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We study upper bounds on the size of optimum locating-total dominating sets in graphs. 
A set S of vertices of a graph G is a locating-total dominating set if every vertex of G has a 
neighbor in S , and if any two vertices outside S have distinct neighborhoods within S . The 
smallest size of such a set is denoted by γ L

t (G). It has been conjectured that γ L
t (G) ≤ 2n

3
holds for every twin-free graph G of order n without isolated vertices. We prove that the 
conjecture holds for cobipartite graphs, split graphs, block graphs and subcubic graphs.

© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction

Our aim is to study upper bounds on the smallest size of locating-total dominating sets in graphs. This notion is part of 
the extended research area of identification problems in graphs and, more generally, discrete structures like hypergraphs. In 
these types of problems, one seeks to select a small solution set, generally some vertices of a graph, in order to uniquely 
identify each vertex of the graph by its relationship with the selected vertices. More precisely, given a set D of vertices 
of a graph G , we say that two vertices v and w of G are located by D if they have distinct sets of neighbors in D . On 
the other hand, any set D of vertices of G that locates every pair v, w of vertices in V (G) \ D is called a locating set of 
G . Various notions based on this location property have been studied, such as locating-dominating sets [34], identifying 
codes [28] or separating sets [8], to name a few. We refer to the online bibliography on these topics maintained by Jean 
and Lobstein [27] (almost 500 references by the time of writing, in 2022). Such problems have a wide range of applications, 
such as fault-detection in sensor or computer networks [28,35], biological testing [31], machine learning [10], or canonical 
representations of graphs [3,29], to name a few.
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In this paper, we study the notion of a locating-total dominating set. A set D of vertices is a total dominating set, abbre-
viated TD-set, of a graph G if every vertex in G has a neighbor in D . Total dominating sets are a natural and widely studied 
variant of the domination problem in graphs. We refer to the books [22,26] for an overview on the topic. A locating-total 
dominating set of G is a TD-set D ⊂ V (G) such that any two vertices of G not in D are located by D . The smallest size 
of such a locating-total dominating set of a graph G is called the locating-total domination number of G and is denoted by 
γ L

t (G). A graph admits a (locating-)total dominating set if and only if it has no isolated vertex. We abbreviate a locating-total 
dominating set by LTD-set, and we say that a γ L

t -set of G is an LTD-set of minimum cardinality, γ L
t (G), in G .

The concept of a locating-total dominating set was first considered in [23], based on the similar concept of a locating-
dominating set (where total domination is replaced with usual domination) introduced by Slater in the 1980s [34]. It 
was studied for example in [1,2,5–7,12–14,17,18,24,25]. The associated decision problem is NP-hard [30,32,33]. The related 
concept where all vertices (not just the ones outside of D) must be located was studied in [12,20,23].

It is known that any graph of order n with every component of order at least 3 has a TD-set size at most 2
3 n [15], and 

this bound is tight only for the triangle, the 6-cycle and the family of 2-coronas of graphs [11]. (The 2-corona H ◦ P2 of a 
connected graph H is the graph of order 3|V (H)| obtained from H by attaching a path of length 2 to each vertex of H so 
that the resulting paths are vertex-disjoint.)

However, such a bound does not hold for locating-total dominating sets. Two vertices of a graph are twins if they either 
have the same open neighborhood (open twins) or the same closed neighborhood (closed twins). Consider a set S of vertices 
that are pairwise twins of size at least 2 in a graph G (and S forms either a clique or an independent set). Then, any 
locating-total dominating set D needs to contain all vertices of S except possibly one. Indeed, any two such vertices not in 
D would otherwise not be located. For example, any complete graph of order at least 2 has only twins, and thus has its 
locating-total domination number equal to its order minus one (while any two vertices form a total dominating set). Other 
families of (twin-free) graphs with a total dominating set of size 2 and arbitrarily large locating-total domination number 
have been described in [17].

Nevertheless, it seems that in the absence of twins, the locating-total domination number cannot be as close to the 
graph’s order as in the general case. Towards such a fact, inspired by a similar problem for (non-total) locating-dominating 
sets [16,19,21], two of the authors posed the following conjecture (a graph is called twin-free if it does not contain any 
twins). A graph G is isolate-free if it contains no isolated vertices.

Conjecture 1 ([17]). Every twin-free isolate-free graph G of order n satisfies γ L
t (G) ≤ 2

3 n.

Conjecture 1 was proved in [17] for graphs with no 4-cycles as subgraphs. It was also proved for line graphs in [18]. It 
was also proved in [17] to hold for all graphs with minimum degree at least 26 for which another related conjecture [19,21]
holds (which is the case for example for bipartite graphs and cubic graphs). It was proved in a stronger form for claw-free 
cubic graphs in [24] (there, the 2

3 factor in the upper bound is in fact replaced with 1
2 , and the authors conjectured that 1

2
holds for all connected cubic graphs, except K4 and K3,3). An approximation of the conjecture was proved to hold for all 
twin-free graphs in [17], where the 2

3 factor in the upper bound is replaced with 3
4 .

Note that, if true, the bound of Conjecture 1 is tight for the 6-cycle and 2-coronas, by the following.

Observation 2. If a graph G of order n is a triangle, a 6-cycle or a 2-corona of any graph, then γ L
t (G) = 2

3 n.

A graph is cobipartite if its vertex set can be partitioned into two cliques, and split if it can be partitioned into a stable 
set (also called an independent set in the literature) and a clique. A graph is a block graph if every 2-connected component 
forms a clique. A graph is subcubic if each vertex has degree at most 3.

In this paper, we give further evidence towards Conjecture 1, by showing that it holds for cobipartite graphs (Section 2), 
split graphs (Section 3), block graphs (Section 4) and subcubic graphs (Section 5). We conclude in Section 6.

Some of our results are actually slightly stronger. Indeed, the proved upper bound for cobipartite graphs is in fact n
2

(which is tight). For twin-free split graphs, we show that the 2n
3 bound of the conjecture can never be reached. However, 

we construct infinitely many connected split graphs that come very close to the bound; this is interesting in its own right, 
showing that not only 2-coronas have such large locating-total domination numbers. Moreover, the bound for subcubic 
graphs is proved to hold for all subcubic graphs (except for some small ones like K1, K2, K4 and K1,3), even if they have 
twins.

We now introduce some of the notations used in the paper. The open and closed neighborhoods of a vertex v in a graph 
G are denoted NG (v) and NG [v], respectively (or N(v) and N[v] if G is clear from the context). We denote by degG(v) the 
degree of the vertex v in the graph G , that is, degG(v) = |NG(v)|. The distance in G between two vertices u, v is denoted 
dG (u, v). If two graphs G and H are isomorphic, we note G ∼= H . For a graph G with a vertex or edge x, we denote by G − x
the subgraph of G obtained by removing x, and by G + x the supergraph of G obtained by adding x. Similarly, if X is a set 
of vertices and edges, we use the notations G − X and G + X for the subgraph and supergraph of G obtained by deleting or 
adding all the elements of X . A leaf is a vertex of degree 1, and its unique neighbor is called a support vertex. We denote by 
δ(G) and �(G) the minimum and maximum degree, respectively, in the graph G . We denote a path, a cycle, and a complete
graph on n vertices by Pn , Cn , and Kn , respectively. For an integer k ≥ 1, we let [k] = {1, . . . , k} and [k]0 = {0, 1, . . . , k}.
2
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2. Cobipartite graphs

We now prove a stronger variant of the bound of Conjecture 1, whose proof is a refinement of a similar proof for the 
(non-total) locating-domination number from [19]. For our next result, we make use of the following result due to Bondy [9].

Theorem 3 (Bondy [9]). Let X be a set with |X | = k and let S = {X1, X2, . . . , Xk} be a collection of k distinct subsets of X. Then, there 
exists an element x of X such that Xi \ {x} �= X j \ {x} for any two sets Xi, X j ∈ S and i �= j.

Theorem 4. For any twin-free cobipartite graph G of order n, we have γ L
t (G) ≤ n

2 .

Proof. Let G be a twin-free cobipartite graph of order n. If G is disconnected, then G is the disjoint union of two cliques, 
and thus is not twin-free: it either has closed twins if one of the cliques has order at least 2, or is a pair of open twins 
if both cliques have order 1, a contradiction. Hence, the graph G is connected. Let C1 and C2 be two cliques of G that 
partition its vertex set. Since G is twin-free, both C1 and C2 have size at least 2 where we may assume, renaming C1
and C2 if necessary, that |C1| ≤ |C2|. Moreover, no two vertices of C1 have the same neighborhood in C2, and vice-versa. 
Furthermore, at least |C1| − 1 vertices of C1 must have neighbors in C2, and vice-versa. This implies that both C1 and C2
are locating sets of G . Thus, if any of C1, C2 is a TD-set, then it is also an LTD-set. Hence, if C1 is a TD-set, we are done, as 
|C1| ≤ 
 n

2 �. If however C1 is not a TD-set, it means that some vertex v of C2 has no neighbors in C1; this vertex is unique 
since G is twin-free.

If moreover, there is a vertex w in C1 with no neighbor in C2, then we select the set C = (C1 \ {w}) ∪ {x} as a solution 
set, where x �= v is any vertex of C2 other than v . This set is clearly a TD-set of G . Moreover, any two vertices of C2 are 
located by C , as NG (v) ∩ C = {x} and any two other vertices of C2 \ {x} have distinct and nonempty neighborhoods in C1
(and thus, in C1 \ {w}). Furthermore, w is the only vertex in V (G) \ C not dominated by x. Hence, C is an LTD-set of G . 
Since |C | = |C1| ≤ 
 n

2 �, we are done. Therefore, from now on, we assume that every vertex of C1 has a neighbor in C2, more 
precisely, in the set Cv = C2 \ {v}. Similarly, if |C2| > � n

2 �, that is, if |C1| < 
 n
2 �, then by the same preceding arguments, the 

set C1 together with any vertex of C2 other than v produces an LTD-set of size |C1| + 1 ≤ 
 n
2 �, and we are again done. 

Hence, we also assume from now on that |C2| = � n
2 �.

Now, we must have |C2| ≥ 3, or else, we would have |C1| = |C2| = 2 and by our assumption that every vertex in C1 has 
a neighbor in C2 and the fact that the vertex v ∈ C2 has no neighbor in C1, the two vertices of C1 must be twins in G , a 
contradiction. This implies that both C2 and Cv are TD-sets of G . Therefore, C2 is an LTD-set of G (recall that C2 is already a 
locating set of G). Therefore, if n is even, then we have γ L

t (G) ≤ |C2| = n
2 and we are done. Hence, for the rest of the proof, 

we assume that n is odd. Moreover, if C v \ NG(z) �= ∅ for all z ∈ C1, then we claim that Cv is an LTD-set of G . To prove so, 
since Cv is a TD-set of G , we only need to prove that C v is a locating set of G . To begin with, all pairs of vertices of C1
have distinct neighborhoods in C v and hence, are located by C v . Moreover, with NG(v) ∩ Cv = Cv and the assumption that 
Cv \ NG(z) �= ∅ for all z ∈ C1, the vertex v is located from every vertex z of C1. This proves the claim that C v is an LTD-set 
of G . We can therefore assume for the rest of the proof that there exists a vertex z of C1 with Cv ⊂ NG(z). Note that there 
can be at most one such z ∈ C1 on account of G being twin-free. Next, we prove that there exists a vertex x ∈ C v such that 
the set C = Cvx ∪ {z} is an LTD-set of G , where C vx = Cv \ {x}.

Recall that any two vertices in C1 have distinct neighborhoods in C v . Moreover, since n is odd, we have |C v | = |C1| =

 n

2 �. Therefore, in Theorem 3, taking X = Cv , k = 
 n
2 � and S = {NG(u) ∩ Cv : u ∈ C1} as k pairwise distinct sets of C v , by 

Theorem 3, there exists a subset C vx of Cv , for some x ∈ Cv , which locates all pairs of vertices of C1. In particular, every pair 
of vertices of C1 \ {z} is located by Cvx . Moreover, since NG(z) ∩ Cvx = Cvx (using the assumption that NG (z) ∩ Cv = Cv ), we 
therefore have Cvx �⊂ NG(u) for all u ∈ C1 \ {z}. This implies that the set C vx locates both the vertices v and x from every 
vertex u of C1 \ {z}, since Cvx ⊂ NG(v) and Cvx ⊂ NG(x). Finally, since the vertex z is a neighbor of x and not of v , the 
vertices v and x are located by z ∈ C . This proves that C is a locating set of G . We now show that C is also a TD-set of G . 
To prove so, we see that each vertex of C v ∪ C1 \ {z} has z ∈ C as its neighbor. Moreover, since |C2| ≥ 3, that is, |Cv | ≥ 2, the 
vertices v and z have at least one neighbor each in C vx ⊂ C . This proves that C is a TD-set of G . Hence, C is an LTD-set of 
G .

Therefore, |C | = |Cv | = 
 n
2 � < n

2 and we are done again. This proves the theorem. �
The bound of Theorem 4 is tight for complements of half-graphs (which are graphs with vertex set {x1, . . . , x2k} and edge 

set {xi x j, |i − j| ≤ k − 1}, see [19, Definition 5]). These graphs are cobipartite and have their locating(-total) domination 
number equal to n

2 [19, Proposition 6]. More complicated examples can be found in [19].

3. Split graphs

Consider a split graph G = (Q ∪ S, E) where Q induces a clique and S a stable set. We suppose that G is isolate-free to 
ensure the existence of an LTD-set in G , which further implies that G is connected and Q non-empty (as every component 
not containing the clique Q needs to be an isolated vertex from S).

Theorem 5. For any twin-free isolate-free split graph G = (Q ∪ S, E) of order n, we have γ L
t (G) < 2 n.
3

3
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q1 q′
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s1

q2 q′
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qk q′
k
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. . .

. . .

Q

S

Fig. 1. The construction of graph Gk in the proof of Proposition 6, with an optimal LTD-set (black vertices).

Proof. First, note that we have |Q |, |S| ≥ 2 as otherwise G is a single vertex or not twin-free. Therefore, n ≥ 4. Observe next 
that Q is an LTD-set of G since Q is a TD-set and no two vertices in S have the same neighbors in Q (as G is twin-free) 
showing that Q is also locating. Hence, the assertion is true if |Q | < 2

3 n, that is, if |S| > 1
3 n. Therefore, we can assume 

henceforth that |S| ≤ 1
3 n. In particular, we can assume that n ≥ 6 because, otherwise, if n = 5, we would have |S| ≥ 2 > 1

3 n.
Consider now any set D consisting of all vertices in S and, for each s ∈ S , some arbitrary neighbor qs ∈ Q (which exists 

since G is connected). The set D is an LTD-set of G since D is a TD-set and no two vertices in Q \ D have the same 
neighbors in S (as G is twin-free) implying that D is also locating. Now, we will see how to build such a set D that is 
also of the required size. Note that there exist two vertices s, s′ ∈ S for which N(s) ∩ N(s′) �= ∅. This is because, if, on the 
contrary, for each pair of vertices x, y ∈ S , their neighborhoods are disjoint, it implies that

1. either the vertices of N(x) are pairwise twins whenever |N(x)| ≥ 2, a contradiction, or
2. each set N(x) has cardinality exactly one and so, the rest of the 1

3 n vertices in Q have no neighbors in S . Since n ≥ 6, it 
implies that there exist twins in Q , again a contradiction.

Thus, let qs,s′ ∈ N(s) ∩ N(s′) be a common neighbor of s and s′ . This implies that we can assume the vertices qs and qs′ to 
be equal to qs,s′ . This further implies that

|D| = |S| + |{qx ∈ Q : x ∈ S} − {qs′ }| ≤ 2|S| − 1 <
2

3
n.

This proves the result. �
We next show that the bound of Theorem 5 cannot be improved for split graphs of orders that are multiples of 3.

Proposition 6. For each integer k ≥ 3, there is a connected twin-free split graph Gk of order n = 3k and γ L
t (Gk) = 2k − 1.

Proof. Let Q = {q1, . . . , qk} ∪ {q′
1, . . . , q

′
k} be a clique and S = {s1, . . . , sk} a stable set, so that N(si) = {qi, q′

i} for 1 ≤ i < k
and N(sk) = {q1, . . . , qk}. Note that q′

k has no neighbor in S and that the sets N(si) are disjoint for 1 ≤ i < k. See Fig. 1 for 
an illustration.

Let C be an LTD-set of Gk . Consider the k − 1 closed neighborhoods N[si] for 1 ≤ i < k. If we have |N[si] ∩ C | ≥ 2 for all 
i with 1 ≤ i < k, then 

∣∣⋃
1≤i<k(N[si] ∩ C)

∣∣ ≥ 2k − 2, and at least one of the remaining vertices sk, qk, q′
k must belong to C , as 

otherwise N(qk) ∩ C = N(q′
k) ∩ C would follow, a contradiction. This implies |C | ≥ 2k − 1.

If, however, for some i with 1 ≤ i < k, we have |N[si] ∩ C | = 1, then si /∈ C since otherwise si is not totally dominated by 
the set C . If N[si] ∩ C = {qi}, then N(q′

i) ∩ C = Q ∩ C . If N[si] ∩ C = {q′
i}, then N(qi) ∩ C = (Q ∪{sk}) ∩ C . The two possibilities 

can occur at most once each. Assume that they both occur once each, with N[sa] ∩ C = {q′
a} and N[sb] ∩ C = {qb} (with 

1 ≤ a < b < k). Note that sk ∈ C , otherwise qa and q′
b are not located. Moreover, C must contain q′

k (otherwise q′
b and q′

k are 
not located) and qk (otherwise qa and qk are not located), and so |C | ≥ 2k − 1, as claimed.

Similarly, if we have |N[si] ∩ C | ≥ 2 for all i with 1 ≤ i < k except that N[sa] ∩ C = {q′
a}, if sk ∈ C , then qk ∈ C , otherwise 

qa and qk are not located. If sk /∈ C , then both qk, q′
k are in C to locate the vertices qa, qk, q′

k . Thus, again |C | ≥ 2k − 1.
Finally, if we have |N[si] ∩ C | ≥ 2 for all i with 1 ≤ i < k except that N[sb] ∩ C = {qb}, if sk ∈ C , then q′

k ∈ C , otherwise q′
b

and q′
k are not located. If sk /∈ C , then both qk, q′

k are in C to locate the vertices q′
b, qk, q′

k , and again |C | ≥ 2k − 1.
Thus, in all the above cases, we have |C | ≥ 2k − 1 and, together with the upper bound γ L

t (Gk) < 2
3 × 3k = 2k from 

Theorem 5, we finally obtain γ L
t (Gk) = 2k − 1. �

4. Block graphs

A block graph is a graph in which every maximal 2-connected subgraph (henceforth referred to as a block) is complete. 
Equivalently, block graphs are diamond-free chordal graphs [4], where a diamond is the graph K4 − e, with e being an 
arbitrary edge of the K4. A cut-vertex v of a graph G is one such that the graph G − v has more components than G . For 
any block graph G , a leaf block of G is a block that contains only a single cut-vertex of G . In this section, we show that 
4
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r = 1

3p = 2

B2

B1
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F = B4

B5
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B6
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(a)

uB1uB2

uB6

uB7

uB3

uF = uB4 uB5

vr = v1

v p = v2 v3

v4
v5 v6

(b)

Fig. 2. Figure (a) represents a twin-free block graph G and Figure (b) represents TG . The vertices underneath the dashed curve represent those deleted from 
G to obtain G ′ . The black vertices represent vertices in the set A. (All notations are as in the proof of Theorem 7.)

Conjecture 1 holds for block graphs. Trees are a subclass of block graphs in which every block is of order 2. There are some 
concepts of trees which we use quite often in proving our result for block graphs and we, therefore, define these concepts 
formally here.

A root of a tree is a fixed vertex of the tree to which the name is designated. Having fixed a root r of a tree T , for any 
vertex u of T ,

(1) a child of u is a vertex v of T such that uv is an edge of T and dT (v, r) = dT (u, r) + 1;
(2) a grandchild of u is a vertex w of T such that uv and v w are edges of T and dT (w, r) = dT (u, r) + 2; and
(3) a great-grandchild of u is a vertex x of T such that uv , v w and wx are edges of T and dT (x, r) = dT (u, r) + 3.

Conversely, the vertex u of T is called the parent, the grandparent and the great-grandparent of v , w and x, respectively. 
Given any two vertices u and v of a tree T , we say that u is above v in T (or v is below u in T ) if there exists a sequence of 
vertices x1, x2, . . . , xm of T such that, for each i = 1, 2, . . . , m − 1, xi+1 is a child of xi in T , where m ≥ 2, x1 = u and xm = v .

Theorem 7. If G ∼= P3 or if G is a twin-free isolate-free block graph of order n ≥ 4, then γ L
t (G) ≤ 2

3 n.

Proof. Since the locating-total domination number of a graph is the sum of the locating-total domination numbers of each 
of the components of the graph, it is therefore enough to prove the theorem for a connected twin-free block graph. Thus, 
let us assume that G is either isomorphic to a 3-path or is a connected twin-free block graph of order n ≥ 4. The proof is 
by induction on n ≥ 3. The base case of the induction hypothesis is when n = 3, in which case G ∼= P3 and γ L

t (G) = 2 = 2
3 n. 

Clearly, any two consecutive vertices of P3 constitute a minimum LTD-set of P3 and hence, the result holds for the base 
case of the induction hypothesis. We now assume, therefore, that n ≥ 4 and that the induction hypothesis is true for all 
connected twin-free block graphs of order at least 3 and at most n − 1. Next, we construct a new graph T G from G in the 
following way (see Fig. 2 for an example of the construction).

For every block B of G , introduce a vertex uB ∈ V (TG ) and for every cut-vertex c ∈ V (G), introduce a vertex vc ∈ V (TG). 
Next, we introduce edges uB vc ∈ E(TG) if and only if the cut-vertex c belongs to the block B of G . By construction, therefore, 
TG is a tree. Thus, the vertices of the tree T G are of two types:

(1) u-type: uB introduced in a one-to-one association with a block B of G; and
(2) v-type: vc introduced in a one-to-one association with a cut-vertex c of G .

Notice that any pair of vertices w, z of the tree T G such that w is the grandparent/grandchild of z in T G are of the same 
vertex type. For a fixed cut-vertex r ∈ V (G), designate vr ∈ V (TG ) as the root of T G (indeed, such a cut-vertex exists as 
n ≥ 4 and the twin-free property of G implies that G has at least two blocks). Notice that any leaf of the tree T G is a vertex 
of the type uB for some leaf block B of G . By the twin-free nature of G , every leaf block B of G has order exactly 2. Now, 
5
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fix a leaf uF of TG that is at the farthest distance, in T G , from the root vr of TG . We now look at the great-grandparent of 
the leaf uF in the tree T G (indeed, the great-grandparent of uF in TG exists because, on account of G being twin-free, at 
least one of the blocks of G containing the vertex r has a cut-vertex other than r). Notice that the great-grandparent of uF

in TG must be a vertex of the type v p for some unique cut-vertex p of G . We next define the following.

Bp = {B : B is a block of G and uB is either a child or a great-grandchild of v p in T G};
U = ∪B∈Bp V (B); and

A = {x ∈ U : x is a cut-vertex of G}.
We now establish the following two claims related to the sets defined above.

Claim A. The set A is an LTD-set of G[U ].

Proof of claim. That A is a TD-set of G[U ] is clear from the structure of G . We show that A is also a locating set of 
G[U ]. So, let us assume that vertices w, z ∈ U \ A. This implies that both w and z are not cut-vertices of G . This further 
implies that NG[U ](w) ⊂ A, or else, the block of G that contains w has another non-cut-vertex which is then a twin with 
w in G , a contradiction. Similarly, NG[U ](z) ⊂ A. In other words, NG(w) = NG[U ](w) ∩ A and NG (z) = NG[U ](z) ∩ A. Thus, if 
NG[U ](w) ∩ A = NG[U ] ∩ A, it implies that NG (w) = NG(z) and thus, w and z are twins in G , again a contradiction. Hence, 
A is a locating set of G[U ] and this proves the claim. (�)

Claim B. |A| ≤ 2
3 |U |.

Proof of claim. Let uB1 , uB2 , . . . , uBm be m ≥ 1 children of v p in TG and let each block Bi of G be of order ni . Now, due to 
the twin-free nature of G , each vertex uBi of TG has at least ni − 2 and at most ni − 1 children (and hence at least ni − 2
and at most ni − 1 grandchildren as well). To be more precise, assume that, for 0 ≤ s ≤ m, the vertices uB1 , uB2 , . . . , uBs

have exactly n1 − 2, n2 − 2, . . . , ns − 2 children, respectively, in T G ; and that the vertices uBs+1 , uBs+2 , . . . , uBm have exactly 
ns+1 − 1, ns+2 − 1, . . . , nm − 1 children, respectively, in T G . This implies that we have the following equation.

|U | = 1 − s + 2
∑

1≤i≤m

(ni − 1) = 1 − 2m − s + 2
∑

1≤i≤m

ni .

Moreover, we have

|A| = 1 − s +
∑

1≤i≤m

(ni − 1) = 1 − m − s +
∑

1≤i≤m

ni .

By combining the above two equations, therefore, we have

|U | − (2|A| − 1) = s ≥ 0 =⇒ |A| ≤ 1

2
(|U | + 1) ≤ 2

3
|U |,

where the last inequality follows from noticing that |U | ≥ 3. Hence, this proves the claim. (�)

Now, let G ′ = G − U , that is, G ′ is the graph obtained by deleting from G all vertices (and edges incident with them) in 
the blocks B ∈ Bp . Notice that G ′ is still a connected block graph; and assume that the order of G ′ is n′ (which is strictly 
less than n). We next divide the proof according to whether G ′ is twin-free, has twins or is isomorphic to a 3-path.

Case 1 (G ′ is either twin-free or is isomorphic to a 3-path). We further subdivide this case into the following.

Subcase 1.1 (n′ ≤ 2). In this subcase, if n′ = 2, then the two vertices of G ′ form an edge of G ′ (since G is connected). Hence, the two 
vertices of G ′ are closed twins of degree 1, contrary to our initial assumption in this case. Therefore, let us assume that n′ ≤ 1. If n′ = 1, 
then v p has no grandparent in T G . In other words, there is no vertex of v-type above v p in TG . This implies that v p must itself be the 
root vertex of T G . However, this, in turn, implies that G ′ is an empty graph which contradicts the fact that n′ = 1. Thus, we must have 
n′ = 0. In this case too, v p must itself be the root vertex of T G and so, G = G[U ] and |U | = n. Therefore, by Claim A, the set A is an 
LTD-set of G[U ] = G. Moreover, by Claim B, we have

|A| ≤ 2 |U | = 2
n.
3 3

6
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Subcase 1.2 (n′ ≥ 3). In this subcase, by the induction hypothesis, we have γ L
t (G ′) ≤ 2

3 n′ . Suppose now that S ′ ⊂ V (G ′) is a minimum 
LTD-set of G ′ , that is with |S ′| = γ L

t (G ′). We then claim that the set S = S ′ ∪ A is an LTD-set of G. To prove so, we first see that the set 
S is a TD-set of G, since S ′ is a TD-set of G ′ and A is a TD-set of G[U ]. Moreover, S is also a locating set of G due to the following two 
reasons.

(1) Any two distinct vertices w ∈ V (G ′) \ S ′ and z ∈ V (G) \ S are located by S ′ .
(2) By Claim A, the set A is a locating set of G[U ].

Using Claim B, therefore, the two-thirds bound on γ L
t (G) in this subcase is established by the following inequality.

γ L
t (G) ≤ |S| = |S ′| + |A| ≤ γ L

t (G ′) + 2

3
|U | ≤ 2

3

(
n′ + |U |

)
= 2

3
n.

We next turn to the case that G ′ has twins.

Case 2 (G ′ is neither twin-free nor isomorphic to a 3-path). Assume that x and y are two vertices of G ′ which are twins in G ′. Then, 
without loss of generality, there exists an edge in G between the vertices p and x and there is no edge in G between p and y. This 
implies that x and p belong to the same block X, say, of G to which y does not belong. Moreover, notice that there can be only one such 
y that is a twin of x in G ′ . Let Y be a block of G to which the vertex y belongs. Next, we prove the following claim.

Claim C. If x does not belong to the block Y , then γ L
t (G) ≤ 2

3 n.

Proof of claim. If |V (Y )| ≥ 3, it would mean that x would have at least two neighbors, say, v and w in Y (since x and y are twins 
in G ′). Then the vertices v, w, x, y would induce a K4 in the block graph G making x belong to Y , a contradiction. Therefore, we have 
|V (Y )| = 2, that is, Y is a leaf block of G. So, let V (Y ) = {v, y}. Therefore, we have v ∈ NG ′ (x). Now, assume that degG(y) ≥ 2, that 
is, there exists some w ∈ NG(y) \ {v} (with w = x, possibly). Since x and y are twins in G ′ , if w �= x, we have v, w ∈ NG(x) and 
thus, the set {v, w, x, y} induces a K4 in G. Moreover, if w = x, then the set {v, x, y} induces a K3 in G. Either way, the block Y with 
|V (Y )| = 2 is contained inside the subgraph K3 of G which is a contradiction, since Y , being a block, is a maximal complete subgraph 
of G. Therefore, we have degG(y) = 1, that is, the vertex y is a leaf with v as its support vertex in G.

On the other hand, if degG(x) ≥ 3, then x must have a neighbor w, say, in G other than p and v. Therefore, v, w ∈ NG ′ (x). Since, 
x and y are twins in G ′ , we must also have w ∈ NG(y) making degG(y) ≥ 2, a contradiction. Hence, we have degG(x) = 2 with 
NG(x) = {p, v}. This implies that the set {x, v, y} induces a P3 in G ′ , where, the vertices x and y are leaves of G ′ with v as their 
common support vertex. Let Xv be the block of G containing the vertices x and v. Notice that Xv = X, possibly, if pv ∈ E(G) (recall 
that X is the block of G containing the vertices x and p). Since G ′ �∼= P3 (by our assumption in this case), the vertex v must belong to 
another block of G other than Xv and Y . Now, let G ′′ = G ′ − x. Thus, G ′′ is still a connected block graph.

If the graph G ′′ had twins, then the vertex v must be one of them. However, this possibility cannot arise as y is a leaf of G ′′ with v
as its support vertex. Thus, G ′′ is also twin-free. Therefore, by our induction hypothesis, let S ′′ ⊂ V (G ′′) be a minimum LTD-set of G ′′. 
Then, we have |S ′′| = γ L

t (G ′′) ≤ 2
3 (n′ − 1).

We now claim that S = A ∪ S ′′ is an LTD-set of G. Since, by Claim A, the set A is an LTD-set of G[U ] and S ′′ is assumed to be an 
LTD-set of G ′′ , to show that S is an LTD-set of G, we have to show that

(i) the vertex x is totally dominated and located from every other vertex of V (G) \ S by S; and
(ii) every pair s, t with s ∈ V (G ′′) \ S ′′ and t ∈ U \ A are located by S.

To do so, we note that the support vertex v must belong to the LTD-set S ′′ of G ′′ . This implies that the vertex x is totally dominated by 
v ∈ S and is located from every vertex of U \ A by v ∈ S. Moreover, the vertex p ∈ A. This implies that x is located from every vertex of 
V (G ′′) \ S ′′ by p ∈ S. This implies that x is located by S from every vertex of V (G) \ S. Furthermore, let s ∈ V (G ′′) \ S ′′ and t ∈ U \ A. 
Since the vertex t of U \ A has a neighbor t′ , say, that is a cut-vertex of G, it implies that t′ ∈ U . Hence, we have t′ ∈ A. This implies 
that t′ ∈ S locates the pair s, t. This proves that S is an LTD-set of G. Hence, by Claim B, we have

γ L
t (G) ≤ |S| = |S ′′| + |A| ≤ 2

3

(
(n′ − 1) + |U |

)
<

2

3
n.

This proves the claim. (�)

In view of Claim C therefore, we assume for the rest of this proof that x also belongs to the block Y of G. Now, clearly, X �= Y , or else, 
py would be an edge in G, contradicting our earlier observation. Thus, x is a cut-vertex of G belonging to the distinct blocks X and Y
of G. Moreover, |V (X)| = 2, or else, again, x and y would not be twins in G ′, a contradiction. More precisely, V (X) = {x, p}. We also 
observe here that y cannot be a cut-vertex of G, or else, x and y would not be twins in G ′ , again the contradiction as before. Therefore, 
since G is twin-free, every vertex other than y of the block Y must be a cut-vertex of G.
7
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(a) The vertices to the left of the dashed curve repre-
sent those deleted from G to obtain G ′′ . G ′′ ∼= P3. The 
black vertices constitute the set A and the grey vertices 
constitute an LTD-set S ′′ of G ′′ .

xp
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z

x′′

X

Y

X ′′

(b) The vertices to the left of the dashed curve repre-
sent those deleted from G to obtain G� . G ′′ has twins 
x′′ and y; and G� is a twin-free block graph. The black 
vertices constitute the set A ∪ {x} and the grey vertices 
constitute an LTD-set S� of G� .

Fig. 3. Twin-free block graph G . The dotted boxes mark the blocks X , X ′′ and Y of G as in the proof of Theorem 7.

Now, we again look at the block graph G ′′ = G ′ − x on, say, n′′ (= n′ − 1) vertices (the graph induced by the vertices on the right of 
the dashed curve in Fig. 3a). Notice that, in the tree T G , the vertex vx cannot have any children other than u X , or else, x and y cannot be 
twins in G ′ , contrary to our assumption for this case. This implies that the block graph G ′′ is also connected. We also have y ∈ V (G ′′). 
Thus, n′′ ≥ 1. However, we can show that n′′ �= 2. Suppose, to the contrary, that n′′ = 2. In this case, the graph G ′ is K3 which implies 
that G has twins, a contradiction. Next, we divide this case into the following subcases according to the order n′′ of G ′′ .

Subcase 2.1 (n′′ = 1). In this subcase, we claim that S = A ∪ {x} is an LTD-set of G. It is clear that S is a TD-set of G; by Claim A, set A
is an LTD-set of G[U ]. The vertex y is located from any vertex in U \ A by the vertex x, and thus the set S is also locating. Therefore, in 
this case, using Claim B we have

γ L
t (G) ≤ |S| = |A| + 1 <

2

3

(
|U | + 2

)
= 2

3
n.

Subcase 2.2 (n′′ ≥ 3 and G ′′ is either twin-free or is isomorphic to a 3-path). Since n′′ is at least 3 and is strictly less than n, by the 
induction hypothesis, we have γ L

t (G ′′) ≤ 2
3 n′′ . Moreover, let S ′′ be a minimum LTD-set of G ′′, that is with |S ′′| = γ L

t (G ′′). We next 
claim the following.

Claim D. The set S = S ′′ ∪ A is an LTD-set of G.

Proof of claim. Since S ′′ is a TD-set of G ′′ and A is a TD-set of G[U ∪ {x}], the set S is therefore a TD-set of G. Next we show that 
S is also a locating set of G. To begin with, we note that Y ′′ = Y − x is a block of G ′′ containing the vertex y. Now, since y is not a 
cut-vertex of G, we have S ′′ ∩ Y ′′ �= ∅ (or else, y is not dominated by S ′′). This implies that x is located by S ′′ from all vertices in U \ A. 
Moreover, x is also located by p from all vertices in V (G ′′) \ S ′′ . Next, any pair w, z of distinct vertices with w ∈ V (G ′′) \ S ′′ and 
z ∈ V (G) \ (S ∪ {x}) are located by S ′′ . Finally, any distinct pair of vertices w, z ∈ U \ A are located by A, since the latter is an LTD-set 
of G[U ] by Claim A. (�)

Therefore, in this subcase, once again by Claim B, the theorem follows from the following inequality:

γ L
t (G) ≤ |S| = |S ′′| + |A| = γ L

t (G ′′) + |A| ≤ 2

3

(
n′′ + |U |

)
<

2

3
n.

Subcase 2.3 (n′′ ≥ 3 and G ′′ is neither twin-free nor is isomorphic to a 3-path). Assume that x′′ and y′′ are a pair of twins of G ′′ . 
Moreover, for x′′ and y′′ to be twins in G ′′ , at least one of them must be in the block Y . Let us, without loss of generality, assume that 
y′′ ∈ V (Y ).

We next observe that the vertices y and y′′ are the same. To prove so, suppose, to the contrary, that y′′ �= y. Then y′′ is a cut-vertex 
of G and so, for x′′ and y′′ to be twins in G ′′ , x′′ must not belong to the block Y of G. However, this, in turn, implies that y is a neighbor 
of y′′ but not of x′′ and so, x′′ and y′′ are not twins in G ′′, a contradiction all the same. This, therefore, proves the observation.
8
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Fig. 4. The 2-corona K6 ◦ P2 of a complete graph of order 6.

Again, the vertex x′′ /∈ Y , since otherwise, x′′ �= y′′ = y implies that x′′ is a cut-vertex of G, thus forcing x′′ and y′′ to not be twins, 
contrary to our supposition. Let x′′ belong to the block X ′′ (�= Y ) of G ′′ (and of G). We now try to establish the structure of the block Y
of G. Notice that, by the structure of a block graph, the twins x′′ and y in G ′′ must have a single common neighbor z, say, in G ′′ such 
that z is a cut-vertex of G belonging to both the blocks Y and X ′′ of G. Furthermore, if the block Y contains any vertex of G other than 
the vertices x, y and z, then x′′ and y are not twins in G ′′, a contradiction. Thus, we have V (Y ) = {x, y, z}.

Next, to understand the structure of the block X ′′ of G ′′ , we see that neither can X ′′ contain any vertex other than z and x′′ , nor 
can x′′ be a cut-vertex of G; or else, we again have the contradiction that x′′ and y are not twins in G ′′ . Therefore, this implies that 
V (X ′′) = {x′′, z}, that is, X ′′ is a leaf block of G ′′ (and of G). See Fig. 3 for the structure of the blocks X ′′ and Y .

With that, we look at the block graph G� = G ′′ − y (the graph induced by the vertices on the right of the dashed curve in Fig. 3b). 
Then, G� is again a connected graph, since y is not a cut-vertex of G. Moreover, the order n� of G� is at least 2 (since x′′, z ∈ V (G�)). If, 
however, n� = 2, then we have V (G ′′) = {x′′, y, z} and thus, G ′′ is isomorphic to a 3-path, contrary to our assumption in this subcase. 
Therefore, we have n� ≥ 3. We next show the following claim.

Claim E. The graph G� is twin-free.

Proof of claim. Suppose, to the contrary, that the block graph G� has a pair of twins. In this case, one of them must be the cut-vertex 
z of G. Let x� be the other vertex of G� such that x� and z are twins in G� . Since x′′ is a neighbor of z alone in G� , therefore z cannot 
be a twin in G� of any vertex other than x′′. In other words, x� = x′′ . However, since degG� (x′′) = 1, we have degG� (z) = 1 and, hence, 
the graph G� is simply the edge x′′z of G. This however, contradicts the fact that n� ≥ 3. Hence, this proves that G� is twin-free. (�)

Since n� is at least 3 and is strictly less than n, by the induction hypothesis, we have γ L
t (G�) ≤ 2

3 n� . Moreover, let S� be a minimum 
LTD-set of G� , that is with |S�| = γ L

t (G�). We next claim the following.

Claim F. The set S = S� ∪ A ∪ {x} is an LTD-set of G.

Proof of claim. Since S� is a TD-set of G� and A ∪ {x} is a TD-set of G[U ∪ {x, y}], the set S is therefore a TD-set of G. Next we show 
that S is also a locating set of G. To begin with, we note that, since x′′ is a leaf in G� , its support vertex z must be in the LTD-set S� of 
G� . Thus, the vertex y is located from every other vertex in V (G) \ S by the set {x, z}. Next, any pair w1, w2 of distinct vertices with 
w1 ∈ V (G�) \ S� and w2 ∈ V (G) \ S, respectively, are located by S�. Finally, by Claim A, any pair of distinct vertices w1, w2 ∈ U \ A
are located by the set A. (�)

Therefore, again using Claim B, in this subcase, the theorem follows from the following inequality:

γ L
t (G) ≤ |S| = |S�| + |A| + 1 <

2

3

(
n� + |U | + 2

)
= 2

3
n.

This completes the proof. �
The “twin-free” condition for block graphs is necessary as, without it, the conjecture does not hold: for example, for 

�-stars K1,� with � ≥ 3 (which are block graphs), the locating-total domination number is �. On the other hand, for any 
block graph H of order k ≥ 2, the 2-corona G = H ◦ P2 is a twin-free block graph of order n = 3k and by Observation 2, it 
has locating-total domination number equal to its total domination number, that is, γ L

t (G) = γt(G) = 2k = 2
3 n. See Fig. 4 for 

an illustration with H a complete graph. Thus, we obtain the following.

Proposition 8. There are infinitely many connected twin-free block graphs G of order n with γ L
t (G) = 2

3 n.
9
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5. Subcubic graphs

In this section, we establish a tight upper bound on the locating-total domination number of a subcubic graph, where 
a subcubic graph is a graph with maximum degree at most 3. For this purpose, let Ftdom be the family consisting of the 
three complete graphs K1, K2, and K4, and a star K1,3, that is,

Ftdom = {K1, K2, K4, K1,3}.
Recall that a diamond is the graph K4 − e where e is an arbitrary edge of the K4. A paw is the graph obtained from a 

triangle K3 by adding a new vertex and joining it with an edge to one vertex of the triangle. Equivalently, a paw is obtained 
from K1,3 by adding an edge between two leaves.

For k ≥ 2, we say a graph G contains a (d1, d2, . . . , dk)-sequence if there exists a path v1 v2 . . . vk such that degG(vi) = di
for all i ∈ [k]. We are now in a position to prove the following upper bound on the locating-total domination number of a 
subcubic graph.

Theorem 9. If G /∈Ftdom is a connected subcubic graph of order n ≥ 3, then γ L
t (G) ≤ 2

3 n.

Proof. Suppose, to the contrary, that the theorem is false. Among all counterexamples, let G be one of minimum order n. 
If n = 3, then G ∼= P3 or G ∼= K3, and in both cases γ L

t (G) = 2 = 2
3 n, a contradiction. Hence, n ≥ 4. Suppose n = 4. By 

assumption, G /∈ {K4, K1,3}. If G is a diamond or a paw, then let S consist of one vertex of degree 2 and one vertex of 
degree 3, and if G is a path or a cycle, then let S consist of two adjacent vertices of degree 2. In all cases, S is an LTD-set 
of G of cardinality 2, and so γ L

t (G) ≤ 2 < 2
3 n, a contradiction. Hence, n ≥ 5.

Suppose that n = 5. If G is a path P5 or a cycle C5, then γ L
t (G) = 3 < 2

3 n (choose three consecutive vertices of degree 2), 
a contradiction. Hence, �(G) = 3. Let v be a vertex of degree 3 in G with neighbors v1, v2, v3. Let v4 be the remaining 
vertex of G . Since G is connected, we may assume, renaming vertices if necessary, that v1 v4 is an edge. The set {v, v1, v2}
is an LTD-set of G , and so γ L

t (G) ≤ 3 < 2
3 n, a contradiction. Hence, n ≥ 6.

Suppose that n = 6. If G is a path P6 or a cycle C6, then γ L
t (G) = 4 = 2

3 n (choose four consecutive vertices of degree 2), 
a contradiction. Hence, �(G) = 3. Let v be a vertex of degree 3 in G with neighbors v1, v2, v3, and let v4 and v5 be the 
two remaining vertices of G . Since G is connected, we may assume, renaming vertices if necessary, that v1 v4 is an edge. 
One of the sets {v, v1, v2, v4} and {v, v1, v3, v4} is an LTD-set of G , and so γ L

t (G) ≤ 4 = 2
3 n, a contradiction. Hence, n ≥ 7.

In what follows, we adopt the notation that if there is a (d1, d2, . . . , dk)-sequence in G , then P : v1 v2 . . . vk denotes a 
path in G associated with such a sequence, where degG(vi) = di for all i ∈ [k]. Further, we let G ′ = G − V (P ) and let G ′
have order n′ , and so n′ = n − k. Recall that n ≥ 7.

We show firstly that there is no vertex of degree 1.

Claim G. δ(G) ≥ 2.

Proof of claim. Suppose, to the contrary, that δ(G) = 1. We proceed further with a series of structural properties of the 
graph G that show that certain (d1, d2, . . . , dk)-sequences are forbidden.

Subclaim G.1. The following properties hold in the graph G.

(a) There is no (1, 3, 1)-sequence.
(b) There is no (1, 2, 2)-sequence.
(c) There is no (1, 2, 3, 1)-sequence.
(d) There is no (1, 2, 3, 2, 1)-sequence.
(e) There is no (1, 2, 3)-sequence.
(f) There is no (1, 2)-sequence.
(g) There is no (1, 3, 2)-sequence.
(h) There is no (1, 3, 3, 1)-sequence.

Proof of subclaim. (a) Suppose that there is a (1, 3, 1)-sequence in G . In this case, n′ = n − 3 ≥ 4. Since G is connected, so 
too is the graph G ′ . Let v ′ be the third neighbor of v2 in G not on the path P . Suppose G ′ ∈Ftdom, implying that G ′ ∼= K1,3
with v ′ as a leaf in G ′ . The graph G is therefore determined, and has order n = 7. In this case, choosing S to consist of the 
two support vertices (of degree 3) and a leaf neighbor of each support vertex produces an LTD-set of G of cardinality 4, and 
so γ L

t (G) ≤ 4 < 2
3 n. Hence, G ′ /∈ Ftdom. Since G ′ is not a counterexample, it holds that γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set 

of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ γ L

t (G ′) + 2 ≤ 2
3 n, a 

contradiction.
(b) Suppose that there is a (1, 2, 2)-sequence in G . Let v ′ be the second neighbor of v3. As in the previous case, n′ =

n −3 ≥ 4 and G ′ is connected. By part (a), there is no (1, 3, 1)-sequence, implying that G ′ /∈Ftdom and γ L
t (G ′) ≤ 2 n′ = 2 n −2. 
3 3

10
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As before every γ L
t -set of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that 

γ L
t (G) ≤ 2

3 n, a contradiction.
(c) Suppose that there is a (1, 2, 3, 1)-sequence in G . In this case, n′ = n − 4 ≥ 3 and G ′ is connected. By part (a), there is 

no (1, 3, 1)-sequence, implying that G ′ /∈ Ftdom and γ L
t (G ′) ≤ 2

3 n′ = 2
3 (n − 4) < 2

3 n − 2. Every γ L
t -set of G ′ can be extended 

to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a contradiction.
(d) Suppose that there is a (1, 2, 3, 2, 1)-sequence in G . In this case, G ′ is connected and n′ = n −5 ≥ 2. If G ′ ∈Ftdom, then 

G ′ ∼= K2 by the fact that there is no (1, 3, 1)-sequence in G by part (a). The graph G is therefore determined, and is obtained 
from a star K1,3 by subdividing every edge once. We note that G has order n = 7 and the set N[v3] (of non-leaves of G) is 
an LTD-set of G , implying that γ L

t (G) ≤ 4 < 2
3 n, a contradiction. Hence, G ′ /∈Ftdom. Thus, γ L

t (G ′) ≤ 2
3 n′ = 2

3 (n − 5) < 2
3 n − 3. 

Every γ L
t -set of G ′ can be extended to an LTD-set of G by adding to it the vertices v2, v3, and v4, implying that γ L

t (G) < 2
3 n, 

a contradiction.
(e) Suppose that there is a (1, 2, 3)-sequence in G . In this case, n′ = n − 3 ≥ 4 and G ′ contains at most two components. 

Let v4 and v ′
4 be the two neighbors of v3 different from v2. By our earlier observations, each of v4 and v ′

4 has degree at 
least 2 in G , and therefore degree at least 1 in G ′ .

Suppose that G ′ is disconnected. In this case, since there is no (1, 3, 1)-sequence, no (1, 2, 3, 1)-sequence, and no 
(1, 2, 3, 2, 1)-sequence in G , neither component of G ′ belongs to Ftdom. By linearity, we therefore have that γ L

t (G ′) ≤
2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that 

γ L
t (G) ≤ 2

3 n, a contradiction. Hence, G ′ is connected. Recall that n′ ≥ 4.
Suppose now that G ′ is connected. If G ′ ∈ Ftdom, then G ′ ∼= K1,3. Let v5 be the central vertex of G ′ , and so each of v4

and v ′
4 is a leaf neighbor of v5 in G ′ . The graph G is therefore determined and n = 7. The set {v2, v3, v4, v5} is an LTD-set 

of G , implying that γ L
t (G) ≤ 4 < 2

3 n, a contradiction. Hence, G ′ /∈Ftdom. Thus, γ L
t (G ′) ≤ 2

3 n′ = 2
3 n − 2. Every γ L

t -set of G ′ can 
be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L

t (G) ≤ 2
3 n, a contradiction.

(f) Since there is no (1, 2, 1)-sequence (since n ≥ 7), no (1, 2, 2)-sequence by (b) and no (1, 2, 3)-sequence by (e), there 
can be no (1, 2)-sequence in G . Hence, part (f) follows immediately from parts (b) and (e).

(g) Suppose that there is a (1, 3, 2)-sequence in G . In this case, n′ = n − 3 ≥ 4. If G ′ is disconnected, then by parts (a)–(f), 
neither component of G ′ belongs to Ftdom. By linearity, we therefore have that γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of 

G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a contradiction. 
Hence, G ′ is connected. If G ′ ∈ Ftdom, then G ′ ∼= K1,3. In this case, the graph G has order n = 7 and is obtained from a 
5-cycle by selecting two non-adjacent vertices on the cycle and adding a pendant edge to these two vertices. In this case, 
the set consisting of the two vertices of degree 3 and any two vertices of degree 2 is an LTD-set of G , implying that 
γ L

t (G) ≤ 4 < 2
3 n, a contradiction. Hence, G ′ /∈Ftdom. Thus, γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′ can be extended to an 

LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a contradiction.
(h) Suppose that there is a (1, 3, 3, 1)-sequence in G . In this case, n′ = n −4 ≥ 3 and G ′ contains at most two components. 

Let ui be the neighbor of vi not on P for i ∈ {2, 3}. Possibly, u2 = u3. By parts (a) and (g), the vertex ui has degree 3 in G
for i ∈ {2, 3}. Suppose that G ′ is disconnected. In this case, by parts (a)–(g), neither component of G ′ belongs to Ftdom. By 
linearity, we therefore have that γ L

t (G ′) ≤ 2
3 n′ = 2

3 (n − 4) < 2
3 n − 2. Every γ L

t -set of G ′ can be extended to an LTD-set of G

by adding to it the vertices v2 and v3, implying that γ L
t (G) < 2

3 n, a contradiction. Hence, G ′ is connected. Recall that n′ ≥ 3. 
By parts (a)–(g), we note that G ′ /∈ Ftdom, implying that γ L

t (G ′) ≤ 2
3 n′ < 2

3 n − 2. Every γ L
t -set of G ′ can be extended to an 

LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) < 2

3 n, a contradiction.
Thus, the proof of the subclaim is complete. (�)

We now return to the proof of Claim G. By Subclaim G.1(f), the neighbor of every vertex of degree 1 has degree 3 in G . 
Further by Subclaim G.1(a) and (g), such a vertex of degree 3 has both its other two neighbors of degree 3. Therefore the 
existence of a vertex of degree 1 implies that there is a (1, 3, 3)-sequence in G . In this case, n′ = n − 3 ≥ 4. Let u2 be the 
neighbor of v2 not on P , and let u3 and w3 be the two neighbors of v3 not on P . By our earlier observations, the vertex 
u2 has degree 3 in G , and, by Subclaim G.1(h), both vertices u3 and w3 have degree at least 2 in G .

Suppose that G ′ contains a component that belongs to Ftdom. By Subclaim G.1, this is only possible if u3 and w3
are adjacent and both vertices have degree 2 in G . In this case, G[{v3, u3, w3}] is a triangle in G . We now consider the 
connected graph G∗ = G − {v1, v2, v3, u3, w3} of order n∗ = n − 5. Since u2 has degree 2 in G∗ , we note that n∗ ≥ 3 and 
G∗ /∈Ftdom. Hence, γ L

t (G∗) ≤ 2
3 n∗ = 2

3 (n − 5) < 2
3 n − 3. Every γ L

t -set of G∗ can be extended to an LTD-set of G by adding to 
it the vertices v2, v3, and u3, implying that γ L

t (G) ≤ γ L
t (G∗) + 3 < 2

3 n, a contradiction. Hence, no component of G ′ belongs 
to the family Ftdom. By linearity, we therefore have that γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′ can be extended to an 

LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) < 2

3 n, a contradiction. This completes the proof of 
Claim G. (�)

By Claim G, every vertex in G has degree 2 or 3.

Claim H. The graph G is triangle-free.
11
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Proof of claim. Suppose that G contains a triangle T . Among all triangles in G , let T contain the maximum number of 
vertices of degree 2 in G . Let V (T ) = {v1, v2, v3}, where 2 ≤ degG(v1) ≤ degG(v2) ≤ degG(v3) ≤ 3. Since n ≥ 7, the triangle 
T contains at most two vertices of degree 2, and so degG(v3) = 3. Let G ′ = G − V (T ) and let G ′ have order n′ , and so 
n′ = n − 3 ≥ 4.

Suppose that degG(v1) = 2. We note that degG(v2) = 2 or degG(v2) = 3. Since every vertex in G has degree 2 or 3, 
no component of G ′ belongs to Ftdom. Hence by linearity, γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′ can be extended to 

an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a contradiction. Hence, degG(v1) = 3, 
implying that every vertex in T has degree 3 in G . Hence by our choice of the triangle T , no vertex of degree 2 in G belongs 
to a triangle.

Let ui be the neighbor of vi not in the triangle T for i ∈ [3]. We note that the vertices u1, u2, and u3 are not necessarily 
distinct. Suppose that G ′ contains no component that belongs to Ftdom. By linearity, this yields γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. 
Every γ L

t -set of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a 
contradiction. Hence, G ′ contains a component that belongs to Ftdom. Since n ≥ 7 and no vertex of degree 2 in G belongs 
to a triangle, this is only possible if either G ′ ∼= K1,3 or if G ′ contains a K2-component.

On the one hand, if G ′ ∼= K1,3, then the three vertices u1, u2, and u3 are leaves in G ′ that are adjacent to a common 
neighbor (of degree 3) in G ′ . In this case, the graph G is determined and n = 7, and the set V (T ) ∪ {u1} is an LTD-set of G , 
implying that γ L

t (G) ≤ 4 < 2
3 n, a contradiction.

On the other hand, if G ′ contains a K2-component, then renaming vertices if necessary, we may assume that u1 and 
u2 belong to such a component. We note that u1 and u2 both have degree 2 in G , and u1 v1 v2u2u1 is a 4-cycle in G . 
Further we note that in this case, G ′ contains two components, where the second component contains the vertex u3. We 
now consider the graph G∗ = G − {v1, v2, v3, u1, u2}. Let G∗ have order n∗ = n − 5. By the fact that δ(G) ≥ 2 by Claim G, 
the graph G∗ /∈ Ftdom, implying that γ L

t (G∗) ≤ 2
3 n∗ = 2

3 (n − 5) < 2
3 n − 3. Every γ L

t -set of G∗ can be extended to an LTD-set 
of G by adding to it, for example, the vertices u2, v2 and v3, implying that γ L

t (G) < 2
3 n, a contradiction. (�)

By Claim H, the graph G is triangle-free. We show next that there is no vertex of degree 2.

Claim I. The graph G is a cubic graph.

Proof of claim. Suppose, to the contrary, that δ(G) = 2. As before, we obtain a series of structural properties of the graph 
G that show that certain (d1, d2, . . . , dk)-sequences are forbidden. These forbidden sequences will enable us to deduce the 
desired result of the claim that G must be a cubic graph.

Subclaim I.1. The following properties hold in the graph G.

(a) There is no (2, 2, 2)-sequence.
(b) There is no (2, 3, 2)-sequence.
(c) There is no (2, 2, 3)-sequence.
(d) There is no (2, 2)-sequence.
(e) There is no (2, 3, 3)-sequence.

Proof of subclaim. (a) Suppose that there is a (2, 2, 2)-sequence in G . In this case, n′ = n − 3 ≥ 4. Since n ≥ 7, δ(G) = 2, and 
G contains no triangle, no component of G ′ belongs to Ftdom. Hence by linearity, γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′

can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ 2

3 n, a contradiction.
(b) Suppose that there is a (2, 3, 2)-sequence in G . As before, n′ = n − 3 ≥ 4. Suppose that G ′ contains a component that 

belongs to Ftdom. Since there is no (2, 2, 2)-sequence and n ≥ 7, and since δ(G) ≥ 2 and G contains no triangle, this is only 
possible if G ′ ∼= K1,3. But then the graph G is determined and n = 7, and γ L

t (G ′) = 4 < 2
3 n (by considering the set N[v2]), 

a contradiction. Hence, no component of G ′ belongs to Ftdom. By linearity, this yields γ L
t (G ′) ≤ 2

3 n′ = 2
3 n − 2. Every γ L

t -set 
of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L

t (G) ≤ γ L
t (G ′) + 2 ≤ 2

3 n, a 
contradiction.

(c) Suppose that there is a (2, 2, 3)-sequence in G . Since there is no (2, 2, 2)-sequence and no (2, 3, 2)-sequence in G , 
every vertex different from v2 that is adjacent to v1 or v3 has degree 3 in G . Together with our earlier observations, the 
graph G ′ therefore cannot contain a component that belongs to Ftdom. By linearity, we have γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. As 
before this yields γ L

t (G) ≤ γ L
t (G ′) + 2 ≤ 2

3 n, a contradiction.
(d) Since there is no (2, 2, 2)-sequence and no (2, 2, 3)-sequence, there can be no (2, 2)-sequence in G noting that every 

vertex has degree 2 or 3.
(e) Suppose that there is a (2, 3, 3)-sequence in G . Since there is no (2, 2, 2)-sequence, no (2, 3, 2)-sequence, and no 

(2, 2, 3)-sequence in G , the graph G ′ cannot contain a component that belongs to Ftdom. By linearity, this yields γ L
t (G ′) ≤

2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that 

γ L
t (G) ≤ γ L

t (G ′) + 2 ≤ 2 n, a contradiction.
3

12
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Fig. 5. The 2-corona C6 ◦ P2 of a 6-cycle.

Thus, the proof of the subclaim is complete. (�)

By Subclaim I.1(d), there is no (2, 2)-sequence. Hence every vertex of degree 2 has both its neighbors of degree 3. 
Moreover since there is no (2, 3, 2)-sequence, every vertex of degree 3 has at most one neighbor of degree 2. But this would 
imply the existence of a (2, 3, 3)-sequence, contradicting Subclaim I.1(e). Therefore, there can be no vertex of degree 2 in G , 
that is, G is a cubic graph. This completes the proof of Claim I. (�)

By Claim I, the graph G is a cubic graph. Recall that G is triangle-free. We now consider a (3, 3, 3)-sequence. The graph 
G ′ cannot contain a component that belongs to Ftdom. By linearity, this yields γ L

t (G ′) ≤ 2
3 n′ = 2

3 n − 2. Every γ L
t -set of G ′

can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that γ L
t (G) ≤ γ L

t (G ′) + 2 ≤ 2
3 n, a 

contradiction. This completes the proof of Theorem 9. �
For k ≥ 3, the 2-corona G = Ck ◦ P2 of a cycle Ck has order n = 3k and by Observation 2, it has locating total domination 

number equal to its total domination number, that is, γ L
t (G) = γt(G) = 2k = 2

3 n. See Fig. 5 for an illustration. Moreover for 
k ≥ 1, the 2-corona G = Pk ◦ P2 of a path Pk has order n = 3k and also satisfies γ L

t (G) = γt(G) = 2k = 2
3 n. Thus, we obtain 

the following.

Proposition 10. There are infinitely many connected twin-free subcubic graphs G of order n with γ L
t (G) = 2

3 n.

6. Conclusion

We have proved Conjecture 1 for several important graph classes: cobipartite graphs, split graphs, block graphs and 
subcubic graphs.

It would be interesting to extend these results to larger classes, for example chordal graphs (which include split graphs 
and block graphs). Another interesting subclass of chordal graphs to consider is the class of interval graphs.

It would also be interesting to prove that the bound γ L
t (G) ≤ n

2 holds for sufficiently large (twin-free) connected cubic 
graphs, as conjectured in [24].
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