ones are red) to Set Cover of (U , S). The
separating set in the colored graph (G, c) and the corresponding set cover in the set system (U , S) has been highlighted.

(⇐=) Let (H, ck+1) have a separating set C of size at most k. Since there are k + 1 independent red vertices, there will
be at least one red vertex which receives the empty code. So, in order for C to be a valid separating set, all blue vertices
must receive some non-empty code. This implies that C ∩ V (G H) is a dominating set of G H of size at most k and which
implies a dominating set of G of size at most k. (�)

This completes the proof. �
2.2. Positive algorithmic results

In this subsection, we design an approximation algorithm for Red-Blue Separationwhich runs in polynomial-time, some
bounds for the problem based on the size of the color classes, and finally show that if the graph is triangle-free or has a
small maximum degree �, then there exists a polynomial-time algorithm if the size of the smaller color class is constrained
by a constant.

We start with a reduction to Set Cover implying an approximation algorithm.

Proposition 4. Red-Blue Separation has a polynomial-time (2 lnn)-factor approximation algorithm, where n is the input graph’s
order.

Proof. We reduce Red-Blue Separation to Set Cover. Let ((G, c), k) be an input instance of Red-Blue Separation. We reduce
it to an instance ((U , S), k) of Set Cover. For each red-blue vertex pair (r, b) in G , create an element in U . For each vertex
v in G create a set in S with elements (r, b) in U such that v is in the closed neighborhood of exactly one of r and b in G .
See Fig. 5. Observe that a set cover C of size k corresponds to a separating set S of size at most k and vice versa. The greedy
algorithm for Set Cover has an approximation factor of ln |U | + 1. Since, in our case |U | ≤ n2/4, the resulting approximation
factor for Red-Blue Separation is at most ln(n2/4) + 1 ≤ 2 ln n. �
Proposition 5. Let (G, c) be a red-blue colored triangle-free and twin-free graph with the two color classes R and B. Then,
sepRB(G, c) ≤ 3 min{|R|, |B|}.

Proof. Without loss of generality, we assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c). First, we add all
red vertices to S . It remains to separate every red vertex from its blue neighbors. If a red vertex v has at least two neighbors,
we add (any) two such neighbors to S . Since G is triangle-free, no blue neighbor of v is in the closed neighborhood of both
these neighbors of v , and thus v is separated from all its neighbors (see vertex v1 in Fig. 6). If v had only one neighbor
w , and it was blue, then we separate w from v by adding one arbitrary neighbor of w (other than v) to S . Since G is
triangle-free, v and w are separated (see vertex v2 in Fig. 6). Thus, we have built a red-blue separating set S of size at most
3|R|. �
6

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 6. Illustration of Proposition 5: here v1 has just one blue neighbor hence w1 is added in S . v2’s neighbors w2 and w3 are also included in S . The
square vertices are blue, the round ones are red.

Fig. 7. Illustration of Proposition 6: the two cases when the vertices v and w are (a) not adjacent and (b) adjacent. The square vertices are blue, the round
ones are red.

Proposition 6. Let (G, c) be a red-blue colored twin-free graph with maximum degree � ≥ 3. Then, sepRB(G, c) ≤ � min{|R|, |B|}.

Proof. Without loss of generality, let us assume |R| ≤ |B|. We construct a red-blue separating set S of (G, c). Let v be any
red vertex. If there is a blue vertex w whose closed neighborhood contains all neighbors of v (w could be a neighbor of v),
we add both v and w to S (see Fig. 7(a)). If v is adjacent to w , since they cannot be twins, there must be a vertex z that
can separate v and w; we add z to S (see Fig. 7(b)). Now, v is separated from every blue vertex in G .

If such a vertex w does not exist, then we add all neighbors of v to S . Now again, v is separated from every vertex of
G . Thus, we have built a red-blue separating set S of size at most �|R|. �

The previous propositions imply that Red-Blue Separation can be solved in XP time for the parameter “size of a smallest
color class” on triangle-free graphs and on graphs of bounded degree (by a brute-force search algorithm). This is in contrast
with the fact that in general graphs, it remains hard even when the smallest color class has size 1 by Theorem 1.

Theorem 7. Red-Blue Separation on graphs whose vertices belong to the color classes R and B can be solved in time O (n3 min{|R|,|B|})
on triangle-free graphs and in time O (n�min{|R|,|B|}) on graphs of maximum degree �.

3. Extremal values and bounds for max-sepRB

We denote by sep(G) the smallest size of a (non-colored) separating set of G , that is, a set that separates all pairs of
vertices. We will use the relation max-sepRB(G) ≤ sep(G), which clearly holds for every twin-free graph G .

Subsection 3.1 contains lower bounds for max-sepRB(G), subsection 3.2 contains general upper bounds and subsection 3.3
gives (almost tight) bounds for trees.

3.1. Lower bounds for general graphs

In this subsection, we give a tight general lower bound for max-sepRB and consider the relationship between sep(G) and
max-sepRB(G).

We can have a large twin-free colored graph with solution size 2 (for example, in a large blue path with a single red
vertex, two vertices suffice). We show that in every twin-free graph, there is always a coloring that requires a large solution.

Theorem 8. For any twin-free graph G of order n ≥ 1 and n /∈ {8, 9, 16, 17}, we have max-sepRB(G) ≥ 	log2(n)
.

Proof. Let G be a twin-free graph of order n with max-sepRB(G) = k. There are 2n different red-blue colorings of G . For
each such coloring c, we have sepRB(G, c) ≤ k. Consider the set of vertex subsets of G which are separating sets of size k
for some red-blue colorings of G . Notice that each red-blue coloring has a separating set of cardinality k. There are at most (n) ≤ nk such sets.
k

7

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Consider such a separating set S and consider the set I(S) of subsets S ′ of S for which there exists a vertex v of G
with N[v] ∩ S = S ′ . Let i S be the number of these subsets: we have i S ≤ 2|S| ≤ 2k . If S is a separating set for (G, c), then
all vertices having the same intersection between their closed neighborhood and S must receive the same color by c. Thus,
there are at most 2i S ≤ 22k

red-blue colorings of G for which S is a separating set. Hence, we have

2n ≤ (n
k

)
22k

, which implies

2n ≤ nk22k
, which implies

n ≤ k log2(n) + 2k

We now claim that this implies that k ≥ log2(n − log2(n) log2(n)). Suppose to the contrary that this is not the case, then
we would obtain:

n < log2(n − log2(n) log2(n)) log2(n) + n − log2(n) log2(n)

n < log2(n) log2(n) + n − log2(n) log2(n)

And thus n < n, a contradiction. Since k is an integer, we actually have k ≥ �log2(n − log2(n) log2(n))�. To conclude,
one can check that whenever n ≥ 70, we have �log2(n − log2(n) log2(n))� ≥ 	log2(n)
. Moreover, if we compute values for
2n − (n

k

)
22k

when 1 ≤ n ≤ 69 and k = 	log2(n)
 − 1, then we observe that this is negative only when n ∈ {8, 9, 16, 17}. Thus,
	log2(n)
 is a lower bound for max-sepRB(G) as long as n /∈ {8, 9, 16, 17}. �

The bound of Theorem 8 is tight for infinitely many values of n.

Proposition 9. For any integers k ≥ 1 and n = 2k, there exists a graph G of order n with max-sepRB(G) = k.

Proof. We build G as follows. Let S = {s1, . . . , sk} be a set of k vertices. Let T be another set of vertices (disjoint from S).
For every subset S ′ of S of size at least 2, we add a vertex v S ′ to T and we join it to all vertices of S ′ and T . The set T
induces a clique. Finally, we add an isolated vertex v∅ to G . To see that max-sepRB(G) ≤ k, notice that S is a separating set
of G (regardless of the coloring).

If k = 1, the coloring with s1 Red and v∅ Blue shows that max-sepRB(G) ≥ 1.
If k = 2, color s1 and s2 Red and v{1,2} and v∅ Blue. To separate v{1,2} from s1 (respectively s2), s2 must belong to any

separating set (respectively s1), which shows that max-sepRB(G) ≥ 2.
If k ≥ 3, color v S Blue and the other vertices Red. For each subset S ′ of S with |S ′| = k − 1, in order to separate v S from

v S ′ , any separating set needs to contain si where {si} = S \ S ′ . This shows that max-sepRB(G) ≥ k. �
We next relate parameter max-sepRB to other graph parameters.

Theorem 10. Let G be a graph on n vertices. Then, sep(G) ≤ min{�log2(n)� · max-sepRB(G), �log2(�(G) + 1)� · max-sepRB(G) +
γ (G)}, where γ (G) is the domination number of G and �(G) its maximum degree.

Proof. Let G be a graph on 2k−1 + 1 ≤ n ≤ 2k vertices for some integer k. We denote each vertex by a different k-length
binary word x1x2 · · · xk where each xi ∈ {0, 1}. Moreover, we give k different red-blue colorings c1, . . . , ck such that vertex
x1x2 · · · xk is red in coloring ci if and only if xi = 0 and blue otherwise. For each i, let Si be an optimal red-blue separating set
of (G, ci). We have |Si | ≤ max-sepRB(G) for each i. Let S = ⋃k

i=1 Si . Now, |S| ≤ k · max-sepRB(G) = �log2(n)� · max-sepRB(G).
We claim that S is a separating set of G . Assume to the contrary that for two vertices x = x1x2 · · · xk and y = y1 y2 · · · yk ,
N[x] ∩ S = N[y] ∩ S . For some i, we have yi �= xi . Thus, in coloring ci , vertices x and y have different colors and hence, there
is a vertex s ∈ ci such that s ∈ N[y]�N[x], a contradiction which proves the first bound.

Let S be an optimal red-blue separating set for such a coloring c and let D be a minimum-size dominating set in G;
S ∪ D is also a red-blue separating set for coloring c. At most �(G) +1 vertices of G may have the same closed neighborhood
in D . Thus, we may again choose �log2(�(G) + 1)� colorings and optimal separating sets for these colorings, each coloring
(roughly) halving the number of vertices having the same vertices in the intersection of separating set and their closed
neighborhoods. Since each of these sets has size at most max-sepRB(G), we get the second bound. �

We do not know whether the previous bound is reached, but as seen next, there are graphs G such that sep(G) =
2 max-sepRB(G).

Proposition 11. Let G = Kk1,...,kt be a complete t-partite graph for t ≥ 2, ki ≥ 5 odd for each i. Then sep(G) = n − t and
max-sepRB(G) = (n − t)/2.

Proof. Let us have t parts G1, . . . , Gt with vertex sets V (Gi) = {vi
1, . . . , v

i
ki
}. Let c be such a coloring in G that sepRB(G, c) =

max-sepRB(G). Observe that S is a separating set in G if and only if |S ∩ V (Gi)| ≥ ki − 1. Indeed, if we have vi , vi /∈ S , then
j h

8

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
N[vi
j] ∩ S = N[vi

h] ∩ S since N(vi
j) = N(vi

h). Moreover, each vertex in S is separated from vertices not in S and each vertex
in V (Gi) is separated from vertices in V (G j). Thus, sep(G) = n − t .

Next we form a red-blue separating set S ′ for coloring c. For each part, we choose to set S ′ every vertex which has
the less common color in that part (however, we choose at least two vertices to S ′ from each part). Observe that |S ′| ≤∑t

i=1
ki−1

2 = (n − t)/2. Moreover as above, we can see that S ′ is a red-blue separating set with the help of fact that if vi
j /∈ S ′

and vi
h /∈ S ′ , then vi

j and vi
h have the same color.

Finally, we show that max-sepRB(G) ≥ (n − t)/2. Observe that if we have u, v ∈ V (Gi) and u, v /∈ S , then N[u] ∩ S =
N[v] ∩ S . Thus, any two vertices u, v ∈ V (Gi) \ S must have the same color. If each part has (ki + 1)/2 red vertices and
(ki − 1)/2 blue vertices, then we require at least

∑t
i=1(k1 − 1)/2 = (n − t)/2 vertices in S . �

3.2. Upper bound for general graphs

In this subsection, we first show that in every twin-free graph we have max-sepRB(G) ≤ n − 1 and then show that this
bound is tight.

We will use the following classic theorem in combinatorics to show that we can always spare one vertex in the solution
of Max Red-Blue Separation.

Theorem 12 (Bondy’s Theorem [2]). Let V be an n-set with a family A = {A1, A2, . . . , An} of n distinct subsets of V . There is an
(n − 1)-subset X of V such that the sets A1 ∩ X, A2 ∩ X, A3 ∩ X, . . . , An ∩ X are still distinct.

Corollary 13. For any twin-free graph G on n vertices, we have max-sepRB(G) ≤ sep(G) ≤ n − 1.

Proof. Regardless of the coloring, by Bondy’s theorem, we can always find a set of size n − 1 that separates all pairs of
vertices. �

This bound is tight for every even n for complements of half-graphs (studied in the context of identifying codes in [16]).

Definition 14 (Half-graph [15]). For any integer k ≥ 1, the half-graph Hk is the bipartite graph on vertex sets {v1, . . . , vk} and
{w1, . . . , wk}, with an edge between vi and w j if and only if i ≤ j.

The complement Hk of Hk thus consists of two cliques {v1, . . . , vk} and {w1, . . . , wk} and with an edge between vi and
w j if and only if i > j.

Proposition 15. For every k ≥ 1, we have max-sepRB(Hk) = 2k − 1.

Proof. The upper bound follows from Corollary 13.
Consider the red-blue coloring c such that vi is Blue whenever i is odd and Red, otherwise. If k is odd, wi is Red

whenever i is odd and Blue, otherwise. If k is even, wi is Blue whenever i is odd and Red, otherwise.
For any integer i between 1 and k − 1, vi and vi+1 have different colors and can only be separated by wi . Likewise,

wi and wi+1 have different colors and can only be separated by vi+1. This shows that {w1, . . . , wk−1} and {v2, . . . , vk}
must belong to any separating set of (Hk, c). Finally, consider w1 and vk . They also have different colors and can only be
separated by either v1 or wk . This shows that we need at least n − 1 vertices in any separating set. �
3.3. Upper bound for trees

In this subsection, we show that a much better upper bound holds for trees. In particular, we offer three general upper
bounds for max-sepRB(T) when T is a tree. Furthermore, we also show that one of our bounds is almost tight for an infinite
family of trees.

Degree-1 vertices are called leaves and the set of leaves of the tree T is L(T). Vertices adjacent to leaves are called
support vertices, and the set of support vertices of T is denoted S(T). We denote �(T) = |L(T)| and s(T) = |S(T)|. The set of
support vertices with exactly i adjacent leaves is denoted Si(T) and the set of leaves adjacent to support vertices in Si(T)

is denoted Li(T). Observe that |L1(T)| = |S1(T)|. Moreover, let L+(T) = L(T) \ L1(T) and S+(T) = S(T) \ S1(T). We denote
the sizes of these four types of sets by si(T), �i(T), s+(T) and �+(T), respectively.

For trees, we can show the following result, which is in contrast with the situation for general graphs (or even split
graphs, as highlighted by Theorem 1).

Theorem 16. Let T be a tree on n ≥ 3 vertices and let c be a coloring with exactly one red (or blue) vertex. We have sepRB(T , c) ≤ 2.

Proof. Let T be a tree on at least three vertices with coloring c such that there is exactly one red vertex v ∈ V (T).
9

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 8. Construction of C1 from C ′
1 where the boxed elements represent members of the set.

Fig. 9. Illustration of various cases for C1 in Claim 17.1.

Let us assume first that v /∈ L(T). Thus, v has at least two neighbors w and u. If we now include w and u in the
separating set S , then v is the only vertex in T which has two adjacent vertices in S and hence, S is a red-blue separating
set in T for coloring c.

On the other hand, if v ∈ L(T), u ∈ N(v) and w ∈ N(u) \{v}, then S = {v, w} is a red-blue separating set in T for coloring
c, and sepRB(T , c) ≤ 2. �

To prove our upper bound for trees, we need Theorems 17 and 18.

Theorem 17. For any tree T of order n ≥ 5, we have max-sepRB(T) ≤ n+s(T)
2 .

Proof. Observe that the claim holds for stars (select the vertices of the smallest color class among the leaves, and at least
two leaves). Thus, we assume that s(T) ≥ 2. Let c be a coloring of T such that max-sepRB(T) = sepRB(T , c).

We build two separating sets C1 and C2; the idea is that one of them is small. We choose a non-leaf vertex x and add
to the first set C ′

1 every vertex at odd distance from x and every leaf. If there is a support vertex u ∈ S1(T) ∩ C ′
1 and an

adjacent leaf v ∈ L1(T) ∩ N(u), we create a separating set C1 from C ′
1 by shifting the vertex away from leaf v to some vertex

w ∈ N(u) \ L(T). We construct in a similar manner sets C ′
2 and C2, except that we add the vertices at even distance from x

to C ′
2 (including x itself) and do the shifting when u ∈ S1(T) has even distance to x. Sets C1 and C2 have been previously

considered in [17, Theorem 6]. See Fig. 8.

Claim 17.1. Both C1 and C2 are separating sets.

Proof of claim. Let us first consider set C1. See Fig. 9 for helpful illustrations of different cases we go through in the following
arguments. Let us first show that each leaf v ∈ L(T) is separated from all other vertices by C1. Let u ∈ N(v) be the adjacent
support vertex. If d(x, v) is odd, then v ∈ C1 and |N(u) ∩ C1| ≥ 2. Hence, v is separated from every other vertex. If d(v, x) is
even and v ∈ L+(T), then v ∈ C1 and |N[u] ∩ C1| ≥ 3. Hence, v is again separated from other vertices. If d(v, x) is even and
10

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 10. Comparison of the sets C ′
1 and C ′

2 where the vertices highlighted in green belong to the sets C ′
1 \ (L(T) ∪ S+(T) ∪ N S3(T)) and C ′

2 \ (L(T) ∪ S+(T) ∪
N S3(T)), respectively.

v ∈ L1(T), then v /∈ C1, u ∈ C1 and |N[u] ∩C1| ≥ 2 due to the shift when we form C1 from C ′
1. If we have N[w] ∩C1 = {u} for

some w �= u and w /∈ L(T), then d(w, x) is even and we have |N[w] ∩ C1| ≥ 2, a contradiction. Thus, any leaf v is separated
from each other vertex.

Let us then consider a vertex w /∈ L(T) with odd distance d(w, x), then w ∈ C1. Moreover, each neighbor u ∈ N(w) has
even distance to x and is either a leaf which is separated from w or has at least two neighbors with odd distances to x and
hence, |C1 ∩ N(u)| ≥ 2 and u is separated from w . Finally, if w /∈ L(T) and d(w, x) is even, then w /∈ C ′

1 and |N(w) ∩ C1| ≥ 2.
Since there are no 3-cycles nor 4-cycles in a tree, w is separated from all other vertices.

The proof that also C2 is a separating set is similar. We only swap evens and odds. Hence, the claim follows. (�)

Let us denote by N S3(T) a smallest set of vertices in T such that for each vertex v ∈ S3(T) which has N(v) ∩ S+(T) = ∅,
we have at least one vertex u ∈ N(v) \ L(T) in N S3(T) (such a set exists since T is not a star).

We assume that out of the two sets C ′
1 and C ′

2, C ′
a (a ∈ {1, 2}) has less vertices among the vertices in V (T) \ (L(T) ∪

S+(T) ∪ N S3(T)). In particular, it contains at most half of those vertices and we have |C ′
a \ (L(T) ∪ S+(T) ∪ N S3(T))| ≤

(n − �(T) − s+(T) − |N S3(T)|)/2. In Fig. 10, a comparison of the sets C ′
1 and C ′

2 is shown. Next, we will construct set C
from C ′

a . Let us start by having each vertex in C ′
a be in C . Let us then, for each support vertex u ∈ S+(T), remove from C

every adjacent leaf w ∈ L+(T) ∩ N(u) such that w is in the more common color class within the vertices in N(u) ∩ L+(T)

in coloring c. We then add some vertices to C as follows. For u ∈ Si(T), i ≥ 4, we add u to C and some leaves so that there
are at least two vertices in N(u) ∩ C . We have at most |L(T) ∩ N[u]|/2 + 1 vertices in C ∩ (N[u] ∩ L(T) ∪ {u}).

For i = 3, we add u and any v ∈ N S3(T) ∩ N(u) \ C , depending on which one already belongs to C . Then, if all leaves in
N(u) have the same color, we add one of them to C . Hence, we have |C ∩ (L3(T) ∪ N S3(T))|/s3(T) ≤ 2.

Finally, for i = 2, if the two leaves have same color and u /∈ C ′
a , we add u and one of the two leaves to C . If the two

leaves have the same color and u ∈ C ′
a , we add a non-leaf neighbor of u to C . If the leaves have different colors, one of

them, say v , has the same color as u. We add u to C and shift the vertex in C in the leaves so that v is in C . We added at
most two vertices to C in this case. Notice that now we have S+(T) ⊆ C .

Each time, we added to C at most half of the considered vertices in N(u), and at most one other additional vertex. After
these changes, we shift some vertices in C away from L1(T) the same way we built Ca from C ′

a . As |C ′
a \ (L(T) ∪ S+(T) ∪

N S3(T))| ≤ (n − �(T) − s+(T) − |N S3(T)|)/2, we get:

|C | ≤ n − �(T) − s+(T) − |N S3(T)|
2

+ �1(T) + �+(T) + |N S3(T)|
2

+ s+(T)

= n + �1(T) + s+(T)

2
= n + s(T)

2
.

Claim 17.2. C is a red-blue separating set for coloring c.

Proof of claim. Since Ca is a separating set and Ca \ C ⊆ L+(T), if two vertices w, v are not separated by C , then they were
separated by a leaf in L+(T) in Ca . Moreover, there exists a support vertex u ∈ S+(T) such that v, w ∈ N[u]. Recall that
S+(T) ⊆ C and hence, u ∈ C . If w and v are both leaves, then they have the same color and do not need to be separated.
In the following, we go through all the other possibilities for w and v .

Assume first that w, v /∈ L(T) and d(w, v) = 1 and let us say, without loss of generality, that d(w, x) is of such parity
that w ∈ C ′

a (and w ∈ C). Notice that we have w = u or v = u in this case. Moreover, since there are no cycles in T , the
parities of d(w, x) and d(v, x) differ. Thus, there exists some vertex b ∈ N(v) \ N[w] such that the parity of d(b, x) equals
to the parity of d(w, x). Thus, b ∈ C ′

a . If b is not a leaf, then b ∈ C and b separates w and v . Thus, b ∈ L(T). However, if
b ∈ L1(T), then b ∈ C and if b ∈ L+(T), then v ∈ S+(T) and there exists a leaf in C adjacent to v separating v and w , a
contradiction. When d(w, v) = 2, neither of w or v are in C since they cannot be separated. Again, we can find some vertex
b in C that will separate them as in the previous case.

Moreover, since there are no cycles in T , the parities of d(w, x) and d(v, x) differ. Thus, there exists some vertex b ∈
N(v) \ N[w] such that the parity of d(b, x) equals to the parity of d(w, x). If b is not a leaf, then b ∈ C and b separates w and
v . Thus, b ∈ L(T). However, if b ∈ L1(T), then b ∈ C and if b ∈ L+(T), then v ∈ S+(T) and there exists a leaf in C adjacent
to v separating v and w , a contradiction. When d(w, v) ≥ 2, we notice that this case cannot occur since v, w ∈ N[u] and at
least one of these two vertices is adjacent to a leaf in N(u).
11

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Finally, we have the case where exactly one of the two vertices is a leaf, let us say v ∈ L(T) and since v ∈ N(u), we have
v ∈ L+(T). Assume first that d(v, w) = 2. Thus, v, w /∈ C . However, then we again have b ∈ C such that b ∈ N(w) \ {u}, either
due to the parity of d(x, b) or because b is a leaf. As the last case we have u = w and v ∈ L+(T) ∩ N(u). If u /∈ C ′

a , then,
by parity, u has an adjacent non-leaf vertex in C since T is not a star. On the other hand, if u ∈ C ′

a , then if u ∈ S2(T) and
the two leaves have the same color, there is again a non-leaf neighbor in C . If u ∈ S2(T) and the two leaves have different
colors, then there is a leaf of the same color, in N(u), as u which is in C . If u ∈ S3(T), then u has a non-leaf neighbor in
N S3(T) ∩ C or in S+(T) ∩ C . If u ∈ Si(T) for i ≥ 4, then u has at least two adjacent leaves which are in C . Hence, w and v
are either separated or they have the same color. (�)

This completes the proof of the theorem. �
The upper bound of Theorem 17 is tight. Consider, for example, a path on eight vertices. Also, the trees presented in

Proposition 20 are within 1/2 from this upper bound. In the following theorem, we offer another upper bound for trees
which is useful when the number of support vertices is large. The following theorem has been previously considered for
total dominating identifying codes (under the term differentiating-total dominating set) in [21].

Theorem 18. For any tree T of order n ≥ 5, sep(T) ≤ n − s(T).

Proof. Let us choose for each support vertex u ∈ S(T) exactly one adjacent leaf v ∈ L(T) and say that these vertices form
the set S ′ . Next, we form the separating set S = V (T) \ S ′ . Notice that |S| = n − s(T). In the following, we show that S is a
separating set in T .

Observe that if v /∈ S , then v is a leaf and no support vertex has two adjacent leaves which do not belong to S . Thus,
vertices which do not belong to S are pairwise separated. Since S ′ ⊆ L(T), T [S] is a connected induced subgraph of T .
Moreover, as n ≥ 5, we have |N[w] ∩ S| ≥ 2 for each vertex w ∈ S . Thus, vertices in S are separated from vertices which are
not in S . Finally, any two vertices w, w ′ ∈ S are separated since |V (T [S])| ≥ 3; hence, each closed neighborhood is unique
in T [S]. �

The following corollary is a direct consequence of Theorems 17 and 18. Indeed, we have max-sepRB(T) ≤ min{n −
s(T), (n + s(T))/2}.

Corollary 19. For any tree T of order n ≥ 5, we have max-sepRB(T) ≤ 2n
3 .

We next show that Corollary 19 (and Theorem 17) is not far from tight.

Proposition 20. For any k ≥ 1, there is a tree T of order n = 5k + 1 with max-sepRB(T) = 3(n−1)
5 = n+s(T)−1

2 .

Proof. Consider the tree T formed by taking k disjoint copies P 1, . . . , Pk of a path of order 6 and identifying one endpoint
of each path into one single vertex x. We consider the coloring that colors x red, and all other vertices are colored red-blue-
red... following the bipartition of the tree. Let vi

1, . . . , v
i
5 be the vertices of P i distinct from x, where x is adjacent to vi

1.
In order to separate vi

5 from vi
4, we need vi

3 in any red-blue separating set. To separate vi
4 from vi

3, we need either vi
2 or

vi
5. To separate vi

3 from vi
2, we need either vi

1 or vi
4. Thus, we need at least three vertices of P i in any red-blue separating

set, which shows that max-sepRB(T) ≥ 3k. To see that max-sepRB(T) ≤ 3k, one can see that the set consisting of all vertices
vi

1, v
i
3, v

i
5 separates all pairs of vertices. Finally, since s(T) = k and n − 1 = 5k, we get that n+s(T)−1

2 = 3k = 3(n−1)
5 . �

4. Complexity and approximation for MAX RED-BLUE SEPARATION

We first design an approximation algorithm for Max Red-Blue Separation using Theorem 10 and an approximation
algorithm from [19]. After that we show that Max Red-Blue Separation is NP-hard.

Theorem 21. Max Red-Blue Separation can be approximated within a factor of O (ln2 n) on graphs of order n in polynomial time.

Proof. Let A be a polynomial-time (2 ln n + 1)-approximation algorithm for the Separation problem [19]. For any graph G ,
let S(G) denote the separating set returned by A on the input graph G . Using Theorem 10, we have

|S(G)| ≤ (2 ln n + 1) · sep(G)

≤ (2 ln n + 1) · �log2 n� · max-sepRB(G)

Hence, algorithm A is a polynomial-time O (ln2 n)-approximation algorithm for Max Red-Blue Separation. �

12

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 11. A domination gadget on vertices v1 and v2 and its schematic representation.

The problem Max Red-Blue Separation does not seem to be naturally in the class NP (it is in the second level of the
polynomial hierarchy). Nevertheless, we show that it is NP-hard.

Theorem 22. Max Red-Blue Separation is NP-hard even for graphs of maximum degree 12.

Proof. We reduce from the following NP-hard version of 3-SAT [31].

3-SAT-2l

Input: A set of m clauses C = {c1, . . . , cm} each with at most three literals, over n Boolean variables X = {x1, . . . , xn}, and
each literal appears at most twice.
Question: Is there an assignment of X where each clause has a true literal?

Construction Given an instance σ of 3-SAT-2l with m clauses and n variables, we create an instance (H, k) of Max Red-Blue
Separation, where k = 4m + 9n. We first explain the construction of a domination gadget.

A domination gadget on vertices v1 and v2, denoted by H(v1, v2), consists of 16 vertices including v1 and v2. This gadget
will ensure that v1, v2 are dominated by the local solution of the gadget (and thus, separated from the rest of the graph).
See Fig. 11 for reference. The vertices v1 and v2 may be connected to each other or to some other vertices outside the
domination gadget as represented by the dashed edges incident to them. Both v1 and v2 are also connected to the vertices
u1 to u4 as shown in the figure. Next we have a clique K10 consisting of the vertices {p1, p2, . . . , p6, q1, q2, . . . , q4}. Every
vertex pi is connected to a unique pair of vertices from {u1, u2, u3, u4} and every vertex q j is connected to a unique triple
of vertices from {u1, u2, u3, u4}. For example in the figure we have p4 connected with the pair of vertices u2 and u3 and q3
connected with the triplet of vertices u1, u3 and u4.

The graph H consists of one variable gadget per variable and one clause gadget per clause. The variable gadget for a
variable x consists of the graph H(xa, xb) and H(x, x) with additional edges (xa, xb), (xa, x) and (xa, x). The clause gadget for
a clause C = (x ∨ y ∨ z) (say) is H(ca, cb), where ca is connected to the vertices cb, x, y and z. See Fig. 12 for an illustration.
Observe that since each literal can appear at most twice therefore, the maximum degree of H is 12, determined by the qi ’s
in each domination gadget.

Let us illustrate an example instance for the reduction (see Fig. 13). In this example, we have the formula as (w ∨ x ∨
y) ∧ (x ∨ y ∨ z). Thus, we have two clauses c1 = w ∨ x ∨ y and c2 = x ∨ y ∨ z and four variables w, x, y and z. Corresponding
to each clause and each variable, we have a clause gadget and a variable gadget respectively (as described earlier). The
domination gadget attached with both the clause and variable gadgets is shown below to increase readability. We have
shown one possible coloring in this instance with a large solution size.

Claim 22.1. max-sepRB(H) = sep(H).

Proof of claim. It is clear that max-sepRB(H) ≤ sep(H), since any set that separates all pairs of vertices also separates all
red-blue pairs, for any possible coloring.

We will now prove that sep(H) ≤ max-sepRB(H) by providing a specific coloring, and showing that for this coloring, any
(optimal) solution also separates all pairs of vertices.

Consider a coloring c of H , where for each domination gadget H(v1, v2), all pi ’s are colored blue and all q j ’s are colored
red, or vice versa. For each variable x, the vertices xa and xb are given different colors. For each clause C , the vertices ca

and cb are also colored differently. The rest of the vertices are colored arbitrarily.
13

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 12. Variable and clause gadgets.

Consider a (minimum) red-blue separating set S of H with respect to the coloring c. For each domination gadget
H(v1, v2), the vertices u1 to u4 must be included in S . This is because for each uh ∈ H(v1, v2), there exist pi, q j ∈ H(v1, v2)

such that N[pi]�N[q j] = {uh}, where � denotes the symmetric difference between two sets. Since pi and q j are given dif-
ferent colors, uh is the only vertex which separates them and has to be included in S .

Observe that, for each variable x, the vertices u1 to u4 of the domination gadget H(xa, xb) separate the vertices xa and
xb from the rest of H . Therefore, they only need to be separated between themselves. The same reasoning holds for the
vertices x and x, for each variable x, as well as for the vertices ca and cb , for each clause C .

For each variable x, at least one of the vertices x or x must be included in S in order to separate the vertices xa

and xb as they are colored differently. This also separates vertices x and x, if they are assigned different colors. For each
clause C = (x ∨ y ∨ z) (say), at least one of the vertices x, y or z needs to be included in S (if not already included) in
order to separate the vertices ca and cb as they are also colored differently. The set S must contain a subset of vertices
from the set {x, x | x ∈ X} which separates the vertices ya and yb for all variables y, and the vertices ca and cb for all
clauses C .

Since the size of set S is minimum, it is a minimum red-blue separating set of H with respect to the coloring c. We will
now show that S is also a separating set of (uncolored) H . Observe that for each domination gadget H(v1, v2), the vertices
from u1 to u4 (which are in S) separate all (uncolored) pi ’s and q j ’s from the rest of the vertices in H . This is because the
intersection of the set {u1, u2, u3, u4} and the closed neighborhood of each pi or q j is unique. The vertices u1 to u4 are also
separated from the remaining vertices.

Also, since the vertices u1 to u4 are included in S for all domination gadgets of H , therefore going by the previ-
ous explanation we only need to separate the vertex pairs (xa, xb), (x, x) and (ca, cb). But the construction of S is such
that all these pairs of vertices are already separated by S . Therefore S is also a separating set of H . This proves our
claim. (�)

Claim 22.2. If σ is satisfiable, sep(H) = k and otherwise, sep(H) > k, where k = 4m + 9n.

Proof of claim. Consider a separating set S of H . For each domination gadget H(v1, v2), the vertices u1 to u4 must be
included in S as these are the only vertices which can separate all the pi ’s and q j ’s of H(v1, v2) and themselves. Also,
for each variable x, one of the vertices x or x must also be included in S in order to separate xa and xb . Thus, a total of
4(m + 2n) + n = 4m + 9n vertices are needed in S . This implies that sep(H) ≥ k = 4m + 9n.
14

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
Fig. 13. An example to show the reduction from 3-SAT-2l to Max Red-Blue Separation. The square vertices are blue, the round ones are red.

If σ is satisfiable, then with respect to a satisfying assignment, we include for each variable x, the vertex x if it is
assigned true, or the vertex x, if it is assigned false. These vertices also separate ca and cb for all clauses C . Therefore, S is
a separating set of H and sep(H) = k.

On the contrary, if σ is not satisfiable, then S is not a separating set of H as there exists some clause C for which ca

and cb are not separated. Since all vertices in S are necessary to be included, any separating set of H is a strict superset of
S , and sep(H) > k. (�)

From Claim 22.1 and Claim 22.2 it follows that σ is satisfiable if and only if max-sepRB(H) ≤ k = 4m + 9n. Since the
maximum degree of H is 12 and 3-SAT-2l is NP-hard, Max Red-Blue Separation is also NP-hard for graphs with maximum
degree 12. �
5. Conclusion

We have initiated the study of Red-Blue Separation and Max Red-Blue Separation on graphs, problems which seem nat-
ural given the interest that their geometric version has gathered, and the popularity of its “non-colored” variants Identifying
Code on graphs or Test Cover on set systems.

When the coloring is part of the input, the solution size of Red-Blue Separation can be as small as 2, even for large
instances; however, we have seen that this is not possible for Max Red-Blue Separation since max-sepRB(G) ≥ 	log2(n)

15

S.R. Dev, S. Dey, F. Foucaud et al. Theoretical Computer Science 970 (2023) 114061
for twin-free graphs of order n. Moreover, max-sepRB(G) can be as large as n − 1 in general graphs, yet, on trees, it is at
most 2n/3 (we do not know if this is tight, or if the upper bound of 3n/5, which would be best possible, holds). However,
the upper bound of Theorem 17, which is based on the number of support vertices, is tight for trees. It would also be
interesting to see if other interesting upper or lower bounds can be shown for other graph classes.

We have shown that sep(G) ≤ �log2(n)� · max-sepRB(G). Is it true that sep(G) ≤ 2 max-sepRB(G)? As we have seen, this
would be tight.

We have also shown that Max Red-Blue Separation is NP-hard, yet it does not naturally belong to NP. Is the problem
actually hard for the second level of the polynomial hierarchy?

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Florent Foucaud reports financial support was provided by French National Research Agency.

Data availability

No data was used for the research described in the article.

References

[1] B. Bollobás, A.D. Scott, On separating systems, Eur. J. Comb. 28 (2007) 1068–1071.
[2] J.A. Bondy, Induced subsets, J. Comb. Theory, Ser. B 12 (2) (1972) 201–202.
[3] É. Bonnet, P. Giannopoulos, M. Lampis, On the parameterized complexity of red-blue points separation, J. Comput. Geom. 10 (1) (2019) 181–206.
[4] N. Bousquet, A. Lagoutte, Z. Li, A. Parreau, S. Thomassé, Identifying codes in hereditary classes of graphs and VC-dimension, SIAM J. Discrete Math.

29 (4) (2015) 2047–2064.
[5] G. Cǎlinescu, A. Dumitrescu, H.J. Karloff, P. Wan, Separating points by axis-parallel lines, Int. J. Comput. Geom. Appl. 15 (6) (2005) 575–590.
[6] E. Charbit, I. Charon, G. Cohen, O. Hudry, A. Lobstein, Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity, Adv. Math.

Commun. 2 (4) (2008) 403–420.
[7] B.S. Chlebus, S.H. Nguyen, On finding optimal discretizations for two attributes, in: Proceedings of the 1st International Conference on Rough Sets and

Current Trends in Computing (RSCTC 1998), in: Lecture Notes in Computer Science, vol. 1424, 1998, pp. 537–544.
[8] R. Crowston, G. Gutin, M. Jones, G. Muciaccia, A. Yeo, Parameterizations of test cover with bounded test sizes, Algorithmica 74 (1) (2016) 367–384.
[9] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (4) (1994)

864–894.
[10] S.R. Dev, S. Dey, F. Foucaud, R. Klasing, T. Lehtilä, The Red-Blue Separation problem on graphs, in: Proceedings of the 33rd International Workshop on

Combinatorial Algorithms (IWOCA 2022), in: Lecture Notes in Computer Science, vol. 13270, 2022, pp. 285–298.
[11] S. Dey, F. Foucaud, S.C. Nandy, A. Sen, Discriminating codes in geometric setups, in: Proceedings of the 31st International Symposium on Algorithms

and Computation (ISAAC 2020), in: Leibniz International Proceedings in Informatics, vol. 181, 2020, 24.
[12] K.M.J. De Bontridder, B.V. Halldórsson, M.M. Halldórsson, C.A.J. Hurkens, J.K. Lenstra, R. Ravi, L. Stougie, Approximation algorithms for the test cover

problem, Math. Program., Ser. B 98 (2003) 477–491.
[13] I. Dinur, D. Steurer, Analytical approach to parallel repetition, ACM Symp. Theory Comput. 46 (2014) 624–633.
[14] R.G. Downey, M.R. Fellows, Parameterized Complexity, Springer Verlag, 1999.
[15] P. Erdős, Some combinatorial, geometric and set theoretic problems in measure theory, in: Measure Theory Oberwolfach 1983, Springer, 1984,

pp. 321–327.
[16] F. Foucaud, E. Guerrini, M. Kovše, R. Naserasr, A. Parreau, P. Valicov, Extremal graphs for the identifying code problem, Eur. J. Comb. 32 (4) (2011)

628–638.
[17] F. Foucaud, T. Lehtilä, Revisiting and improving upper bounds for identifying codes, SIAM J. Discrete Math. 36 (4) (2022) 2619–2634.
[18] V. Gledel, A. Parreau, Identification of points using disks, Discrete Math. 342 (2019) 256–269.
[19] S. Gravier, R. Klasing, J. Moncel, Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs, Algo-

rithmic Oper. Res. 3 (1) (2008) 43–50.
[20] S. Har-Peled, M. Jones, On separating points by lines, Discrete Comput. Geom. 63 (2020) 705–730.
[21] T.W. Haynes, M.A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (8) (2006) 1293–1300.
[22] M.A. Henning, A. Yeo, Distinguishing-transversal in hypergraphs and identifying open codes in cubic graphs, Graphs Comb. 30 (4) (2014) 909–932.
[23] M.G. Karpovsky, K. Chakrabarty, L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inf. Theory 44 (1998) 599–611.
[24] S. Kratsch, T. Masařík, I. Muzi, M. Pilipczuk, M. Sorge, Optimal discretization is fixed-parameter tractable, in: Proceedings of the 32nd ACM-SIAM

Symposium on Discrete Algorithms (SODA 2021), 2021, pp. 1702–1719.
[25] J. Kujala, T. Elomaa, Improved algorithms for univariate discretization of continuous features, in: Proceedings of the 11th European Conference on

Principles and Practice of Knowledge Discovery in Database (PKDD 2007), in: Lecture Notes in Computer Science, vol. 4702, 2007, pp. 188–199.
[26] A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography, https://www.lri .fr /~lobstein /

debutBIBidetlocdom .pdf.
[27] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci. 351 (3) (2006) 394–406.
[28] N. Misra, H. Mittal, A. Sethia, Red-blue point separation for points on a circle, in: Proceedings of the 32nd Canadian Conference on Computational

Geometry (CCCG 2020), 2020, pp. 266–272.
[29] B.M.E. Moret, H.D. Shapiro, On minimizing a set of tests, SIAM J. Sci. Stat. Comput. 6 (4) (1985) 983–1003.
[30] A. Rényi, On random generating elements of a finite Boolean algebra, Acta Sci. Math. 22 (1961) 75–81.
[31] C.A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math. 8 (1) (1984) 85–89.
[32] R. Ungrangsi, A. Trachtenberg, D. Starobinski, An implementation of indoor location detection systems based on identifying codes, in: Proceedings of

Intelligence in Communication Systems, INTELLCOMM 2004, in: Lecture Notes in Computer Science, vol. 3283, 2004, pp. 175–189.
[33] V.N. Vapnik, A.Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (2) (1971)

264–280.
[34] I.E. Zvervich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (3) (1995) 375–395.
16

http://refhub.elsevier.com/S0304-3975(23)00374-2/bibD637C03554D7DFDA6737C43E5320189Cs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib79131CD95F2A0E923308D351A07334DEs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib98546C505C5D8E5108314BB2822BFD27s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibE43F8906C9B57A1159B427DBF366BBA5s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibE43F8906C9B57A1159B427DBF366BBA5s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib0E336EBB1642751F6D426AD91E1F5F1Es1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib697EAD7A4B2DACA2461EFA5E6A0BBC42s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib697EAD7A4B2DACA2461EFA5E6A0BBC42s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib433738CF1FEC7DFCAA1A5212FF15F346s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib433738CF1FEC7DFCAA1A5212FF15F346s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib969C659ED507A8419497761D3E773B3Es1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibEF64BA7F947804628C9BD92745F03237s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibEF64BA7F947804628C9BD92745F03237s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibED319B360B5A488EA99249EF10D8B522s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibED319B360B5A488EA99249EF10D8B522s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBEADE4B736DFC2C4ED3AA9978A865849s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBEADE4B736DFC2C4ED3AA9978A865849s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib25CE55958AD33FB094639B9D1FC38706s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib25CE55958AD33FB094639B9D1FC38706s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibCA56B44F79A4C8FCA120D4CE01A45E3Ds1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibF95768EF3F002118C8C50514467DB5ABs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib5430BC2AF99B4BEE0DF5C739B960ED69s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib5430BC2AF99B4BEE0DF5C739B960ED69s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBF34D2151E64F5AC5231EC9BFDBDE9FDs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBF34D2151E64F5AC5231EC9BFDBDE9FDs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBB61ED1AC488F1A07DE590285FF08C2As1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibAAFEB5D6FA4ABFA078D175A7785F0CD8s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibA99F880932A683FAC3AE0FE47CF8A65As1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibA99F880932A683FAC3AE0FE47CF8A65As1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib78F8E075D83E3514C114B068C92EE228s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib55985F9D5DF67F86B81A7C205701B0BCs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib6F14CD2B0B8D46821F1F74616843FD49s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibBDEBF53DAB024401FD6F0DF1F0D53C72s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib829750A393B922D4A2A0BCD5225D05CDs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib829750A393B922D4A2A0BCD5225D05CDs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibC4D8F534E68015908155830C1A99E99Ds1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibC4D8F534E68015908155830C1A99E99Ds1
https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib56BDD1E199A78FEDE1F9B526122312ACs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib50802A2022390AE264AFE1269F117DF5s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib50802A2022390AE264AFE1269F117DF5s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bibA89B537E54C7C0CF8C415A1D129CE19Bs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib55EAE43A90AA3C19B060F889ADD56CEDs1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib50276A6B6E85512B182BF6B0FCF91865s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib2ACABC4E094108686EB165D46B9E2267s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib2ACABC4E094108686EB165D46B9E2267s1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib5CECDBF8C2AEB6042BE44ECC7435480Ds1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib5CECDBF8C2AEB6042BE44ECC7435480Ds1
http://refhub.elsevier.com/S0304-3975(23)00374-2/bib89B350C9EC612EB4EDB9DA3D2F91E691s1

	The RED-BLUE SEPARATION problem on graphs
	1 Introduction
	2 Complexity and algorithms for RED-BLUE SEPARATION
	2.1 Hardness
	2.2 Positive algorithmic results

	3 Extremal values and bounds for max-sepRB
	3.1 Lower bounds for general graphs
	3.2 Upper bound for general graphs
	3.3 Upper bound for trees

	4 Complexity and approximation for MAX RED-BLUE SEPARATION
	5 Conclusion
	Declaration of competing interest
	Data availability
	References

