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ON GRAPHS COVERABLE BY \bfitk SHORTEST PATHS\ast 

MA\"EL DUMAS\dagger , FLORENT FOUCAUD\ddagger , ANTHONY PEREZ\dagger , AND IOAN TODINCA\dagger 

Abstract. We show that if the edges or vertices of an undirected graph G can be covered by
k shortest paths, then the pathwidth of G is upper-bounded by a single-exponential function of k.
As a corollary, we prove that the problem Isometric Path Cover with Terminals (which, given a
graph G and a set of k pairs of vertices called terminals, asks whether G can be covered by k shortest
paths, each joining a pair of terminals) is FPT with respect to the number of terminals. The same
holds for the similar problem Strong Geodetic Set with Terminals (which, given a graph G and
a set of k terminals, asks whether there exist

\bigl( k
2

\bigr) 
shortest paths covering G, each joining a distinct

pair of terminals). Moreover, this implies that the related problems Isometric Path Cover and
Strong Geodetic Set (defined similarly but where the set of terminals is not part of the input) are
in XP with respect to parameter k.

Key words. covering problems, shortest paths, graph theory, parameterized algorithms
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1. Introduction. Path problems such as Hamiltonian Path are among the
most fundamental problems in the field of algorithms. Hamiltonian Path can be
generalized as the covering problem Path Cover [2], where one asks to cover the
vertices of an input graph using a prescribed number of paths. The packing variant is
Disjoint Paths where, given a set of k pairs of terminal vertices of a graph G, one
asks whether there are k vertex-disjoint paths in G, each joining two paired terminals.
Disjoint Paths is a fundamental problem and a precursor to the field of parameter-
ized complexity due to the celebrated fixed-parameter tractable algorithm devised by
Robertson and Seymour [25] for the parameter ``number of paths"". We recall that in
the field of parameterized algorithms and complexity, one studies parameterized prob-
lems, whose input I comes together with a parameter k. A parameterized problem
is said to be FPT (fixed-parameter tractable) if it can be solved in time f(k) \cdot | I| O(1)

for some computable function f . If the problem can be solved in time O(| I| f(k)), it
belongs to class XP ; see, e.g., [8] for more details.

In this paper, we will not consider arbitrary paths, but shortest paths, which
are fundamental for many applications. In the problem Disjoint Shortest Paths,
given a graph G and k pairs of terminals, one asks whether G contains k vertex-
disjoint shortest paths pairwise connecting the k pairs of terminals. This problem
was introduced in [13] and recently shown to be polynomial-time solvable for every
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1841

fixed k by an XP algorithm [5, 20]. The problem Isometric Path Cover with
Terminals, which we define as follows, is the covering counterpart of Disjoint
Shortest Paths.

Isometric Path Cover with Terminals

Input: A graph G and k pairs of vertices (s1, t1), . . . , (sk, tk) called terminals.
Question: Does there exist a set of k shortest paths, the ith path being an
si-ti shortest path, such that each vertex of G belongs to at least one of the
paths?

The name Isometric Path Cover with Terminals comes from the related
Isometric Path Cover problem where the terminals are not part of the input,
which was introduced in [15] in the context of the Cops and Robbers game on graphs
(see also [1]).

Isometric Path Cover

Input: A graph G and an integer k.
Question: Does there exist a set of k shortest paths such that each vertex of
G belongs to at least one of the paths?

Closely related variants of Isometric Path Cover with Terminals and Iso-
metric Path Cover have been studied, in which there are only k terminals, and
one asks to find

\bigl( 
k
2

\bigr) 
shortest paths joining each pair of terminals. The version without

terminals has been called Strong Geodetic Set in the literature; we call the ver-
sion with terminals Strong Geodetic Set with Terminals. It was first studied
(independently) in [9, 10]; see also [19].

Strong Geodetic Set with Terminals

Input: A graph G and a set of k vertices of G called terminals.
Question: Does there exist a set of

\bigl( 
k
2

\bigr) 
shortest paths, each path joining a

distinct pair of terminals, such that each vertex of G belongs to at least one
of the paths?

The variant where the terminals are not given in the input was defined in [4] as
follows.

Strong Geodetic Set

Input: A graph G and an integer k.
Question: Does there exist a set of k terminals and a set of

\bigl( 
k
2

\bigr) 
shortest

paths, each path joining a distinct pair of terminals, such that each vertex of
G belongs to at least one of the paths?

The complexity of these problems has been studied in the literature. It was shown
in [6] that Isometric Path Cover is NP-complete, even for chordal graphs, a class
for which the authors also provide a constant-factor approximation algorithm w.r.t.
the number of paths. For general graphs, it was shown in [26] that the problem can be
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1842 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

approximated in polynomial time within a factor of O(logd), where d is the diameter
of the input graph. It was proven to be polynomial-time solvable on block graphs
[24]. It is shown in [9] that Strong Geodetic Set with Terminals is NP-hard.
In [10], it is shown that this holds even for bipartite graphs of maximum degree 4 or
diameter 6; however, Strong Geodetic Set with Terminals is polynomial-time
solvable on split graphs, graphs of diameter 2, block graphs, and cactus graphs. We
prove here (cf. Proposition 5.1) that Isometric Path Cover with Terminals is
also NP-complete.

Finally, Strong Geodetic Set is known to be NP-hard [4], even for bipartite
graphs, chordal graphs, graphs of diameter 2 and cobipartite graphs [10] as well as
for subcubic graphs of arbitrary girth [9]. However, it is polynomial-time solvable on
outerplanar graphs [23], cactus graphs, block graphs, and threshold graphs [10].

All of these problems can also be studied in their edge-covering version, where one
requires to cover all edges of the input graph by the corresponding shortest paths. For
instance, the Strong Edge Geodetic Set problem is studied in [22]. The version of
Isometric Path Cover where the solution paths are required to be vertex-disjoint
has also been studied under the names of Isometric Path Partition [21] and
Shortest Path Partition [14].

Our results. Our main combinatorial theorems are as follows (see section 2 for
the definition of pathwidth).

Theorem 1.1. Let G be a graph whose edge set can be covered by at most k
shortest paths. Then the pathwidth of G is O(3k).

Theorem 1.2. Let G be a graph whose vertex set can be covered by at most k
shortest paths. Then the pathwidth of G is O(k \cdot 3k).

We actually show that in such a graph G, given an arbitrary vertex a and an
integer D, the number of vertices at distance exactly D from a is upper-bounded by a
function of k, and the bound does not depend on the size of the input graph. It follows
that a very simple linear-time algorithm based on a breadth-first search provides
a path decomposition whose width is upper-bounded by twice the aforementioned
function of k. The complexity of the algorithm computing the path decomposition
does not depend on k.

Besides the combinatorial bounds, we employ the celebrated theorem of Cour-
celle [7], stating that problems expressible in Monadic Second-Order Logic (MSOL2)
can be solved in linear time for graphs of bounded treewidth (and, thus, of bounded
pathwidth). More precisely, we reduce the problem Isometric Path Cover with
Terminals to an optimization problem expressible in MSOL2. The result can also be
obtained by dynamic programming but the algorithm would be tedious and not par-
ticularly efficient, therefore, we prefer the general logic-based framework for further
extensions. The running time is linear in n, the number of vertices of the graph, but
superexponential in the parameter k. Together with Theorem 1.2, this implies the
following.

Theorem 1.3. Isometric Path Cover with Terminals and Strong
Geodetic Set with Terminals are FPT when parameterized by the number of
terminals.

Corollary 1.4. Isometric Path Cover and Strong Geodetic Set are in
XP when parameterized by the number of paths, respectively terminals.

Thanks to the flexibility of MSOL2 and to Theorem 1.1, our algorithmic results
easily extend to the edge-covering versions of our problems, and to variants where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1843

we require the paths to be edge-disjoint, or vertex-disjoint like Isometric Path
Partition, studied in [14, 21]. The second part of Theorem 1.3 answers positively a
question asked in [19].

Outline. After some preliminaries in section 2, we prove Theorems 1.1 and 1.2
in sections 3 and 4, respectively. More specifically, section 3 provides the upper
bound on the pathwidth of graphs whose edges are coverable by k shortest paths,
then the tools are extended to vertex-coverings in the next section. Algorithmic
consequences (Theorem 1.3) are derived in section 5, and we conclude with some open
questions.

2. Preliminaries and notations.
Paths and concatenation operators \oplus and \odot . We refer to [11] for usual nota-

tions on graphs. In this paper we only consider undirected, unweighted graphs. For
simplicity, we assume that our input graph G = (V,E) is connected, though all our
combinatorial and algorithmic results extend to nonconnected graphs. As usual N(x)
denotes the neighborhood of vertex x.

A path P of graph G = (V,E) is a sequence of distinct vertices (x1, . . . , xl) such
that for each i,1 \leq i \leq l  - 1, \{ xi, xi+1\} is an edge of the graph. We also say that P
is an x1-xl path. Note that our paths are simple as they do not use twice the same
vertex. We denote by V (P ) the vertices of path P , and by E(P ) its edges. Given two
vertices x, y \in V (P ), we denote by P [x, y] the subpath of P between x and y. Let | P | 
denote the length of path P , that is, its number of edges. The distance between two
vertices a and b in G is denoted dist(a, b) and corresponds to the length of a shortest
a-b path.

Throughout this paper, we will construct paths by concatenation operations. It
is convenient to think of our paths as directed: when we speak of an a-b path, we
think of it as being directed from a to b.

Given two vertex disjoint paths \nu = (x1, . . . , xl) and \eta = (y1, . . . , yt) of G such
that \{ xl, y1\} is an edge of G, we define the concatenation operator \oplus whose result is
\nu \oplus \eta = (x1, . . . , xl, y1, . . . , yt). In particular, | \nu \oplus \eta | = | \nu | + | \eta | + 1.

We define similarly the glueing operator \odot between two paths \nu = (x1, . . . , xl) and
\eta = (xl, y1, . . . , yt) with V (\nu ) \cap V (\mu ) = \{ xl\} by \nu \odot \eta = (x1, . . . , xl, y1, . . . , yt). Note
that in this case | \nu \odot \eta | = | \nu | + | \eta | .

Path decompositions through breadth-first search. A path decomposition of G =
(V,E) is a sequence \scrP = (X1,X2, . . . ,Xq) of vertex subsets of G, called bags, such
that for every edge \{ x, y\} \in E there is at least one bag containing both endpoints,
and for every vertex x \in V , the bags containing x form a continuous subsequence of
\scrP . The width of \scrP is max\{ | Xi|  - 1 | 1\leq i\leq q\} , and the pathwidth pw(G) of G is the
minimum width over all path decompositions of G.

The treewidth tw(G) of graph G is defined similarly (see, e.g., [11]), using a so-
called tree decomposition; for our purpose, we only need to know that for any graph
G, tw(G)\leq pw(G) in particular, any path decomposition is also a tree decomposition
of the same width. We also need the following folklore lemma on path decompositions.

Lemma 2.1. Let G = (V,E) be a graph, a vertex a \in V , and let K be an upper
bound on the number of vertices of G at distance exactly D from a for any integer D.

Then, pw(G)\leq 2K  - 1. Moreover, a path decomposition of width 2K  - 1 can be
computed in linear time by breadth-first search.

Proof. Let ecc(a) be the eccentricity of vertex a (i.e., maxx\in V dist(a,x)). For
any D with 0 \leq D \leq ecc(a) we denote by Layer(D) the set of vertices at distance

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1844 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

exactly D from a, i.e., the layers of a breadth-first search on G starting at a. Observe
that, by taking as bags the unions Layer(D) \cup Layer(D + 1) of pairs of consecutive
layers, 0 \leq D < ecc(a), and by ordering them according to D, we obtain a path
decomposition of G. Indeed, for each edge \{ x, y\} both endpoints are in the same layer
or in two consecutive layers, thus will appear in the same bag. For each vertex x, it
appears in at most two bags: if d=dist(a,x), then x is in bags Layer(d - 1)\cup Layer(d)
and Layer(d)\cup Layer(d+1) (or one bag if d= 0 or d= ecc(a)), and these bags appear
consecutively in the decomposition. Since each layer has at most K vertices, the
width of this decomposition is at most 2K  - 1.

3. Edge-covering with \bfitk shortest paths. We start by proving Theorem 1.1,
upper bounding the pathwidth of graphs G = (V,E) that are edge-coverable by k
shortest paths. In this case, there is a simple and elegant encoding of shortest paths
leading to a factorial upper bound, given in subsection 3.1. This bound is improved to
a single-exponential one in subsection 3.2. We recall that the case of vertex-coverings,
which is more technical, will be studied in section 4.

In this section, G = (V,E) denotes a graph whose edge set is coverable by k
shortest paths. Let us fix such a set of paths \mu 1, . . . , \mu k, and call them the base paths
of G. All constructions in this section are built on this particular set of base paths
(without explicitly recalling it for each lemma, in order to ease the notations). We
endow each base path \mu c, 1 \leq c \leq k with an arbitrary direction, e.g., assuming that
the vertices of G are numbered from 1 to n, the direction of path P is from its smallest
towards its largest end-vertex. A (directed) subpath \mu c[x, y] of \mu c is given a positive
sign + if it follows the direction of \mu c, otherwise it is given a negative sign  - . For
each edge e of G, let \ttC \tto \ttl \tto \ttr \tts (e) be the set of all values c\in \{ 1 . . . , k\} such that e is an
edge of \mu c.

Good colorings. Let P be an a-b path of G, from vertex a to vertex b. A coloring
of P is a function \ttc \tto \ttl : E(P ) \rightarrow \{ 1, . . . , k\} assigning to each edge e of the path one
of its colors \ttc \tto \ttl (e) \in \ttC \tto \ttl \tto \ttr \tts (e). The coloring \ttc \tto \ttl of P is said to be good if, for any
color c, the set of edges using this color form a connected subpath P [x, y] of P . (Since
our paths are simple, this condition entails that P [x, y] = \mu c[x, y].) A pair (P,\ttc \tto \ttl )
formed by a path together with a good coloring is called well-colored path.

Operator \odot defined in section 2 naturally extends to colored paths. Given a
colored path (P,\ttc \tto \ttl ), in a slight abuse of notation we denote by (P [x, y],\ttc \tto \ttl ) its
restriction to a subpath P [x, y] of P . Finally, we define for any path P and any color
1 \leq c \leq k the function \ttm \tto \ttn \tto \ttc \tth \ttr c : E(P ) \rightarrow \{ c\} . Hence all edges of the colored path
(P,\ttm \tto \ttn \tto \ttc \tth \ttr c) have color c.

With these notations, any well-colored a-b path (P,\ttc \tto \ttl ) with colors (c1, . . . , cl)
appearing in this order can be written as

(\mu c1 [x1, x2],\ttm \tto \ttn \tto \ttc \tth \ttr c1)\odot (\mu c2 [x2, x3],\ttm \tto \ttn \tto \ttc \tth \ttr c2)\odot \cdot \cdot \cdot \odot (\mu cl [xl, xl+1],\ttm \tto \ttn \tto \ttc \tth \ttr cl)

for some vertices a = x1, x2, x3 . . . , xl, xl+1 = b. In full words, P [xi, xi+1] are the
monochromatic subpaths of (P,\ttc \tto \ttl ), colored ci.

Lemma 3.1 (good coloring lemma). For any pair of vertices a and b of G, there
exists a well-colored a-b path (P,\ttc \tto \ttl ) such that P is a shortest a-b path.

We will simply call (P,\ttc \tto \ttl ) a well-colored shortest a-b path.

Proof. Among all shortest a-b paths, choose one that admits a coloring with a
minimum number of monochromatic subpaths. Let P be this path, and let \ttc \tto \ttl be the
corresponding coloring. Assume by contradiction that the coloring is not good. Then
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1845

there exist three edges e1 = \{ y1, z1\} , e2 = \{ y2, z2\} , and e3 = \{ y3, z3\} , appearing in
this order, such that \ttc \tto \ttl (e1) = \ttc \tto \ttl (e3) \not = \ttc \tto \ttl (e2). Assume w.l.o.g. that the vertices
appear in the order y1, z1, y2, z2, y3, z3 from a to b (note that we may have z1 = y2 or
z2 = y3). Let c= \ttc \tto \ttl (e1) = \ttc \tto \ttl (e3). Therefore, z1 and y3 are on the same base path
\mu c. Let P \prime be the path obtained from P by replacing P [z1, y3] by \mu c[z1, y3]. First,
P \prime is no longer than P , since \mu c[z1, y3] is a shortest possible z1-y3 path of graph G
(in particular, P \prime has no repeated vertices). Second, in P \prime we can color all edges of
P \prime [z1, y3] with color c, and keep all other colors unchanged. Hence P \prime has strictly
fewer monochromatic subpaths than P --- a contradiction.

Let (P,\ttc \tto \ttl ) be a well-colored a-b path, with colors (c1, . . . , cl) in this order.
Recall that each monochromatic subpath P [xi, xi+1] of P , of color ci, induces a
sign on the corresponding base path \mu ci (positive if P [xi, xi+1] has the same di-
rection as \mu ci , negative otherwise). Therefore, we can define the colors-signs word
\ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P,\ttc \tto \ttl ) = ((c1, s1), (c2, s2), . . . , (cl, sl)) on the alphabet \{ 1, . . . , k\} \times 
\{ +, - \} , corresponding to the colors and signs of the monochromatic subpaths of P ,
according to the ordering in which these subpaths appear from a to b.

3.1. Warm-up: Factorial bound. Observe that colors-signs words have at
most k letters on an alphabet of size 2k. Therefore, the number of different such
words is upper bounded by a function of k.

Lemma 3.2. The number of possible colors-signs words, over all well-colored paths
of G, is upper bounded by h(k) =

\sum k
l=1 2

l k!
(k - l)! .

Proof. We claim that the number of colors-signs words of l letters is upper
bounded by 2l k!

(k - l)! . Observe that the colors form a word of length l, on an al-

phabet of size k, without repetition. The number of such words is k!
(k - l)! (e.g., by

choosing l letters among the k possible ones, and applying all possible permutations).
Since each letter also has a sign in \{ +, - \} , we multiply this quantity by 2l, and the
conclusion follows by summing over all possible values of l.

The following crucial lemma implies that, given a start vertex a, a distance D,
and a colors-signs word \omega , there is at most one vertex b at distance D from a, such
that the well-colored shortest a-b path respects word \omega . This will allow one to upper
bound the number of vertices at distance D from a.

Lemma 3.3 (colors-signs encoding). Consider two vertices b and c at the same
distance from some vertex a of G. Let (P,\ttc \tto \ttl ) be a well-colored shortest a-b path
and (P \prime ,\ttc \tto \ttl \prime ) be a well-colored shortest a-c path. If \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P,\ttc \tto \ttl ) =
\ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P \prime ,\ttc \tto \ttl \prime ), then b= c.

Proof. We proceed by induction on the number of letters of the word:

\omega = \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P,\ttc \tto \ttl )

Let us denote it by \omega = ((c1, s1), (c2, s2), . . . , (cl, sl)). Let P [a,x2] (resp., P
\prime [a,x\prime 

2]) be
the maximal subpath of P (resp., P \prime ) of color c1 starting from a. Assume w.l.o.g. that
P [a,x2] is at least as long as P \prime [a,x\prime 

2]. Since both are subpaths of \mu c1 , starting from
a and having the same sign s1 w.r.t. \mu c1 , we actually have that P \prime [a,x\prime 

2] is contained
in P [a,x2], in particular, x\prime 

2 is between a and x2 in P and in \mu c1 .
Observe that if word \omega has only one letter, P [a,x2] = P and P \prime [a,x\prime 

2] = P \prime , thus
they are all of the same length. Since they are of the same sign w.r.t. \mu c1 , this implies
that x2 = x\prime 

2 = b= c, which proves the base case of our induction.
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1846 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

Assume now that \omega has l \geq 2 letters and that the lemma is true for words of
length l - 1.

Consider first the case when P [a,x2] and P \prime [a,x\prime 
2] have the same length. Then

x2 = x\prime 
2 is also the first vertex of the subpaths of color c2 of both P and P \prime . Then

(P [x\prime 
2, b],\ttc \tto \ttl ) and (P \prime [x\prime 

2, c],\ttc \tto \ttl 
\prime ) are well-colored shortest paths of the same length,

and have the same colors-signs word ((c2, s2), . . . , (cl, sl)), with l  - 1 letters. Hence
the property follows by the induction hypothesis.

We now handle the second and last case, when P [a,x2] is strictly longer than
P \prime [a,x\prime 

2]. Let x3 be the last vertex of the subpath colored c2 in (P,\ttc \tto \ttl ). In particular,
x\prime 
2, x2, and x3 are all vertices of \mu c2 . Let us make an easy but crucial observation: on

\mu c2 , vertex x2 is between x\prime 
2 and x3. To prove this claim, note that in path P , vertices

a, x\prime 
2, and x2 appear in this order (as observed in the beginning of the proof), and

by construction x2 appears between a and x3. Therefore, a,x\prime 
2, x2, x3 appear in this

order on P , which is a shortest path. Hence dist(x\prime 
2, x3) = dist(x\prime 

2, x2) + dist(x2, x3).
Since the three vertices x\prime 

2, x2, x3 are all on the shortest path \mu c2 , they must appear
in this order on it. Consequently, \mu c2 [x

\prime 
2, x3] induces the same sign s2 on \mu c2 as

P [x2, x3] = \mu c2 [x2, x3]. In particular, in path

(P [x\prime 
2, b],\ttc \tto \ttl ) = (P [x\prime 

2, x2],\ttm \tto \ttn \tto \ttc \tth \ttr c1)\odot (P [x2, x3],\ttm \tto \ttn \tto \ttc \tth \ttr c2)\odot (P [x3, b],\ttc \tto \ttl )

we can replace the first subpath P [x\prime 
2, x2] colored c1 by \mu c2 [x

\prime 
2, x2], colored c2, without

changing the total length. We obtain the well-colored shortest x\prime 
2-b path

( \~P [x\prime 
2, b],

\~col) = (\mu c2 [x
\prime 
2, x3],\ttm \tto \ttn \tto \ttc \tth \ttr c2)\odot (P [x3, b],\ttc \tto \ttl ).

Its colors-signs word is ((c2, s2), . . . , (cl, sl)), the same as for the shortest x\prime 
2-c path

(P \prime [x\prime 
2, c],\ttc \tto \ttl 

\prime ). Moreover, the two paths have the same length, | P |  - | P [a,x\prime 
2]| , hence

by the induction hypothesis we have b= c, which proves our lemma.

Corollary 3.4. For any vertex a of G and any integer D, there are at most
h(k) =

\sum k
l=1 2

l k!
(k - l)! vertices at distance exactly D from a.

Proof. For any fixed vertex a and fixed integer D, thanks to Lemma 3.3 the
number of vertices x at distance exactly D from a is upper-bounded by the number
of colors-signs words, which is, in turn, upper bounded by h(k) by Lemma 3.2.

Corollary 3.4 together with Lemma 2.1 entail a weaker version of Theorem 1.1:
the pathwidth of graphs edge-coverable by k shortest paths is at most 2h(k)  - 1,
providing a factorial upper bound.

3.2. Single exponential bound. In this section, we will show that the number
of vertices at distance D from a vertex a can actually be bounded by O(3k). In
the previous section we showed that any two shortest well-colored paths of length
D starting from a with the same colors-signs words lead to the same vertex. We
observe that paths with different colors-signs word may also lead to the same vertex;
see Figure 1. In this section, we generalize this idea to a set of shortest paths from a
to all vertices at distance D from a.

Before getting into details, let us try to give an informal description of our con-
struction (see Figure 2). Let \scrP be a family of well-colored shortest paths starting
from vertex a, with different endpoints. Initially, this family reaches all vertices at
distance D from a. We transform it into another family with the same properties,
preserving the endpoints. Let xn be the furthest vertex from a, contained on all paths
of \scrP , such that these paths share the same colored subpath from a to xn. We focus
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1847

P2

P1 b

c

a x

Fig. 1. (P1,\ttc \tto \ttl 1) and (P2,\ttc \tto \ttl 2) are well-colored shortest paths of same length. The vertex x
is shared by the two paths. One can replace \mu blue[a,x] in P2 by \mu red[a,x], this proves that b = c.
(Color available online.)

P3

a

P2

P1 b1

b2

b3

P4 b4

xn wP1

wP2

wP3

wP4

P ∗
3

a

P ∗
2

P ∗
1

b1

b2

b3

P ∗
4

b4

xn wP1

wP2

wP3

wP4

Pn

P(blue,−)

P(blue,+)

P(red,+)

Fig. 2. Example of the construction in the proof of Lemma 3.6 for a set of paths \scrP n. In this
example, all paths share the same subpath (P1[a,xn],\ttc \tto \ttl ), \scrC n = \{ red, blue, green\} and there are no
edges with color in \scrC n in the path (Pi[wPi

:],\ttc \tto \ttl i). The sets \scrP (red, - ),\scrP (green,+),\scrP (green, - ) are
empty. (Color available online.)

on the colors \scrC appearing on the edges right after xn. First, we apply the following
transformation. For each path (P,\ttc \tto \ttl ) \in \scrP , we consider the furthest edge having its
color c in \scrC (e.g., in Figure 2, for path P3 this edge is colored red), and we replace
the whole subpath of P from xn to this edge with a subpath of \mu c, of color c. This
new family of paths is then split into subfamilies according to the color and sign of
the first edge after xn, and we branch on each subfamily. We eventually prove that
this branching process corresponds to a tree (that we call k-labelled branching tree),
in the sense that the output paths are bijectively mapped on the leaves of the tree.
Moreover, we will upper bound the number of leaves of the tree, and thus the number
of paths, by O(3k).

We first define k-labelled branching trees and show in Lemma 3.9 that they have
O(3k) leaves. Then we formally describe the above branching process in Lemma 3.6,
deducing the same upper bound on the number of vertices at distance D from a.

Let us define a rooted labelled tree as a pair (T,\ttl \tta \ttb ) where T is a rooted tree and
\ttl \tta \ttb : E(T ) \rightarrow \scrC \scrS is an edge labelling function with \scrC \scrS = \{ 1, . . . , k\} \times \{ +, - \} . For a
node n of T let Tn be the subtree rooted in n. For a node n of T and its children
n1, . . . , nt we let

\scrL (n) = \{ \ttl \tta \ttb (\{ n,n1\} ), . . . ,\ttl \tta \ttb (\{ n,nt\} )\} ,
\scrL \scrS (n) = \{ (c, s), (c, s) | (c, s)\in \scrL (n)\} , where s is the opposite of sign s.
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1848 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

Definition 3.5. A rooted labelled tree (T,\ttl \tta \ttb ) is called a k-labelled branching
tree if the following properties hold:

(i) in every path from the root of T to one of its leaves, the edges with the same
label form a connected subpath.

And for every node n of T with children n1, . . . , nt:
(ii) the labels on the edges \{ n,ni\} , i\in \{ 1, . . . , t\} are pairwise distinct,
(iii) for every i \in \{ 1, . . . , t\} , Tni does not contain any edge with labels in \scrL \scrS (n) \setminus 

\{ \ttl \tta \ttb (\{ n,ni\} )\} .
We note that in a general setting where the labelling function \ttl \tta \ttb is defined over

some alphabet \Sigma and the third condition is replaced by ``Tni
does not contain any

edge with labels in \scrL (n) \setminus \{ \ttl \tta \ttb (\{ n,ni\} )\} "", one can achieve an O(2| \Sigma | ) bound, thus
giving O(4k) in our case (observe that we simply replaced \scrL \scrS by \scrL in the second
condition). However by exploiting the specificity of the alphabet \scrC \scrS we will prove an
O(3k) bound in Lemma 3.9. For the sake of readability we defer this technical proof
to the end of the section and first show how k-labelled branching trees can be used
to bound the number of vertices at a given distance of any vertex.

In a slight abuse of notation, we define \ttC \tto \ttl \tto \ttr \tts (P,\ttc \tto \ttl ) as the set of colors that
appear on any colored path (P,\ttc \tto \ttl ), i.e., \ttC \tto \ttl \tto \ttr \tts (P,\ttc \tto \ttl ) = \{ \ttc \tto \ttl (e) | e \in E(P )\} . For
a set of colored paths \scrP , \ttC \tto \ttl \tto \ttr \tts (\scrP ) =

\bigcup 
(P,\ttc \tto \ttl )\in \scrP \ttC \tto \ttl \tto \ttr \tts (P,\ttc \tto \ttl ).

For a coloued a-b path (P,\ttc \tto \ttl ) and a vertex x of P , we let P [x :] = P [x, b], and
for a set of colored paths \scrP that share vertex x we let \scrP [x :] =

\bigcup 
(P,\ttc \tto \ttl )\in \scrP (P [x :],\ttc \tto \ttl ).

Lemma 3.6. For any vertex a of G and any integer D, there are at most c(k)
vertices at distance exactly D from vertex a, where c(k) is an upper bound on the
number of leaves of any k-labelled branching tree.

Proof. Let \{ b1 . . . , bq\} be the set of vertices at distance D from a in G, and let \scrP 
denote a set \{ (P1,\ttc \tto \ttl 1), . . . , (Pq,\ttc \tto \ttl q)\} of well-colored shortest a-bi paths. We aim to
construct a k-labelled branching tree (T,\ttl \tta \ttb ) such that each node n of T is associated
with a set of paths \scrP n. Moreover, for each vertex bi there is a leaf l of T such that
\scrP l contains a well-colored shortest a-bi path and for each leaf l, \scrP l contains exactly
one path.

We will construct (T,\ttl \tta \ttb ) recursively starting from the root r of T . Initially,
\scrP r = \scrP . For every node n of T , \scrP n will be a set of well-colored shortest paths from
a to a subset of vertices of \{ b1 . . . , bq\} . Let n be an already computed node of T . If
| \scrP n| = 1, we do nothing: n is a leaf of our tree and no recursive step is performed at
n. If | \scrP n| > 1, we will grow the tree from n. We construct the sets of paths that will
be associated with the children of n as follows:

1. Let xn be the vertex at maximum distance from a such that for every pair
of colored paths (P,\ttc \tto \ttl ), (P \prime ,\ttc \tto \ttl \prime ) \in \scrP n, (P [a,xn],\ttc \tto \ttl ) = (P \prime [a,xn],\ttc \tto \ttl 

\prime ).
This vertex is guaranteed to exist, notice that xn can be the vertex a.

2. Let \scrC n = \{ \ttc \tto \ttl (\{ xn, yP \} ) | (P,\ttc \tto \ttl ) \in \scrP n\} where \{ xn, yP \} denotes the first
edge of P [xn :].

3. For each (P,\ttc \tto \ttl ) \in \scrP n, let \{ zP ,wP \} be the edge that is farthest from xn on
P [xn :] whose color is in \scrC n, and let cP = \ttc \tto \ttl (\{ zP ,wP \} ). Construct the path

(P \ast ,\ttc \tto \ttl \ast ) = (P [a,xn],\ttc \tto \ttl )\odot (\mu cP [xn,wP ],\ttm \tto \ttn \tto \ttc \tth \ttr cP )\odot (P [wP :],\ttc \tto \ttl )

4. For each (c, s) \in \scrC \scrS n = (\scrC n \times \{ +, - \} ) define the set \scrP (c,s) as \{ (P \ast ,\ttc \tto \ttl \ast ) | 
(P,\ttc \tto \ttl )\in \scrP n, (cP , sP ) = (c, s)\} , where sP is the sign of \mu cP [xn,wP ].
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1849

This construction is illustrated in Figure 2. For each nonempty set \scrP (c,s), (c, s)\in 
\scrC \scrS n, we then create a child n\prime of n associated with \scrP n\prime =\scrP (c,s), where the edge \{ n,n\prime \} 
is labelled (c, s). Then, we recursively apply the process to each created node.

Claim 3.7. For any node n of T , \scrP n is a set of well-colored shortest paths.

Proof. This trivially holds for \scrP r where r is the root of T . We show that for a node
n of T , if (P,\ttc \tto \ttl )\in \scrP n is a well-colored shortest a-bi path, then the path (P \ast ,\ttc \tto \ttl \ast ) =
(P [a,xn],\ttc \tto \ttl )\odot (\mu cP [xn,wP ],\ttm \tto \ttn \tto \ttc \tth \ttr c)\odot (P [wP :],\ttc \tto \ttl i) constructed in item 3 of the
proof above is a well-colored shortest a-bi path. It is clear from the construction that
P \ast is an a-bi path; moreover, it is also a shortest path since \mu cP [xn,wP ] is a shortest
xn-wP path. Since (P,\ttc \tto \ttl ) is well-colored, so are (P [a,xn],\ttc \tto \ttl ) and (P [wP :],\ttc \tto \ttl ).
Since \{ zP ,wP \} is the last edge of (P,\ttc \tto \ttl ) colored cP , this color does not appear
in (P [wP :],\ttc \tto \ttl ). Additionally, if cP \in \ttC \tto \ttl \tto \ttr \tts (P [a,xn]), it has to be the last color
to appear, otherwise (P,\ttc \tto \ttl ) would not be well-colored. It follows that the path
(P \ast ,\ttc \tto \ttl \ast ) is well-colored. Thus, for each (c, s) \in \scrC \scrS n, the set \scrP (c,s) associated to
a child n\prime of n is a set of well-colored shortest paths. Hence, by induction, for any
node n of T , \scrP n is a set of well-colored shortest paths. This concludes the proof of
Claim 3.7.

We now show that the construction terminates. In particular, we show that for
any nonleaf node n and any of its nonleaf children ni, we have dist(a,xn)< dist(a,xni).
Since for any node n of T , the paths of sets \scrP n are shortest paths of length D, this
implies that the construction terminates. By construction (see item 3 of the proof
above), for (P \prime ,\ttc \tto \ttl \prime ) \in \scrP ni

, there is a path (P,\ttc \tto \ttl ) \in \scrP n such that (P \prime ,\ttc \tto \ttl \prime ) =
(P \ast ,\ttc \tto \ttl \ast ), implying that (P [a,xn],\ttc \tto \ttl ) = (P \prime [a,xn],\ttc \tto \ttl 

\prime ). Moreover, let \{ xn, y\} be
the first edge of (P \prime [xn :],\ttc \tto \ttl \prime ). By definition of \scrP ni

=\scrP (cP ,sP ) in item 4 of the proof
above, all paths in \scrP ni share this edge and hence share the subpath (P \prime [a, y],\ttc \tto \ttl \prime ).
Hence, dist(a,xn)< dist(a, y)\leq dist(a,xni) since the paths of \scrP n and \scrP ni are shortest
paths by Claim 3.7. It is possible to prove that the height of T is at most k, but it is
not necessary.

The following observation is verified if n\prime is a child of n by the previous arguments,
hence by induction is also verified for any node of Tn.

Observation 1. Let n be a node of T , and let n\prime \not = n be a node of Tn. Then, we
have dist(a,xn)< dist(a,xn\prime ), and for (P,\ttc \tto \ttl )\in \scrP n and (P \prime ,\ttc \tto \ttl \prime )\in \scrP n\prime :

(P [a,xn],\ttc \tto \ttl ) = (P \prime [a,xn],\ttc \tto \ttl 
\prime ).

Observation 2. Let \{ n,n\prime \} be an edge of T , and let (P, col)\in \scrP n\prime . Then, the first
letter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P [xn, :],\ttc \tto \ttl ) is \ttl \tta \ttb (\{ n,n\prime \} ). If n\prime is a nonleaf node, there
might be more than one letter in \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P [xn, xn\prime ],\ttc \tto \ttl ).

Claim 3.8. (T,\ttl \tta \ttb ) is a k-labelled branching tree.

Proof. Let n be a node of T , and let n1, . . . , nt be its children. Item (ii) of
Definition 3.5 is verified, since for each (c, s) \in \scrC \scrS n, at most one edge \{ n,ni\} is
labelled (c, s). We now prove item (iii), i.e., Tni

does not contain any edge with
labels in \scrL \scrS (n) \setminus \{ \ttl \tta \ttb (\{ n,ni\} )\} . Recall that \scrL \scrS (n) = \{ (c, s), (c, s) | (c, s) \in \scrL (n)\} ,
where \scrL (n) = \{ \ttl \tta \ttb (\{ n,n1\} ), . . . ,\ttl \tta \ttb (\{ n,nt\} )\} and s is the opposite of s. Observe
that \scrL \scrS (n) \subseteq \scrC \scrS n (there might be some empty set \scrP (c,s)), and that \scrC \scrS n is defined
from the set of colors \scrC n that appear on the first edge after xn on paths of \scrP n.

Fix ni a child of n, and let (ci, si) = \ttl \tta \ttb (\{ n,ni\} ). The case when ni is a leaf is
trivial, since Tni has no edges. Assume now that ni is not a leaf. Observe that for
any (P,\ttc \tto \ttl )\in \scrP n and by choice of wP , the only color from \scrC n used in (P \ast [xn :],\ttc \tto \ttl \ast )

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

0/
24

 to
 1

94
.1

67
.3

1.
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1850 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

is cP . Formally, we have \ttC \tto \ttl \tto \ttr \tts (P \ast [xn :],\ttc \tto \ttl \ast )\subseteq \ttC \tto \ttl \tto \ttr \tts (P [xn :],\ttc \tto \ttl ) \setminus (\scrC n \setminus \{ cP \} ),
thus \ttC \tto \ttl \tto \ttr \tts (\scrP ni [xn :]) \subseteq \ttC \tto \ttl \tto \ttr \tts (\scrP n[xn :]) \setminus (\scrC n \setminus \{ ci\} ) for 1 \leq i \leq t. By induction,
this implies that for any node n\prime of Tni

, \ttC \tto \ttl \tto \ttr \tts (\scrP n\prime [xn\prime :]) \subseteq (\ttC \tto \ttl \tto \ttr \tts (\scrP n[xn :]) \setminus 
(\scrC n \setminus \{ ci\} ). By Observation 2, the label of an edge \{ n\prime , n\prime \prime \} of Tni

depends on the
colors that appear after xn\prime in paths of \scrP n\prime \prime , hence no edges of Tni

has a label in
(\scrC n \setminus \{ ci\} )\times \{ +, - \} .

We now prove that (ci, si) is not used as label for edges of Tni . Let \{ n\prime , n\prime \prime \} 
be an edge of Tni and assume by contradiction that \ttl \tta \ttb (\{ n\prime , n\prime \prime \} ) = (ci, si). More-
over, let (P,\ttc \tto \ttl ) \in \scrP ni

and (P \prime ,\ttc \tto \ttl \prime ) \in \scrP n\prime \prime . By Observation 1, (P [xn, xni
],\ttc \tto \ttl ) =

(P \prime [xn, xni
],\ttc \tto \ttl \prime ).

By Observation 2, the first letter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P \prime [xn :],\ttc \tto \ttl \prime ) is (ci, si).
Similarly, the first letter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P \prime [xn\prime :],\ttc \tto \ttl \prime ) is (ci, si). This yields a
contradiction since the path (P \prime ,\ttc \tto \ttl \prime ) is well-colored (Claim 3.7). Hence, there are
no edges of Tni with labels in \scrC \scrS n \setminus \{ (ci, si)\} , proving item (iii).

It remains to prove item (i), i.e., in every path from the root of T to one of its
leaves, the edges with the same label form a connected subpath. Let r= p1, p2, . . . , pt =
n be the path from the root r of T to a nonleaf node n. If there exists a child n\prime 

of n such that \ttl \tta \ttb (\{ n,n\prime \} ) = \ttl \tta \ttb (\{ pi - 1, pi\} ) = (c, s), i \in \{ 2, . . . , t\} , then we have
to show that for any i < j \leq t, \ttl \tta \ttb (\{ pj - 1, pj\} ) = (c, s). Suppose that there are
such n\prime and i. For (P,\ttc \tto \ttl ) \in \scrP pi

and (P \prime ,\ttc \tto \ttl \prime ) \in \scrP n\prime , by Observation 1 we have
(P [xpi - 1

, xpi
],\ttc \tto \ttl ) = (P \prime [xpi - 1

, xpi
],\ttc \tto \ttl \prime ). By Observation 2, the first edge of these

subpaths is colored c, and so is the first edge of (P \prime [xn :],\ttc \tto \ttl \prime ). Since (P \prime ,\ttc \tto \ttl \prime ) is
well-colored, the whole subpath (P \prime [xpi - 1 , xn],\ttc \tto \ttl 

\prime ) is entirely colored with c. For any
i < j \leq t, (P \prime \prime [xpj - 1 , xpj ],\ttc \tto \ttl 

\prime \prime ) = (P \prime [xpj - 1 , xpj ],\ttc \tto \ttl 
\prime ), with (P \prime \prime ,\ttc \tto \ttl \prime \prime ) \in \scrP pj , and

this implies that the first color of (P \prime \prime [xpj - 1
, xpj

],\ttc \tto \ttl \prime \prime ) is c. Thus \ttl \tta \ttb (\{ pj - 1, pj\} ) =
(c, s) and hence Item (i) is verified. It follows that (T,\ttc \tto \ttl ) is a k-labelled branching
tree, which concludes the proof of Claim 3.8.

For a nonleaf node n of T , we can observe that for any a-bi path in \scrP n, bi \in 
\{ b1 . . . , bq\} , there is a child n\prime such that \scrP n\prime contains an a-bi path. This implies that
for any bi there is a leaf l of T such that \scrP l contains a well-colored shortest a-bi path.
Since T is a k-labelled branching tree, by Lemma 3.9, it has at most c(k) leaves and
for each leaf l of T , | \scrP l| = 1 (otherwise, our construction would have created a child
for node l). It follows that there are at most c(k) vertices at distance D from a.

We now prove the claimed combinatorial bound on the number of leaves contained
in a k-labelled branching tree.

Lemma 3.9. A k-labelled branching tree (T,\ttl \tta \ttb ) contains O(3k) leaves.

Proof. Let (T,\ttl \tta \ttb ) be a k-labelled branching tree, with the labelling function
\ttl \tta \ttb : E(T ) \rightarrow \scrC \scrS . Let \scrB (n) be the set of labels that have not been forbidden in Tn

by conditions (i) or (iii) of Definition 3.5 applied to some ancestor of n in the tree T .
In particular, if n is the root, then \scrB (n) = \scrC \scrS , and at any node n, \scrB (n) is a superset
of all labels of E(Tn). If n has exactly one child n\prime , by definition \scrB (n\prime ) \subseteq \scrB (n) so
| \scrB (n\prime )| \leq | \scrB (n)| .

Claim 3.10. Let n be a node of T with t\geq 2 children n1, . . . , nt. If n is the root,
then | \scrB (ni)| \leq | \scrB (n)|  - (t - 1), else | \scrB (ni)| \leq | \scrB (n)|  - max\{ 2, t - 1\} .

Proof. Since T is a k-labelled branching tree, by condition (ii) the labels of the
edges \{ n,nj\} , 1 \leq j \leq t are pairwise distinct. In particular, the t - 1 distinct labels
of edges \{ n,nj\} , with j \not = i, appear in \scrB (n) but not in \scrB (ni), by condition (iii).
Therefore, | \scrB (ni)| \leq | \scrB (n)|  - (t - 1).
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1851

n′

n′′

n

n1 n2

p

(c, s)

(c2, s2)(c1, s1)

Fig. 3. Illustration of the configuration one obtains when n is not the root, has at least two
children n1 and n2 and parent p. Node n\prime is an ancestor of n while n\prime \prime is not.

It remains to be proven that if n is not the root and has exactly two children
n1, n2, then | \scrB (ni)| \leq | \scrB (n)|  - 2 for i \in \{ 1,2\} . Let p be the parent node of n in T ,
we denote (c, s) = \ttl \tta \ttb (\{ p,n\} ) and (ci, si) = \ttl \tta \ttb (\{ n,ni\} ) for i \in \{ 1,2\} (see Figure 3).
We claim that if ci \not = c, then both (ci, si) and (ci, si) are in \scrB (n). First, observe that
in this case labels (ci, si) and (ci, si) do not appear on the path from n to the root of
T . Indeed, condition (i) implies that label (ci, si) does not appear on the path from
n to the root of T . By condition (iii), nor does label (ci, si): this would forbid label
(ci, si) in the tree below, in particular in Tn. Moreover, the color ci does not appear
on edges incident to the path from n to the root of T . Indeed, by condition (iii), for
any edge \{ n\prime , n\prime \prime \} of T such that n\prime is an ancestor of n and n\prime \prime is not an ancestor of n
(see Figure 3), ci cannot appear in the label \ttl \tta \ttb (\{ n\prime , n\prime \prime \} ) since otherwise (ci, si) and
(ci, si) would be forbidden in the subtree of Tn\prime containing n (which does not contain
n\prime \prime ). In particular, (ci, si) could not be used as label of \{ n,ni\} . Altogether, both (ci, si)
and (ci, si) are in \scrB (n) since they could not be forbidden by conditions (i) or (iii).

Assume now w.l.o.g. that i= 1. If c1 = c, then we claim that c2 \not = c. Indeed, by
condition (i), if c1 = c2 = c, then signs s1 and s2 are opposite, so one is the opposite
s of s, contradicting the fact that label (c, s) is in \scrL \scrS (p) and has been forbidden in
Tn by condition (iii). Therefore, (c2, s2) and (c2, s2) are in \scrB (n) and by condition (iii)
are forbidden in Tn1 and thus | \scrB (n1)| \leq | \scrB (n)|  - 2.

If c1 \not = c, then (c, s) is not in \scrB (n1) by condition (i) but is in \scrB (n) and (c1, s1)
is not in \scrB (n1) by condition (iii) but is in \scrB (n), hence | \scrB (n1)| \leq | \scrB (n)|  - 2. This
concludes the proof of Claim 3.10.

We now prove that T has O(3k) leaves. For a node n of the tree, we see | \scrB (n)| as
the budget of the tree Tn and we estimate the number of leaves w.r.t. this budget. We
are reminded that the budget of the root is 2k. Let F (b) be the maximum number
of leaves in any k-labelled branching tree with budget b at its root. Observe that if
b= 1, then F (b) = 1 and for b\leq b\prime , F (b)\leq F (b\prime ). Let n be a node of T , then F (| \scrB (n)| )
is the maximal number of leaves of Tn. Observe that if n has exactly one child, i.e.,
it does not branch, then F (| \scrB (n)| ) = F (| \scrB (n1)| ) since \scrB (n1)\subseteq \scrB (n). Suppose that n
has t\geq 2 children n1, . . . nt. If n is the root, then by Claim 3.10:

F (| \scrB (n)| )\leq F (| \scrB (n1)| ) + \cdot \cdot \cdot + F (| \scrB (nt)| )\leq t \cdot F (| \scrB (n)|  - (t - 1)),

else if n is not the root,

F (| \scrB (n)| )\leq t \cdot F (| \scrB (n)|  - max\{ 2, t - 1\} ).
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1852 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

At the root r of the tree, since \scrB (r) = \scrC \scrS , we have | \scrB (r)| = 2k. We need to
prove that F (2k) = O(3k). Let us recall some standard techniques for the analysis
on the growth of functions described by linear equations (or linear inequalities). The
reader can refer to the book of Fomin and Kratsch [16, Chapter 2] for detailed ex-
planations. Consider a function C on positive integers. Assume there are positive
integers \beta 1, \beta 2, . . . , \beta q such that

C(b)\leq C(b - \beta 1) +C(b - \beta 2) + \cdot \cdot \cdot +C(b - \beta q)

for all values b (or at least for all b larger than a threshold b0). Then C(b) = O(\alpha b),
where \alpha is the (unique) positive real root of equation

xb  - xb - \beta 1  - xb - \beta 2  - \cdot \cdot \cdot  - xb - \beta q = 0.

In [16], (\beta 1, \beta 2, . . . , \beta q) is called a branching vector, and \alpha is the branching factor
of this vector. Now in our case, for function F , we know that for each value b there
exists some t \geq 3 such that F (b) \leq t \cdot F (b - (t - 1)), and also (except at the root, if
the root has at most two children), F (b) \leq 2 \cdot F (b - 2) or F (b) \leq F (b - 1). Each of
the inequalities leads to a different branching factor: \alpha t =

t - 1
\surd 
t for the first equation,

and \alpha 2 =
\surd 
2, \alpha 1 = 1 for the latter. Also according to [16], when a function F satisfies

one among a family of linear inequalities, the growth of F is F (b) = O(\alpha b), where \alpha 
is an upper bound on all branching factors. In our case, observe that the maximum
value of \alpha 1 = 1, \alpha 2 =

\surd 
2, and \alpha t =

t - 1
\surd 
t, t \geq 3 is attained for t = 3 with \alpha 3 =

\surd 
3.

Therefore, F (b) = O(3b/2). Observe that this also holds if the root has one or two
children. Indeed, for each child of the root, the number of leaves in the corresponding
subtree is O(3b/2), and since there are at most two such children, the total number of
leaves is O(3b/2).

Since at the root b= 2k, we conclude that our k-labelled branching tree has O(3k)
leaves.

Combining Lemmas 3.6 and 3.9 we deduce that there are O(3k) vertices at dis-
tance D of any vertex a of graph G. In order to complete the proof of Theorem
1.1 and show that pw(G) = O(3k), we hence simply need to apply Lemma 2.1 with
K =O(3k).

4. Vertex-covering with \bfitk shortest paths. In this section, G = (V,E) de-
notes a graph whose vertices can be covered by k shortest paths \mu 1, . . . , \mu k. As before
we endow each base path \mu c with a direction, but now colors are assigned to vertices.
We can easily adapt the notions of good colorings of the previous section to these
vertex-colorings. Again, for any pair of vertices a and b, there is a well-colored short-
est path joining them (Lemma 4.1), which defines a colors-signs word. But we shall
see that now (unlike in the simpler case of edge-coverings), we may have two distinct
vertices b and c at the same distance D from a, and well-colored shortest a-b and a-c
paths with the same colors-signs word. More effort will be needed to recover a (slightly
larger) upper bound on the number of vertices at distance D from a (Lemma 4.2).

Good colorings. For each vertex v of G, let \ttC \tto \ttl \tto \ttr \tts (v) denote the set of indices
(colors) c \in \{ 1 . . . , k\} such that v is a vertex of \mu c. Let P be an a-b path of G, from
vertex a to vertex b. A coloring of P is a function \ttc \tto \ttl : V (P )\rightarrow \{ 1, . . . , k\} assigning
to each vertex v of P one of its colors \ttc \tto \ttl (v) \in \ttC \tto \ttl \tto \ttr \tts (v). A colored path is a pair
(P,\ttc \tto \ttl ). The coloring \ttc \tto \ttl of P is said to be good if, for any color c, the subgraph
induced by the set of vertices using this color c forms a connected subpath P [x, y] of
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1853

P (which implies that P [x, y] = \mu c[x, y]). A colored path (P,\ttc \tto \ttl ) where \ttc \tto \ttl is a good
coloring is called well-colored.

Operators\oplus and\odot naturally extend to (vertex) colored paths, with the precaution
that (\nu ,\ttc \tto \ttl )\odot (\eta ,\ttc \tto \ttl \prime ) is defined only when their common vertex x, the last of \nu and
first of \eta , satisfies \ttc \tto \ttl (x) = \ttc \tto \ttl \prime (x). Given a colored path (P,\ttc \tto \ttl ), we again denote
by (P [x, y],\ttc \tto \ttl ) its restriction to a subpath P [x, y] of P . For each color 1 \leq c \leq k.
Now let (P,\ttm \tto \ttn \tto \ttc \tth \ttr c) denote the monochromatic coloring of V (P ) with color c. With
these notations, any well-colored a-b path (P,\ttc \tto \ttl ) with colors (c1, . . . , cl) is of the form

(\mu c1 [a1, b1],\ttm \tto \ttn \tto \ttc \tth \ttr c1)\oplus (\mu c2 [a2, b2],\ttm \tto \ttn \tto \ttc \tth \ttr c2)\oplus . . .\oplus (\mu cl [al, bl],\ttm \tto \ttn \tto \ttc \tth \ttr cl)

for some vertices a= a1, b1, a2, b2, . . . , al, bl = b. Like in the previous section, we have
the following lemma.

Lemma 4.1. For any pair of vertices a and b of G, there exists a well-colored
shortest a-b path.

Proof. Among all shortest a-b paths, choose one that admits a coloring with a
minimum number of monochromatic subpaths. Let (P,\ttc \tto \ttl ) be such a colored path.
Assume for a contradiction that the coloring \ttc \tto \ttl is not good. Then there exist three
vertices x, y, and z, appearing in this order in P such that \ttc \tto \ttl (x) = \ttc \tto \ttl (z) \not = \ttc \tto \ttl (y).
Therefore, x and z are on the same base path \mu c. Let P \prime be the path obtained
from P by replacing P [x, z] by \mu c[x, z]. Notice that P \prime is no longer than P , since
\mu c[x, z] is a shortest x-z path of graph G. Moreover, in P \prime we can color all vertices of
P \prime [x, z] with color c, and keep all other colors unchanged. Hence P \prime has strictly fewer
monochromatic subpaths than P---a contradiction.

Colors-signs word. Let (P,\ttc \tto \ttl ) be a well-colored a-b path; we recall that we
see it as being directed from a to b. As in section 3, each monochromatic subpath
P \prime of P , say of color c, induces a sign (+ or  - ) depending on its direction w.r.t.
\mu c if P \prime has at least two vertices. If P \prime has a unique vertex, we assign to it sign
+. Therefore, we can again define the colors-signs word \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P,\ttc \tto \ttl ) =
((c1, s1), (c2, s2), . . . , (cl, sl)) on the alphabet \{ 1, . . . , k\} \times \{ +, - \} , corresponding to the
colors and signs of the monochromatic subpaths of P according to the ordering in
which these subpaths appear from a to b.

In the case of edge-covering, we had the elegant statement of Lemma 3.3, by
which, given a vertex a, a colors-signs word \omega , and a distance D, there is a unique
vertex b (if any exists) at distance D such that the well-colored shortest a-b path
corresponds to this word.

Unfortunately, this does not extend to vertex-covering: Figure 4 presents two
distinct vertices b and c located at the same distance D from vertex a, together
with a well-colored shortest a-b path (P,\ttc \tto \ttl ) and a well-colored shortest a-c path

a

b c

P

P ′

Fig. 4. Two well-colored paths (P,\ttc \tto \ttl ) and (P \prime ,\ttc \tto \ttl \prime ) with same colors-signs word \omega =
((red, - ), (blue,+)), same length 5 and same start vertex a but different end-vertices (b and c).
(Color available online.)
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1854 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

(P \prime ,\ttc \tto \ttl \prime ). These colored paths starting from a have the same colors-signs word and
the same length, but this does not imply that their endpoints are equal. However,
we can prove a single-exponential bound for this case as well with similar (but more
involved) arguments as the ones in subsection 3.2.

Again, adapting notations to vertex-colored paths, for a colored path (P,\ttc \tto \ttl ) we
define \ttC \tto \ttl \tto \ttr \tts (P,\ttc \tto \ttl ) = \{ \ttc \tto \ttl (x) | x\in V (P )\} , the set of colors that appear on (P,\ttc \tto \ttl ).
For a set of colored paths \scrP , \ttC \tto \ttl \tto \ttr \tts (\scrP ) =

\bigcup 
(P,\ttc \tto \ttl )\in \scrP \ttC \tto \ttl \tto \ttr \tts (P,\ttc \tto \ttl ). For a colored

a-b path (P,\ttc \tto \ttl ) and a vertex x of P , we let P [x :] = P [x, b] and for a set of colored
paths \scrP that shares the vertex x we let \scrP [x :] =

\bigcup 
(P,\ttc \tto \ttl )\in \scrP (P [x :],\ttc \tto \ttl ).

Lemma 4.2. For any vertex a of G and any integer D, there are O(k \cdot 3k) vertices
at distance exactly D from vertex a.

Proof. Let \{ b1 . . . , bq\} be the set of vertices at distance D from a in G, and let \scrP 
denote a set \{ (P1,\ttc \tto \ttl 1), . . . , (Pq,\ttc \tto \ttl q)\} of well-colored shortest a-bi paths. We aim to
construct a k-labelled branching tree (T,\ttl \tta \ttb ) such that each node n of T is associated
with a set of paths \scrP n and for each vertex bi there is a leaf l of T such that \scrP l contains
a well-colored a-bi path. However, unlike in the proof of Lemma 3.6 where any leaf
node was associated to exactly one path, the set \scrP l corresponding to any leaf node l
can contain up to 2k+ 1 paths.

We will construct recursively (T,\ttl \tta \ttb ) starting from the root r of T . Initially,
\scrP r = \scrP . For every node n of T , \scrP n will be a set of well-colored paths from a to a
subset of vertices of \{ b1 . . . , bq\} . These paths may not be shortest paths, but will be
of length at most D + 2d where d is the depth of the node n in T (the depth of the
root being 0). Let n be an already computed node of T . If there is a path in \scrP n such
that all the others paths of \scrP n are colored subpaths of it, do nothing: n is a leaf of
our tree and no recursive step is performed at n. If there is no such path, we will
grow the tree from n. We now construct the sets of paths that will be associated with
the children of n.

We first consider the case where n is the root r of T . Note that there might exist
(P,\ttc \tto \ttl ) and (P \prime ,\ttc \tto \ttl \prime ) in \scrP n such that \ttc \tto \ttl (a) \not = \ttc \tto \ttl \prime (a). In any case, we have the
following:

1.1. Let \scrC n = \{ \ttc \tto \ttl (a) | (P,\ttc \tto \ttl )\in \scrP n\} .
1.2. For each (P,\ttc \tto \ttl ) \in \scrP n, let wP be the last vertex of P such that cP =

\ttc \tto \ttl (wP ) \in \scrC n. Construct the path (P \ast ,\ttc \tto \ttl \ast ) = (\mu cP [a,wP ],\ttm \tto \ttn \tto \ttc \tth \ttr cP ) \odot 
(P [wP :],\ttc \tto \ttl ).

1.3. For each (c, s) \in \scrC \scrS n = (\scrC n \times \{ +, - \} ) define the set \scrP (c,s) as \{ (P \ast ,\ttc \tto \ttl \ast ) | 
(P,\ttc \tto \ttl )\in \scrP n, (cP , sP ) = (c, s)\} , where sP is the sign of \mu cP [a,wP ].

If n \not = r, let (P0,\ttc \tto \ttl 0) be a longest path of \scrP n, and let xn be the last vertex of P0 such
that for any path (P,\ttc \tto \ttl )\in \scrP n, either (P0[a,xn],\ttc \tto \ttl 0) = (P [a,xn],\ttc \tto \ttl ) or (P,\ttc \tto \ttl ) is
a colored subpath of (P0[a,xn],\ttc \tto \ttl 0). This vertex is guaranteed to exist, and notice
that xn can be the vertex a. We proceed as follows:

2.1. Let \scrP \circ 
n be the set of paths of \scrP n that are colored subpaths of (P0[a,xn],\ttc \tto \ttl 0)

and \^\scrP n =\scrP n \setminus \scrP \circ 
n.

2.2. Let \scrC n = \{ \ttc \tto \ttl (zP ) | (P,\ttc \tto \ttl ) \in \^\scrP n\} where zP denotes the vertex appearing
right after xn on path P .

2.3. For (P,\ttc \tto \ttl )\in \^\scrP n, let wP be the last vertex of P such that cP = \ttc \tto \ttl (wP )\in \scrC n.
Let yP be the second vertex of \mu cP [xn,wP ] if xn \in V (\mu cP ); otherwise, yP is
defined as the first vertex of \mu cP adjacent to xn. We define the following:

(P \ast ,\ttc \tto \ttl \ast ) = (P [a,xn],\ttc \tto \ttl )\oplus (\mu cP [yP ,wP ],\ttm \tto \ttn \tto \ttc \tth \ttr cP )\odot (P [wP :],\ttc \tto \ttl ).
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P3

a

P2

P1 b1

b2

b3

P4 b4

xn wP1

wP2

wP3

P ∗
3

P ∗
2

P ∗
1

P ∗
4

P̂n

P(blue,+)

P(red,+)

P◦
n P5 b5

a
b1

b2

b3

b4

xn wP1

wP2

wP3

wP4

b5P5

yP1

yP2

yP3

yP4

P(blue,−)

wP4

zP1

zP2

zP3

zP4

Fig. 5. Example of the construction in proof of Lemma 4.2 for a set of paths \scrP n. In this
example, all paths share the same subpath (P1[a,xn],\ttc \tto \ttl ) except for P5 that is subpath of the latter.
Moreover, these paths may have different length. We have \scrC n = \{ red, blue, green\} . In the path
(Pi[wPi

:],\ttc \tto \ttl i) the only vertex whose color is in \scrC n is wPi
. The sets \scrP (red, - ),\scrP (green,+),\scrP (green, - )

are empty. The vertices yP1 and yP3 = yP4 are the same if xn /\in V (\mu blue) and distinct else. The
path P \ast 

2 has the same length as P1, the other modified paths might not have the same length than
their counterpart, even P \ast 

4 as zP4 might be different from yP4 . The path P5 was arbitrarily added to
\scrP (blue,+). (Color available online.)

2.4. For each (c, s) \in \scrC \scrS n = (\scrC n \times \{ +, - \} ) define the set \scrP (c,s) as \{ (P \ast ,\ttc \tto \ttl \ast ) | 
(P,\ttc \tto \ttl ) \in \^\scrP n, (cP , sP ) = (c, s)\} . Here sP is the sign of \mu cP [yP ,wP ], except
when yP = wP and \ttc \tto \ttl \ast (xn) = \ttc \tto \ttl \ast (yP ), in which case sP is the sign of
\mu cP [xn, yP ].

2.5. Add \scrP \circ 
n to an arbitrary nonempty set \scrP (c,s).

This construction is illustrated in Figure 5. For each nonempty set \scrP (c,s), (c, s)\in \scrC \scrS n

we then create a child n\prime of n associated with \scrP (c,s) where the edge \{ n,n\prime \} labelled
(c, s). Then, we recursively apply the process to each created node.

Claim 4.3. For any node n of depth d of T , \scrP n is a set of well-colored paths of
length at most D+ 2d.

Proof. This trivially holds for \scrP r where r is the root of T . We show that for
a node n of T , if (P,\ttc \tto \ttl ) \in \scrP n is a well-colored a-b path, then the path (P \ast ,\ttc \tto \ttl \ast )
constructed in either items 1.2 or 2.3 is a well-colored a-b path such that | P \ast | \leq | P | +2.

In both cases it is clear from the construction that P \ast is an a-b path. In the case of
item 1.2 where n= r, since (P [wP :],\ttc \tto \ttl ) is well-colored and \ttc \tto \ttl (wP ) = cP it follows
that (P \ast ,\ttc \tto \ttl \ast ) is well-colored. Moreover, (\mu cP [a,wP ],\ttm \tto \ttn \tto \ttc \tth \ttr cP ) is a shortest a-wP

path, hence | P \ast | = | P | .
In the case of item 2.3, since (P,\ttc \tto \ttl ) is well-colored so are (P [a,xn],\ttc \tto \ttl ) and

(P [wP :],\ttc \tto \ttl ). The vertex wP is colored cP and if cP \in \ttC \tto \ttl \tto \ttr \tts (P [a,xn]) it has to be
the last color to appear; otherwise, (P,\ttc \tto \ttl ) would not be well-colored. It follows that
the path (P \ast ,\ttc \tto \ttl \ast ) is well-colored.
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1856 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

xp yn zPxn

Fig. 6. Structure of a path (P,\ttc \tto \ttl )\in \^\scrP n with p the parent of n. Note that yn = xn is possible.

We now show that | P \ast | \leq | P | + 2. This is verified if xn \in V (\mu cP ) since yP is
the second vertex of the shortest xn-wP path \mu cP [xn,wP ] and hence P \ast = P [a,xn]\odot 
\mu cP [xn,wP ]\odot P [wP :] and | P \ast | \leq | P | . Otherwise, in the case when xn /\in V (\mu cP ), yP is
the first vertex of \mu cP adjacent to xn. The path \mu cP [yP ,wP ] is a shortest yP -wP path,
hence | \mu cP [yP ,wP ]| \leq | (yP )\oplus P [xn,wP ]| \leq 1+ | P [xn,wP ]| . This implies the following:

| P \ast | = | P [a,xn]\oplus \mu cP [yP ,wP ]\odot P [wP :]| 
= | P [a,xn]| + 1+ | \mu cP [yP ,wP ]| + | P [wP :]| 
\leq | P [a,xn]| + 2+ | P [xn,wP ]| + | P [wP :]| = | P | + 2.

It remains that for each (c, s)\in \scrC \scrS n, the set \scrP (c,s) associated to a child n\prime of n is
a set of well-colored paths of length at most D\prime +2, where D\prime is the maximum length
of paths in \scrP n. Note that if the paths of \scrP \circ 

n were added to \scrP (c,s) in item 2.5, then
the property still holds as these paths were not modified. Hence by induction, for any
node n of depth d of T , \scrP n is a set of well-colored paths of length at most D + 2d.
This concludes the proof of Claim 4.3.

Let n \not = r be a node of T . Observe that for (c, s) \in \scrC \scrS n, all paths of \scrP (c,s) share
the same successor of xn, the vertex yP defined in item 2.3. Thus for every node n \not = r
of T with parent p \not = r, we can define a vertex yn, the successor of xp in paths of \^\scrP n;
see Figure 6. If n= r or p= r, we let yn = a.

Not let n \not = r be a node of T and n\prime be one of its children. For (P \prime ,\ttc \tto \ttl \prime )\in \^\scrP n\prime there
is (P,\ttc \tto \ttl ) \in \^\scrP n such that (P \prime ,\ttc \tto \ttl \prime ) corresponds to the colored path (P \ast ,\ttc \tto \ttl \ast ) con-
structed from (P,\ttc \tto \ttl ) at node n; see item 2.3. Therefore, (P [a,xn],\ttc \tto \ttl ) = (P \prime [a,xn],
\ttc \tto \ttl \prime ). Moreover, the vertex yn\prime is the successor of xn shared among all the paths in
\^\scrP n\prime . Hence, if n\prime is not a leaf, the vertex xn\prime appears strictly after xn on paths of
\^\scrP n\prime since xn\prime is either yn\prime or comes after it. Therefore, the following observation is
verified by induction.

Observation 3. Let n \not = r be a node of T , n\prime \not = n a node of Tn, (P,\ttc \tto \ttl )\in \^\scrP n, and
(P \prime ,\ttc \tto \ttl \prime ) \in \^\scrP n\prime . Then (P [a,xn],\ttc \tto \ttl ) = (P \prime [a,xn],\ttc \tto \ttl 

\prime ), and if n\prime is a not a leaf, xn

appears strictly before xn\prime on the path P \prime .

The following observation is a direct consequence of our construction.

Observation 4. Let \{ n,n\prime \} be an edge of T and (P, col) \in \^\scrP n\prime . Then the letter
\ttl \tta \ttb (\{ n,n\prime \} ) is a letter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P [a,xn\prime ],\ttc \tto \ttl ). Moreover, the color of
\ttl \tta \ttb (\{ n,n\prime \} ) is the color of the first letter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P [yn\prime :],\ttc \tto \ttl ) (the
signs can be different, see the special case for the definition of sP in Item 2.4).

The following claim implies that the construction terminates.

Claim 4.4. The height of T is at most k.

Proof. Let n \not = r be a node of T and (P,\ttc \tto \ttl )\in \^\scrP n. We show that \ttC \tto \ttl \tto \ttr \tts (P \ast [yP :])
is strictly included in \ttC \tto \ttl \tto \ttr \tts (P [yn :]). From the choice of wP in item 2.3, we have
the following:

\ttC \tto \ttl \tto \ttr \tts (P \ast [yP :])\subseteq \ttC \tto \ttl \tto \ttr \tts (P [yn :]) \setminus (\scrC n \setminus \{ cP \} ).
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1857

If | \scrC n| \geq 2, it follows that \ttC \tto \ttl \tto \ttr \tts (P \ast [yP :]) \subsetneq \ttC \tto \ttl \tto \ttr \tts (P [yn :]). If | \scrC n| = 1, then c =
\ttc \tto \ttl (yn) /\in \scrC n. Indeed, if c was the only color in \scrC n, since paths in \^\scrP n are well-colored
and yn \not = yP , they all share the subpath (\mu c[yn, yP ],\ttm \tto \ttn \tto \ttc \tth \ttr c), a contradiction with
the choice of xn. Hence \ttC \tto \ttl \tto \ttr \tts (P \ast [yP :])\subseteq \ttC \tto \ttl \tto \ttr \tts (P [yn :]) \setminus \{ c\} . It follows that for
any child n\prime of n, \ttC \tto \ttl \tto \ttr \tts ( \^\scrP n\prime [yn\prime :])\subsetneq \ttC \tto \ttl \tto \ttr \tts ( \^\scrP n[yn :]). Hence for a node n \not = r of T ,
| \ttC \tto \ttl \tto \ttr \tts ( \^\scrP n[yn :])| \geq 1 and for a child n\prime of n, | \ttC \tto \ttl \tto \ttr \tts ( \^\scrP n\prime [yn\prime :])| < | \ttC \tto \ttl \tto \ttr \tts ( \^\scrP n[yn :])| .
It follows that the height of T is at most k since | \ttC \tto \ttl \tto \ttr \tts (\scrP r)| \leq k and that for any
child n\prime of r \ttC \tto \ttl \tto \ttr \tts (\scrP n\prime )\subseteq \ttC \tto \ttl \tto \ttr \tts (\scrP r). This concludes the proof of Claim 4.4.

Claim 4.5. (T,\ttl \tta \ttb ) is a k-labelled branching tree.

Proof. Let n be a node of T and n1, . . . , nt its children. Item (ii) of Definition 3.5
is verified since for each (c, s)\in \scrC \scrS n at most one edge \{ n,ni\} is labelled (c, s).

We now prove item (iii), i.e., Tni
does not contain any edge with labels in \scrL \scrS (n)\setminus 

\{ \ttl \tta \ttb (\{ n,ni\} )\} . Recall that \scrL \scrS (n) = \{ (c, s), (c, s) | (c, s) \in \scrL (n)\} , where \scrL (n) =
\{ \ttl \tta \ttb (\{ n,n1\} ), . . . ,\ttl \tta \ttb (\{ n,nt\} )\} and s is the opposite of s. Observe that \scrL \scrS (n)\subseteq \scrC \scrS n

(there might be some empty set \scrP (c,s)), and that \scrC \scrS n is defined by the set of colors

\scrC n that appear on the first vertices after xn on paths of \^\scrP n.
Fix ni a child of n and let (ci, si) = \ttl \tta \ttb (\{ n,ni\} ). The case when ni is a leaf is

trivial, since Tni
has no edges, so let us assume that ni is not a leaf. For any (P,\ttc \tto \ttl )

\in \^\scrP n by choice of wP , \ttC \tto \ttl \tto \ttr \tts (P
\ast [yP :],\ttc \tto \ttl \ast ) \subseteq (\ttC \tto \ttl \tto \ttr \tts (P [yn :],\ttc \tto \ttl ) \setminus (\scrC n \setminus \{ cP \} )

(replace yP by a if n is the root). Thus \ttC \tto \ttl \tto \ttr \tts ( \^\scrP ni
[yni

:]) \subseteq (\ttC \tto \ttl \tto \ttr \tts ( \^\scrP n[yn :]) \setminus 
(\scrC n \setminus \{ ci\} )). By induction, this implies that for any node n\prime of Tni , \ttC \tto \ttl \tto \ttr \tts (

\^\scrP n\prime [yn\prime :])
\subseteq (\ttC \tto \ttl \tto \ttr \tts ( \^\scrP n[yn :]) \setminus (\scrC n \setminus \{ ci\} )). By Observation 4, the label of an edge \{ n\prime , n\prime \prime \} 
of Tni

contains the color of yn\prime \prime in paths of \^\scrP n\prime \prime , hence no edges of Tni
have a label

in (\scrC n \setminus \{ ci\} ) \times \{ +, - \} . We now prove that (ci, si) is not used as label for edges
of Tni

. Let \{ n\prime , n\prime \prime \} be an edge of Tni
and assume that \ttl \tta \ttb (\{ n\prime , n\prime \prime \} ) = (ci, si).

Let (P,\ttc \tto \ttl ) \in \^\scrP ni
and (P \prime ,\ttc \tto \ttl \prime ) \in \^\scrP n\prime \prime . By Observation 3, (P [a,xni

],\ttc \tto \ttl ) =
(P \prime [a,xni ],\ttc \tto \ttl 

\prime ), hence Observation 4 implies that \ttl \tta \ttb (\{ n,ni\} ) = (ci, si) is a let-
ter of \ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P \prime [a,xni ],\ttc \tto \ttl 

\prime ). Similarly, we have that (ci, si) is a letter of
\ttC \tto \ttl \tto \ttr \tts \ttS \tti \ttg \ttn \tts \ttW \tto \ttr \ttd (P \prime ,\ttc \tto \ttl \prime ). This is a contradiction since the path (P \prime ,\ttc \tto \ttl \prime ) is well-
colored (Claim 4.3). Hence there are no edges of Tni

with labels in \scrC \scrS n \setminus \{ (ci, si)\} ,
proving item (iii).

It remains to prove item (i), i.e., in every path from the root of T to one of its
leaves, the edges with the same label form a connected subpath. Let r= p1, p2, . . . , pt =
n be the path from the root r of T to a nonleaf node n. If there exists a child n\prime 

of n such that \ttl \tta \ttb (\{ n,n\prime \} ) = \ttl \tta \ttb (\{ pi - 1, pi\} ) = (c, s), i \in \{ 2, . . . , t\} , then we have to
show that for any i < j \leq t, \ttl \tta \ttb (\{ pj - 1, pj\} ) = (c, s). Suppose that there exist such
n\prime and i. For (P,\ttc \tto \ttl ) \in \^\scrP pi

and (P \prime ,\ttc \tto \ttl \prime ) \in \^\scrP n\prime , by Observation 3 (P [a,xpi
],\ttc \tto \ttl ) =

(P \prime [a,xpi ],\ttc \tto \ttl 
\prime ). By Observation 4, the vertex ypi (that appears before xpi) is colored

c in both of these subpaths, and so is yn\prime in (P \prime ,\ttc \tto \ttl \prime ). Since (P \prime ,\ttc \tto \ttl \prime ) is well-
colored, the subpath (P \prime [ypi

, yn\prime ],\ttc \tto \ttl \prime ) is entirely colored with c. For any i < j \leq t,
(P \prime \prime [a,xpj

],\ttc \tto \ttl \prime \prime ) = (P \prime [a,xpj
],\ttc \tto \ttl \prime ), with (P \prime \prime ,\ttc \tto \ttl \prime \prime ) \in \^\scrP pj

. This implies that the
first color of (P \prime \prime [ypj

:],\ttc \tto \ttl \prime \prime ) is c. Since there is no edge of Tni
labelled (c, s), it

follows that \ttl \tta \ttb (\{ pj - 1, pj\} ) = (c, s) and hence item (i) is verified. It remains that
(T,\ttc \tto \ttl ) is a k-labelled branching tree, which concludes the proof of Claim 3.8. This
concludes the proof of Claim 4.5.

For a nonleaf node n of T , we can observe that for any a-bi path in \scrP n, bi \in 
\{ b1 . . . , bq\} , there is a child n\prime such that \scrP n\prime contains a a-bi path (notice that it may
be added via the set \scrP \circ 

n). This implies that for any bi there is a leaf l of T such that
\scrP l contains a well-colored a-bi path. For a leaf l of T , by construction, \scrP l contains a
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1858 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

path (P,\ttc \tto \ttl ) including any other path of \scrP l. Moreover, the length of P is at most
D+2k by Claims 4.3 and 4.4. This implies that | \scrP l| \leq 2k+1, because \scrP l only contains
subpaths of P , of length between D and D + 2k. Since T is a k-labelled branching
tree, by Lemma 3.9, it has O(3k) leaves, hence there are O(k \cdot 3k) vertices at distance
D from a.

In order to complete the proof of Theorem 1.2 and show that pw(G) =O(k \cdot 3k),
we simply apply Lemma 2.1 with K =O(k \cdot 3k).

5. Algorithmic consequences. Problem Strong Geodetic Set with Ter-
minals is known to be NP-complete by [9]. By a simple reduction, so is Isometric
Path Cover with Terminals.

Proposition 5.1. Isometric Path Cover with Terminals is NP-complete.

Proof. We provide a straightforward reduction from Strong Geodetic Set
with Terminals. Let (G = (V,E), k) be an instance of Strong Geodetic Set
with Terminals with terminals v1, . . . , vk. We build an instance of Isometric
Path Cover with Terminals by considering all

\bigl( 
k
2

\bigr) 
possible pairs of terminals i.e.,

(G = (V,E),
\bigcup 

1\leq i<j\leq k\{ (vi, vj)\} ). By definition, (G,k) is a Yes-instance of Strong

Geodetic Set with Terminals, i.e., there exists a set of
\bigl( 
k
2

\bigr) 
shortest paths covering

V (G) if and only if (G,k\prime ) is a Yes-instance of Isometric Path Cover with
Terminals, i.e., a set of k\prime shortest vi-vj paths, 1\leq i < j \leq k covering V (G).

We now prove the algorithmic consequences stated Theorem 1.3 and Corollary
1.4. We recall these theorems for the sake of readability.

Theorem 1.3. Isometric Path Cover with Terminals and Strong Geo-
detic Set with Terminals are FPT when parameterized by the number of termi-
nals.

Corollary 1.4. Isometric Path Cover and Strong Geodetic Set are in
XP when parameterized by the number of paths, respectively terminals.

Proof of Theorem 1.3 and Corollary 1.4. Recall that, for simplicity, we assume
that our input graph is connected, but all results easily extend to disconnected graphs.
We first show that problem Isometric Path Cover with Terminals is FPT when
parameterized by k, the number of pairs of terminals. As a first consequence, so is
problem Strong Geodetic Set with Terminals, a special case of Isometric
Path Cover with Terminals with

\bigl( 
k
2

\bigr) 
pairs of terminals. Corollary 1.4 follows

immediately, since for both Isometric Path Cover and Strong Geodetic Set
it suffices to try all possible sets of terminals and use the FPT algorithms for the
versions with terminals.

Let us focus on Isometric Path Cover with Terminals, with parameter k,
input G, and the k pairs of terminals (s1, t1), . . . , (sk, tk). We can assume that the
pathwidth (and hence treewidth) of the input graph is upper bounded by a function
of k, as stated in Theorem 1.2, and that we have in the input a tree decomposition
of such width. Indeed, recall that Theorem 1.2 does not only provide a combinatorial
bound on the pathwidth of YES-instances, but also a simple, BFS-algorithm for com-
puting the suitable path decompositions (which is also, as stated in section 2, a tree
decomposition of the same width). If the algorithm fails to find a path decomposition
of small width, we can directly conclude that our input graph is a NO-instance.

Therefore, we can use the classical Monadic Second-Order Logic of graphs (hence-
forth called MSOL2) tools on bounded treewidth graphs. MSOL2 includes the logical
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ON GRAPHS COVERABLE BY k SHORTEST PATHS 1859

connectives \vee , \wedge , \neg , \leftrightarrow , \Rightarrow , variables for vertices, edges, sets of vertices, and sets of
edges, the quantifiers \forall and \exists that can be applied to these variables, and five binary
relations: adj(u, v), where u and v are vertex variables and the interpretation is that
u and v are adjacent; inc(v, e), where v is a vertex variable and e is an edge variable
and the interpretation is that v is incident to e; v \in V \prime , where v is a vertex variable
and V \prime is a vertex set variable; the similar e \in E\prime on edge variable e and edge set
variable E\prime , and eventually equality of two variables of the same nature.

By a celebrated theorem of Courcelle [7], any problem expressible in MSOL2 can
be solved in time f(tw) \cdot n time on bounded treewidth graphs if a tree decomposition
of the input graph is also given. Function f depends on the formula (hence, on the
problem). Courcelle's theorem extends in several ways to optimization problems,
and slightly larger classes of formulae, e.g., allowing one to identify a fixed number
of terminal vertices, as we shall detail later. Here we will refer to [3], one of the
(alternative) proofs of Courcelle's theorem, with some extensions. As noted in [3],
MSOL2 allows one to express properties as Connected(V \prime ,E\prime ) where V \prime is a vertex
set variable and E\prime is an edge set variable and the property is true if and only if
(V \prime ,E\prime ) is a connected subgraph of G. Also let Cover(V1, . . . , Vk) express the fact
that vertex subsets V1, . . . , Vk cover all vertices of the graph, by simply stating that
\forall x(x\in V1 \vee x\in V2 \vee . . . x\in Vk).

This allows us to express Isometric Path Cover with Terminals as an
optimization MSOL2 problem, called an EMS-problem in [3]. Let \varphi (E1, . . . ,Ek) be the
formula on edge sets E1, . . . ,Ek expressing the property that there exist k connected
subgraphs (V1,E1), . . . , (Vk,Ek) of G such that the sets V1, . . . , Vk cover all vertices of
G, and graph (Vi,Ei) contains terminals si, ti, for all 1\leq i\leq k. More formally,

\varphi (E1, . . . ,Ek) = \exists V1, . . . Vk [(s1 \in V1)\wedge (t1 \in V1)\wedge \cdot \cdot \cdot \wedge (sk \in Vk)\wedge (tk \in Vk)

\wedge Cover(V1, . . . , Vk)\wedge Connected(V1,E1)\wedge \cdot \cdot \cdot \wedge Connected(Vk,Ek)].

Consider now the optimization version of this problem, where the goal is to find
edge sets E1, . . . ,Ek satisfying \varphi (E1, . . . ,Ek) and minimizing | E1| + \cdot \cdot \cdot + | Ek| . Let
OptCover denote this optimum. By Theorem 5.6 in [3], this problem can be solved
in linear time on bounded treewidth graphs. More precisely, Arnborg, Lagergren,
and Seese [3] call such problems ``EMS linear extremum problems"", in the sense that
they correspond to linear optimization functions over the sizes of set variables, when
these variables satisfy an MSOL2 formula over labelled graphs with a fixed number
of labels (here we consider each terminal vertex labelled with a different label). In
contemporary terms, the problem is FPT parameterized by treewidth plus the number
of terminals, and the running time is linear in n.

We now observe that our input is a YES-instance of Isometric Path Cover
with Terminals if and only if OptCover = dist(s1, t1)+dist(s2, t2)+\cdot \cdot \cdot +dist(sk, tk).
Indeed, if there exist the required shortest si-ti paths P1, . . . , Pk covering the vertex
set of the whole graph, then their edge sets E1, . . . ,Ek provide a solution for our
optimization problem whose objective is the sum of the lengths of the paths. Con-
versely, for any of the k connected subgraphs (Vi,Ei) of G such that si, ti \in Vi, we
have | Ei| \geq dist(si, ti). Therefore, by simply checking if OptCover corresponds to the
sum of the distances between pairs of terminals, we decide whether the input satis-
fies Isometric Path Cover with Terminals. Altogether, this problem is FPT
parameterized by k, which concludes the proof of Theorem 1.3.

As mentioned in the introduction, the same techniques extend to variants where
the covering paths are required to be edge-disjoint or vertex-disjoint, by simply adding
disjointness conditions in the MSOL2 formula \varphi .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

0/
24

 to
 1

94
.1

67
.3

1.
81

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1860 M. DUMAS, F. FOUCAUD, A. PEREZ, AND I. TODINCA

\mu 1

\mu 2

\mu 3

\mu 4

a

2k - 1

2k - 2
2k - 2

2k - 1

2k - 3

2k - 2

Fig. 7. A graph that can be edge-covered with k shortest paths and with 2k vertices at distance
2k - 1 from a. Therefore, a path decomposition obtained by a BFS from vertex a has width exponential
in k. Nevertheless, one can easily prove that this graph has pathwidth at most k. (Color available
online.)

6. Conclusion. We have shown that graphs that can be covered by k shortest
paths have their pathwidth upper-bounded by a function of k. Our bound is ex-
ponential, and the first natural open question is whether it can be improved to a
polynomial bound. Such an improvement cannot rely on path decompositions based
on the layers of an arbitrary BFS, since we have examples (see Figure 7) where the
same layer contains 2k vertices. Nevertheless, we leave as an open question whether
graphs whose vertices (or edges) can be covered by k shortest paths have treewidth
at most a polynomial in k.

Observe that the approach does not generalize to coverings with few induced paths,
since grids have arbitrarily large treewidth but are edge-coverable by four induced
paths.

On the algorithmic side, we have proved that the Isometric Path Cover with
Terminals and Strong Geodetic Set with Terminals problems are FPT pa-
rameterized by the number of terminals. This directly entails that problems Isomet-
ric Path Cover and Strong Geodetic Set are in XP with respect to the same
parameter, by simply enumerating all possible pairs (respectively, sets) of terminals.
An exciting open question is whether these two problems are FPT. By Theorem 1.2,
this is equivalent to asking if the problems are FPT when parameterized by the solu-
tion size (i.e., number of paths/terminals) + pathwidth. (Indeed, if k is the number
of terminals, Theorem 1.2 ensures that either the pathwidth pw of the input graph
is upper bounded by a function f(k), or we can directly reject the input for being
a NO-instance. Therefore, if one of the problems is FPT parameterized by k + pw,
we obtain an FPT algorithm parameterized by k as follows. The algorithm checks
that pw\leq f(k) as in Theorem 1.2, by a simple breadth-first search from an arbitrary
vertex. If the assertion is false, the algorithm rejects. Otherwise, it simply remains to
apply the algorithm parameterized by k+pw on parameter k+f(k). Nevertheless, the
answer to the question whether these problems are FPT for parameter k+pw seems
nontrivial. At least, while many optimization problems are FPT when parameterized
by treewidth/pathwidth, several problems including constraints on distances remain
W [1]-hard even when parameterized by such structural parameters, plus solution size.
We can cite recent hardness results for d-Scattered Set [17], whose goal is to find
a large set of vertices at pairwise distance at least d or, even closer to our problems,
Geodetic set [18], where one aims to find a small set of terminals of the input

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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graph such that the set of all shortest paths between every pair of terminals covers
the graph.

Another natural question is the study of these problems on directed graphs. Note
that Isometric Path Partition, the partition version of Isometric Path Cover,
was proved to be W[1]-hard on DAGs for the parameter solution size in [14]. Moreover,
there are tournaments (orientations of cliques) whose vertices can be covered by a
unique shortest path. For instance, those created from a directed Hamiltonian path
with all remaining arcs going in the reverse direction. The treewidth of the underlying
undirected graph, which is a clique, is not bounded. A DAG that can be covered by
two directed paths but whose underlying undirected graph has large treewidth is the
following: consider two disjoint directed paths, and add all arcs from the vertices of
the first path to all vertices of the second one. Thus, our results cannot be directly
extended to digraphs, not even to DAGs.
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