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a b s t r a c t

A proper k-coloring of a graph G is a neighbor-locating k-coloring if for each pair of
vertices in the same color class, the two sets of colors found in their respective neigh-
borhoods are different. The neighbor-locating chromatic number χNL(G) is the minimum k
for which G admits a neighbor-locating k-coloring. A proper k-vertex-coloring of a graph
G is a locating k-coloring if for each pair of vertices x and y in the same color-class, there
exists a color class Si such that d(x, Si) ̸= d(y, Si). The locating chromatic number χL(G)
is the minimum k for which G admits a locating k-coloring.

Our main results concern the largest possible order of a sparse graph of given
neighbor-locating chromatic number. More precisely, we prove that if a connected graph
G has order n, neighbor-locating chromatic number k and average degree d, then n is
upper-bounded by O(d2k⌈d⌉+1). We also design a family of graphs of bounded maximum
degree whose order is close to reaching this upper bound. Our upper bound generalizes
two previous bounds from the literature, which were obtained for graphs of bounded
maximum degree and graphs of bounded cycle rank, respectively.

Also, we prove that determining whether χL(G) ≤ k and χNL(G) ≤ k are NP-complete
for sparse graphs: more precisely, for graphs with average degree at most 7, maximum
average degree at most 20 and that are 4-partite.

We also study the possible relation between the ordinary chromatic number, the
locating chromatic number and the neighbor-locating chromatic number of a graph.

© 2024 Elsevier B.V. All rights are reserved, including those for text and datamining, AI
training, and similar technologies.

1. Introduction

Our aim is to study two graph coloring problems from the field of graph identification, namely, locating coloring and
neighbor-locating coloring, with an emphasis on the latter.

Identification problems. The above two problems belong to the general framework of identification problems, where one is
given a graph (or a hypergraph) and one wishes to distinguish all vertices of the graph by giving each of them a unique
attribute. Classically, the problems in this area largely fall into two main categories: (i) local identification problems,
and (ii) distance-based identification problems. The study of the former class of problems was initiated by Rényi in the
1960s for hypergraphs, under the name of separating sets [31] (also later called separating systems [12], test covers [29],
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discriminating codes [14], etc.). The concept was then adapted to graphs under the name of locating-dominating sets by
later in the 1980s [34]. On the other hand, the prominent distance-based identification problem is the metric dimension
roblem for graphs, introduced independently by Harary and Melter [22] and by Slater [33] in the 1970s.
In all these problems, one seeks a (small) set of solution vertices (possibly, hyperedges in the case of hypergraphs)

nd wishes to distinguish the vertices either by their neighborhoods in the solution in the case of the local problems, or
y their distances to the solution vertices, in the case of the distance-based problems. These types of problems are very
undamental and have numerous applications in various fields, such as for example, fault-detection in networks [30,35],
iological diagnosis [29], machine learning [17], canonical representations of graphs [6,25], coin-weighing problems [32],
ames [18], learning theory [21], etc.
One of the most fundamental graph problems is the graph coloring problem, as it is essential to model applications such

s clustering, resource allocation, etc. Thus, it is a natural approach to combine the concepts of coloring and identification.
s one of the earliest instances of this effort, the concept of locating coloring was introduced in 2002 by Chartrand
t al. [15], providing a coloring version of the aforementioned distance-based identification problems like the metric
imension. Here, one seeks a proper coloring of the graph such that each vertex is uniquely identified by its distances
o the color classes. In 2014, a coloring version of the above local identification problems was introduced by Behtoei and
nbarloei [9] (under the name of adjacency locating coloring) and rediscovered by Alcon et al. in 2020 [2] under the name
f neighbor-locating coloring (see below for the formal definitions). The setting of these two problems is very natural:
nstead of minimizing the size of a solution set like in the classic identification problems, we wish to assign a color to
ach vertex in order to partition the vertex set, e.g., to perform resource allocation, and thus we want to minimize the
umber of colors. Moreover, we also want to be able to uniquely identify the vertices in each color class, with one of the
forementioned applications of identification problems in mind, for example, fault-detection.
While the former concept of locating coloring has been extensively studied since 2002 [5,7–11,15,16,19], our focus of

tudy is the latter (neighbor-locating coloring), which is more recent but has already started gaining some attention in
he very recent years [1–3,23,28].

otation and terminology. Throughout this article, we consider only simple graphs (graphs without loops and multiple
dges). Moreover, we will use the standard terminology and notation used in ‘‘Introduction to Graph Theory’’ by West [36].
Given a graph G, a (proper) k-coloring is a function f : V (G) → S, where S is a set of k colors, such that f (u) ̸= f (v)

henever u is adjacent to v. Usually, we will assume the set of k colors S to be equal to {1, 2, . . . , k}, unless otherwise
stated. The chromatic number of G, denoted by χ (G), is the minimum k for which G admits a k-coloring.

Given a k-coloring f of G, its ith color class is the collection Si of vertices that have received the color i. The distance
etween a vertex x and a set S of vertices is given by d(x, S) = min{d(x, y) : y ∈ S}, where the distance d(x, y) between the

vertices x and y is the number of edges in a shortest path connecting x and y. Two vertices x and y are metric-distinguished
with respect to f if d(x, Si) ̸= d(y, Si) for some color class Si. A k-coloring f of G is a locating k-coloring if any two distinct
vertices are metric-distinguished with respect to f . The locating chromatic number of G, denoted by χL(G), is the minimum
k for which G admits a locating k-coloring.

Given a k-coloring f of G, suppose that a neighbor y of a vertex x belongs to the color class Si. In such a scenario, we
ay that i is a color-neighbor of x (with respect to f ). The set of all color-neighbors of x is denoted by Nf (x). Two vertices x
nd y are neighbor-distinguished with respect to f if either f (x) ̸= f (y) or Nf (x) ̸= Nf (y). A k-coloring f is neighbor-locating
-coloring if each pair of distinct vertices are neighbor-distinguished. The neighbor-locating chromatic number of G, denoted
y χNL(G), is the minimum k for which G admits a neighbor-locating k-coloring.
The average degree of a graph G having n vertices and m edges is the average of the degree of its vertices, which, due

o the Handshaking Lemma, is equal to 2m
n . The average degree of G is a measure of the density of the graph: if it is

bounded by a constant, then the graph has a linear number of edges, and may be called sparse. However, a graph may
have low average degree and still contain very dense parts. The maximum average degree of G is the maximum of the
average degrees taken over all the subgraphs of G. This notion serves as a more ‘‘uniform’’ measure of the graph density.
Two non-adjacent vertices x, y ∈ G are false twins if N(x) = N(y), where the open neighborhood of x, denoted by N(x), is
he set of all vertices adjacent to x.

pplications. Neighbor-locating coloring (and locating coloring, with a slight modification) can model the following fault-
etection problem. This kind of fault-detection in networks and complex systems is of high practical importance in the
ndustry, see for example the settings of multi-core C & I cables [27], and smart grids [26]. We wish to monitor a network
or faults (or a facility for hazards). The facility is partitioned into several segments (each represented by a color), and each
egment consists of multiple nodes where a fault may occur. To every segment, we associate one detector that monitors it
or potential faults. To avoid mistakes in the detection, two adjacent nodes cannot be in the same segment. Every detector
s able to signal the following two things in case of occurrence of a fault (at exactly one node): (i) the segment where the
ault has occurred, (ii) the segments that are adjacent to the faulty node.

Hence, if all nodes in a given segment have different sets of segments in their neighborhood, the information (i) and (ii)
rom all detectors is sufficient to locate the faulty node. To reduce costs, one wishes to minimize the number of detectors
that is, segments). In such a scenario, the network is modeled by a graph, nodes correspond to vertices, node adjacencies
o edges, and segments to color classes. Thus, this fault-detection scenario corresponds to the neighbor-locating coloring
roblem.
367
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To minimize the number of detectors even further (but at the expense of more powerful detectors), the setting can
e slightly modified for (ii) if every detector can measure the smallest distance from a node of its segment to the node
here the fault has occurred. In that case, this fault-detection scenario corresponds to the locating coloring problem.

ontext and contributions. Observe that a neighbor-locating coloring is, in particular, a locating coloring as well. Therefore,
e have the following obvious relation among the three parameters [2]:

χ (G) ≤ χL(G) ≤ χNL(G).

ote that for complete graphs, all three parameters have the same value, that is, equality holds in the above relation.
evertheless, the difference between the pairs of values of parameters χ (·), χNL(·) and χL(·), χNL(·), respectively, can be
rbitrarily large. Moreover, it was proved that for any pair p, q of integers with 3 ≤ p ≤ q, there exists a connected graph
1 with χ (G1) = p and χNL(G1) = q [2] and a connected graph G2 with χL(G2) = p and χNL(G2) = q [28]. The latter of the
wo results positively settled a conjecture posed in [2]. We strengthen these results as follows.

heorem 1. For all 2 ≤ p ≤ q ≤ r, except when p = q = 2 and r > 2, there exists a connected graph Gp,q,r satisfying
(Gp,q,r ) = p, χL(Gp,q,r ) = q, and χNL(Gp,q,r ) = r.

One fundamental difference between coloring and locating coloring (resp., neighbor-locating coloring) is that the
estriction of coloring of G to an (induced) subgraph H is necessarily a coloring, whereas the analogous property is not
rue for locating coloring (resp., neighbor-locating coloring). Interestingly, we show that the locating chromatic number
resp., neighbor-locating chromatic number) of an induced subgraph H of G can be arbitrarily larger than that of G.

heorem 2. For every k ≥ 0, there exists a graph Gk having an induced subgraph Hk such that χL(Hk) − χL(Gk) = k and
NL(Hk) − χNL(Gk) = k.

Alcon et al. [2] showed that the number n of vertices of G is bounded above by k(2k−1
− 1), where χNL(G) = k and

has no isolated vertices, and this bound is tight. This exponential bound is reduced to a polynomial one when G has
aximum degree ∆. Indeed it was further shown in [2] that the upper-bound n ≤ k

∑∆

j=1

(k−1
j

)
= O(k∆+1) holds (for

raphs with no isolated vertices and when ∆ ≤ k − 1). The tightness of this bound was left open. Alcon et al. [3] gave
he upper bound n ≤

1
2 (k

3
+ k2 − 2k) + 2(c − 1) = O(k3) for graphs of order n, neighbor-locating chromatic number k

nd cycle rank c , where the cycle rank c of a graph G, is defined as c = |E(G)| − n + 1. Further, they also obtained tight
pper bounds on the order of trees and unicyclic graphs in terms of the neighbor-locating chromatic number [3], where
unicyclic graph is a connected graph having exactly one cycle.
A connected graph with cycle rank c and order n has n+c−1 edges and a graph of order n and maximum degree ∆ has

t most ∆
2 n edges. Thus, the two latter bounds, which are in terms of cycle rank c and maximum degree ∆ respectively,

an be seen as two approaches for studying the neighbor-locating coloring for sparse graphs. We generalize this approach
y studying graphs with a given average degree and neighbor-locating chromatic number k. For such graphs, we prove
he following.

heorem 3. Let G be a connected graph on n vertices, with neighbor-locating chromatic number k and average degree d.
hen, we have n = O(d2k⌈d⌉+1). More precisely:

(i) if k ≤ ⌈d⌉, then n < ⌈d⌉k⌈d⌉−1
;

(ii) if k ≥ ⌈d⌉ + 1, then n ≤ k
∑

⌈d⌉
i=1(⌈d⌉ + 1 − i)

(k−1
i

)
. Moreover, any graph G whose order attains the upper bound has

maximum degree ∆ ≤ ⌈d⌉ + 1 and exactly k
(k−1

i

)
vertices of degree i.

Furthermore, we design a construction that shows that the above upper bound is asymptotically almost tight, as
ollows.

heorem 4. For every integer ∆ ≥ 2, there exists a connected graph G of maximum degree ∆ of order n = Ω

(
∆
( k

∆−1

)∆+1
)
,

where k is the neighbor-locating chromatic number of G.

Note that the above lower bound is also Ω
(
d−dkd+1

)
. It implies that our bound from Theorem 3 and the one from [2]

are tight up to a multiplicative factor that is a function of ∆ or d (when d is an integer), respectively. In other words, if
∆ or d is considered a fixed constant, our construction shows that these two bounds are tight up to a constant factor.

A natural question that arises, is whether determining the value of the locating chromatic number and the neighbor-
locating chromatic number can be done efficiently on sparse graphs. We show that this is not the case, proving that the
associated decision problems are NP-complete even on graphs of bounded maximum average degree.

Theorem 5. The L-Coloring and the NL-Coloring problems are NP-complete even when restricted to 4-partite graphs of
average degree at most 7 and maximum average degree at most 20.
368
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Organization of the paper. In Section 2, we study the connected graphs with prescribed values of chromatic number,
ocating chromatic number, and neighbor-locating chromatic number. We also study the relation between the locating
hromatic number (resp., neighbor-locating chromatic number) of a graph and its induced subgraphs. In particular, we
rove Theorems 1 and 2 in this section. In Section 3, we provide an upper bound on the number of vertices of a sparse
raph in terms of neighbor-locating chromatic number by proving Theorem 3. In Section 4, we prove that the obtained
pper bound is almost tight by proving Theorem 4. Finally, in Section 5, we prove that the L-Coloring and the NL-
oloring problems are NP-complete for sparse graphs; more precisely, for graphs that are 4-partite, have average degree
t most 7, and maximum average degree at most 20. In particular, we prove Theorem 5.

ote: A preliminary version of this work (without the NP-completeness proofs, without the figures, and with less detailed
roofs and statements) appeared in the proceedings of the CALDAM 2023 conference [13].

. Gaps among χ(G), χL(G) and χNL(G)

The first result we would like to prove involves three different parameters, namely, the chromatic number, the locating
hromatic number, and the neighbor-locating chromatic number.

roof of Theorem 1. First of all, let us assume that p = q = r . In this case, for Gp,q,r = Kp, it is trivial to note that
χ (Gp,q,r ) = χL(Gp,q,r ) = χNL(Gp,q,r ) = p. This completes the case when p = q = r .

Second of all, let us handle the case when p < q = r . If 2 = p < q = r , then take Gp,q,r = K1,q−1. Therefore, we have
(Gp,q,r ) = 2 as it is a bipartite graph, and it is known that χL(Gp,q,r ) = χNL(Gp,q,r ) = q [2,15].
If 3 ≤ p < q = r , then we construct Gp,q,r as follows: start with a complete graph Kp, on vertices v0, v1, . . . , vp−1, take

(q − 1) new vertices u1, u2, . . . , uq−1, and make them adjacent to v0. It is trivial to note that χ (Gp,q,r ) = p in this case.
Moreover, note that we need to assign q distinct colors to v0, u1, u2, . . . , uq−1 under any locating or neighbor-locating
coloring. On the other hand, f (vi) = i + 1 and f (uj) = j + 1 is a valid locating q-coloring as well as neighbor locating
q-coloring of Gp,q,r . Thus we are done with the case when p < q = r .

Thirdly, we will consider the case when p = q < r . If 3 = p = q < r , then let Gp,q,r = Cn where Cn is an odd cycle of
suitable length, that is, a length which will imply χNL(Cn) = r . It is known that such a cycle exists [1,9]. As we know that
χ (Gp,q,r ) = 3, χL(Gp,q,r ) = 3 [15], and χNL(Gp,q,r ) = r [1,9], we are done.

If 4 ≤ p = q < r , then we construct Gp,q,r as follows: start with a complete graph Kp on vertices v0, v1, . . . , vp−1,
and an odd cycle Cn on vertices u0, u1, . . . , un−1, and identify the vertices v0 and u0. Moreover, we say that the length
of the odd cycle Cn is a suitable length, that is, it is of a length which ensures χNL(Cn) = r . Notice that χ (Gp,q,r ) = p.
A locating coloring f can be assigned to Gp,q,r as follows: f (vi) = i + 1, f (uj) = a for odd integers 1 ≤ j ≤ n − 1 and
f (ul) = b for even integers 2 ≤ l ≤ n − 1, where a, b ∈ {2, 3, . . . , p}. A vertex vi ∈ Kp (other than v0) and a vertex
uj ∈ Cn such that f (vi) = f (uj) are metric-distinguished with respect to f since d(vi, Sl) = 1 ̸= d(uj, Sl) for at least one
l ∈ {2, 3, . . . , p} \ {a, b}. Thus, χL(Gp,q,r ) = p. On the other hand, as the neighborhood of the vertices of the cycle Cn
(subgraph of Gp,q,r ) does not change if we consider it as an induced subgraph except for the vertex v0 = u0. Thus, we will
need at least r colors to color Cn while it is contained inside Gp,q,r as a subgraph. Assign a neighbor-locating coloring c to
Gp,q,r as follows: assign p distinct colors to the complete graph Kp. Use p colors from Kp and r − p new colors to provide a
neighbor-locating coloring to the odd cycle Cn. A vertex vi ∈ Kp (other than v0) and a vertex uj ∈ Cn such that c(vi) = c(uj)
are neighbor-distinguished with respect to c since vi has p − 1 distinct color neighbors whereas uj can have at most two
distinguished color neighbors. Hence χNL(Gp,q,r ) = r . Thus, we are done in this case also.

Finally, we are into the case when p < q < r . If 2 = p < q < r , then refer [28] for this case. If 3 = p < q < r , then we
start with an odd cycle Cn on n vertices v0, v1, v2, . . . , vn−1. Here, let k =

r(r−1)(r−2)
2 and

n =

{
k if k is odd,
k − 1 if k is even.

It is known that χNL(Cn) = r from [1,9]. Take q−1 independent vertices u1, u2, . . . , uq−1 and make all of them adjacent
o v0. This so obtained graph is Gp,q,r . It is trivial to note that χ (Gp,q,r ) = 3 in this case. Note that we need to assign q
distinct colors to v0, u1, u2, . . . , uq−1 under any locating or neighbor-locating coloring. Now, we assign a locating coloring
f to Gp,q,r as follows:

f (vi) =

⎧⎨⎩
1 if i = 0,
2 if i is odd and 1 ≤ i ≤ n − 1,
3 if i is even and 2 ≤ i ≤ n − 1.

Also, f (uj) = j + 1 for all 1 ≤ j ≤ q − 1. This gives us χL(Gp,q,r ) = q. On the other hand, as the neighborhood of
the vertices of the cycle Cn (subgraph of Gp,q,r ) does not change if we consider it as an induced subgraph except for
the vertex v0. Thus, we will need at least r colors to color Cn while it is contained inside Gp,q,r as a subgraph. Assign a
neighbor-locating r-coloring c to Gp,q,r as follows: assign a neighbor-locating r-coloring to the odd cycle Cn such that each
vertex has two distinct color neighbors in case of n = k, and all vertices except the two vertices, say vi and vj, have two
distinct color neighbors in case of n = k − 1 (refer [1] for such a neighbor-locating r-coloring). Assign distinct colors to
369
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the q− 1 leaf vertices by choosing any q− 1 colors from r colors (except c(vi) and c(vj) in case of n = k− 1) given to the
ycle Cn. A vertex vi in the cycle and a leaf vertex uj such that f (vi) = f (uj) are neighbor distinguished since vi has two
istinct color neighbors whereas uj has only one color neighbor. Hence we have χNL(Gp,q,r ) = r .
If 4 ≤ p < q < r , then we start with a path Pn on n vertices, where n =

r(r−1)(r−2)
2 . It is known that χNL(Pn) = r

rom [1,9]. Let Pn = u0u1 · · · un−1. Now let us take a complete graph on p vertices v0, v1, . . . , vp−1. Identify the two
raphs at u0 and v0 to obtain a new graph. Furthermore, take (q − 2) independent vertices w1, w2, . . . , wq−2 and make
hem adjacent to un−2. This so obtained graph is Gp,q,r . It is trivial that χ (Gp,q,r ) = p. Note that under any locating or
eighbor-locating coloring, q distinct colors have to be given to the vertices un−2, w1, w2, . . . , wq−2, un−1. Now, define a
ocating coloring f of Gp,q,r as follows:

f (ui) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if i = 0 or i = n − 3,
2 if i is odd and 1 ≤ i ≤ n − 4,
3 if i is even and 2 ≤ i ≤ n − 4,
3 if i = n − 2 and n is odd,
2 if i = n − 2 and n is even,
2 if i = n − 1 and n is odd,
3 if i = n − 1 and n is even.

Further, assign the colors 1, 4, 5, 6, . . . , q to the leaf vertices and f (vj) = j+1 for all 1 ≤ j ≤ p−1. Thus, χL(Gp,q,r ) = q.
Moreover, the neighborhood of the vertices of the path Pn (subgraph of Gp,q,r ) does not change if we consider it as an

induced subgraph except for the vertices u0 and un−2. Recall that, for a path Pn on n vertices with (r−1)2(r−2)
2 < n ≤

r2(r−1)
2 ,

we have χNL(Pn) = r [1,9]. As n − 3 =
r(r−1)(r−2)−6

2 >
(r−1)2(r−2)

2 , where r ≥ 6, at least r colors are required for
eighbor-distinguishing the vertices u1, u2, . . . , un−3 in Gp,q,r .
Assign a neighbor-locating r-coloring c to Gp,q,r as follows: assign a neighbor-locating r-coloring to the path Pn such that

ach vertex (except the end vertices u0 and un−1) has two distinct color-neighbors (refer [1] for such a neighbor-locating
-coloring). Choose any p − 1 distinct colors from r colors (except c(u0)) used in neighbor-locating r-coloring of Pn and
ssign them to the remaining p − 1 vertices of the complete graph. Assign distinct colors to the q − 2 leaf vertices by
hoosing any q− 2 colors from r colors of Pn except the colors c(u0), c(un−2) and c(un−1). A vertex ui (i ̸= 0, n− 2, n− 1)
n the path Pn and a leaf vertex wj such that c(ui) = c(wj) are neighbor distinguished since ui has two distinct color
eighbors whereas wj has only one color neighbor. Hence, we have χNL(Gp,q,r ) = r . □

Furthermore, we show that, unlike the case of the ordinary chromatic number, an induced subgraph can have an
rbitrarily higher locating chromatic number (resp., neighbor-locating chromatic number) than that of the original graph.

roof of Theorem 2. The graph Gk is constructed as follows. We start with 2k disjoint K1s named a1, a2, . . . , a2k and
disjoint K2s named b1b′

1, b2b
′

2, . . . , bkb
′

k. After that, we make all the above mentioned vertices adjacent to a special
ertex v to obtain our graph Gk. Notice that v and the ais must all receive distinct colors under any locating coloring or
eighbor-locating coloring. On the other hand, the coloring f given by f (v) = 1, f (ai) = i+1, f (bi) = 2i+1, and f (b′

i) = 2i
is indeed a locating coloring as well as a neighbor-locating coloring of Gk. Hence we have χL(Gk) = χNL(Gk) = 2k + 1.

Now take Hk as the subgraph induced by v, ais and bis. It is the graph K1,3k. Hence, we have χL(Hk) = χNL(Hk) =

3k + 1 [2,15]. □

3. Bounds for sparse graphs

In this section, we study the density of graphs having bounded neighbor-locating chromatic number. The first among
those results provides an upper bound on the number of vertices of a graph in terms of its neighbor-locating chromatic
number. This, in particular shows that the number of vertices of a graph G is bounded above by a polynomial function of
χNL(G).

Proof of Theorem 3. We can assume that k ≥ 2, for otherwise G has only one vertex.
(i) First of all, assume that k ≤ ⌈d⌉. We know from [2] that n ≤ k(2k−1

− 1), and thus:

n < ⌈d⌉2⌈d⌉−1

≤ ⌈d⌉k⌈d⌉−1,

and the desired bound holds. Moreover, we clearly have n = O(d2k⌈d⌉+1) in this case.
(ii) For the remainder of the proof, we thus assume that k ≥ ⌈d⌉ + 1 and for convenience, we let ⌈d⌉ = a.

Let Di and di denote the set and the number of vertices in G having degree equal to i, respectively, and let D+

i and d+

i
denote the set and the number of vertices in G having degree at least i, respectively, for all i ≥ 1. As G is connected and
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hence, does not have any vertex of degree 0, it is possible to write∑
v∈V (G)

deg(v) =

a∑
i=1

i · di +
∑
v∈D+

a

deg(v) (1)

and the number of vertices of G can be expressed as

n = (d1 + d2 + · · · + da) + d+

a+1 = d+

a+1 +

a∑
i=1

di. (2)

As
∑

v∈V (G) deg(v) ≤ an, combining Eqs. (1) and (2) we have

a∑
i=1

i · di +
∑

v∈D+

a+1

deg(v) ≤ a

(
d+

a+1 +

a∑
i=1

di

)
= ad+

a+1 + a
a∑

i=1

di (3)

which implies

d+

a+1 ≤

∑
v∈D+

a+1

(deg(v) − a)

=

⎛⎜⎝ ∑
v∈D+

a+1

deg(v)

⎞⎟⎠− ad+

a+1

≤

a∑
i=1

(a − i)di. (4)

The first inequality follows from the fact that there are exactly d+

a+1 terms in the summation
∑

v∈D+

a+1
(deg(v) − a), where

each term is greater than or equal to 1, as deg(v) ≥ a + 1 for all v ∈ D+

a+1. The second inequality can be obtained by
rearranging Inequation (3).

Let f be any neighbor-locating k-coloring of G. Consider an ordered pair (f (u),Nf (u)), where deg(u) ≤ s, for some
nteger s ≤ k − 1. Thus, u may receive one of the k available colors, while its color neighborhood may consist of at most
of the remaining (k− 1) colors. Therefore, there are at most k

∑s
i=1

(k−1
i

)
choices for the ordered pair (f (u),Nf (u)). Note

hat for any two vertices u, v of degree at most s, the ordered pairs (f (u),Nf (u)) and (f (v),Nf (v)) must be distinct. Hence:

s∑
i=1

di ≤ k
s∑

i=1

(
k − 1

i

)
. (5)

ince a ≤ k − 1 by assumption, using the above relation, we can derive that
a∑

i=1

(a + 1 − i)di =

a∑
s=1

(
s∑

i=1

di

)

≤

a∑
s=1

(
k

s∑
i=1

(
k − 1

i

))

= k
a∑

i=1

(a + 1 − i)
(
k − 1

i

)
. (6)

n the above inequation, the two equalities are algebraic identities, while the inequality is obtained using Inequality (5).
herefore,

n = d+

a+1 +

a∑
i=1

di

≤

a∑
i=1

(a − i)di +
a∑

i=1

di [using Inequality (4)]

=

a∑
(a + 1 − i)di
i=1
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≤ k
a∑

i=1

(a + 1 − i)
(
k − 1

i

)
[using Inequality (6)]

< k
a∑

i=1

(
a
(
k − 1

i

))

< ak
a∑

i=1

ki

< a2ka+1

≤ (d + 1)2k⌈d⌉+1

= O(d2k⌈d⌉+1).

In particular, we have the desired bound from the first part of (ii). Moreover, we also have the general bound
n = O(d2k⌈d⌉+1) in this case. Thus, we are left with only proving the second part of (ii).

For the proof of the second part of (ii), we notice that if the order of a graph G∗ fulfilling the constraints of (ii) attains the
upper bound, then equality holds in all of the above inequations. In particular, we must have d+

a+1 =
∑

v∈D+

a+1
(deg(v)− a)

which implies that G∗ cannot have a vertex of degree more than a + 1. Moreover, we also have the following equality.
s∑

i=1

di = k
s∑

i=1

(
k − 1

i

)
for s = 1, 2, . . . , a + 1

which implies that G∗ has exactly k
(k−1

i

)
vertices of degree i. □

The above bound applied to the class of planar graphs (whose average degree is less than 6) gives us the following
upper bound.

n ≤ k
6∑

i=1

(7 − i)
(
k − 1

i

)
= O(k7).

4. Tightness of the obtained bound: proof of Theorem 4

Next, we show the asymptotic tightness of Theorem 3.
The proof of Theorem 4 is contained within a number of observations and lemmas. Also, the proof is constructive, and

the constructions depend on particular partial colorings. Therefore, we are going to present a series of graph constructions,
their particular colorings, and their structural properties. We are also going to present the supporting observations and
lemmas in the following. As the proof is a little involved, we start with the following overview.

The final graph G will be built through constructing a sequence of graphs in a number of iterations. Firstly, we take
the base graph G1 as a path on a certain number of vertices (the number of vertices is decided and declared based on
arguments mentioned inside the proof) with neighbor-locating chromatic number s.

We also fix a particular neighbor-locating s-coloring of G1. Based on this fixed neighbor-locating s-coloring, we will
add some vertices and edges to construct G2. Simultaneously to adding the new vertices and edges, we will extend the
neighbor-locating s-coloring to a neighbor-locating coloring with more than s colors (the exact value of increment in s is
declared and explained in the proof). Similarly, we will continue to build Gi+1 from Gi to eventually construct the relevant
example G.

Lemma 6. For two positive integers p, q with p < q, consider a (p × q) matrix whose ijth entry is mi,j. Let M be a complete
graph whose vertices are the entries of the matrix. Then there exists a matching of M satisfying the following conditions:

(i) The endpoints of an edge of the matching are from different columns.
(ii) Let e1 and e2 be two edges of the matching. If one endpoint of e1 and e2 are from the same column, then the other

endpoints of them must belong to distinct columns.
(iii) The matching saturates all but at most one vertex of M per column.

Proof. The matching consists of edges of the type m(2i−1),jm2i,i+j for all i ∈ {1, 2, . . . , ⌊ p
2⌋} and j ∈ {1, 2, . . . , q}. Note

that throughout this proof, we will consider the addition and subtraction operations on the indices modulo q, where the
representatives of the integers modulo q are 1, 2, . . . , q. We will show that this matching satisfies all the above-listed
conditions.

First observe that, a typical edge of the matching is of the form m(2i−1),jm2i,i+j. That means the endpoints of the edge
in question are from column j and column i + j, respectively. As

0 < i ≤

⌊p
2

⌋
< p < q,

we must have j ̸= i + j. Thus the condition (i) from the statement is verified.
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Next suppose that there are two edges of the type m(2i−1),jm2i,i+j and m(2i′−1),j′m2i′,i′+j′ . If m(2i−1),j and m(2i′−1),j′ are from
the same column, that is, j = j′, then we must have i ̸= i′ as they are different vertices. This will imply that the other
endpoints m2i,i+j and m2i′,i′+j′ are from different columns as i + j ̸= i′ + j = i′ + j′. On the other hand, if m(2i−1),j and
m2i′,i′+j′ are from the same column, then we have j = i′ + j′. Moreover, if j′ = i + j, then it will imply

j = i′ + j′ = i′ + i + j.

This is only possible if q divides (i + i′), which is not possible as

0 < i + i′ ≤ 2
⌊p
2

⌋
≤ p < q.

Therefore, we have verified condition (ii) of the statement as well.
Notice that, the matching saturates all the vertices of M when p is even, whereas it saturates all except the vertices in

the pth row of the matrix when p is odd. This verifies condition (iii) of the statement. □

Corollary 7. For two positive integers p, q with p < q, let G be a graph with an independent set M of size (p × q), where
M = {mij : 1 ≤ i ≤ p, 1 ≤ j ≤ q}. Moreover, let φ be a proper (s′ + q)-coloring of G satisfying the following conditions:

(i) all s′ colors are assigned to the vertices in G \ M,
(ii) for any vertex x of G, s′ + 1 ≤ φ(x) ≤ s′ + q if and only if x ∈ M,
(iii) for any two vertices x, y of G, x and y are neighbor-distinguished unless both belong to M,
(iv) for all i, j with 1 ≤ i ≤ p and 1 ≤ j ≤ q, φ(mij) = s′ + j.

Then it is possible to find a spanning supergraph G′ of G by adding a matching between the vertices of M which will make φ
a neighbor-locating (s′ + q)-coloring of G′.

Proof. First of all build a matrix whose ijth entry corresponds to the vertex mij. After that, build a complete graph whose
vertices are entries of this matrix. Now using Lemma 6, we can find a matching of this complete graph that satisfies the
three conditions mentioned in the statement of Lemma 6. We construct G′ by including exactly the edges corresponding
to the edges of the matching, between the vertices of M . We want to show that after adding these edges and obtaining
G′, indeed φ is a neighbor-locating (s′ + q)-coloring of G′.

Notice that by the definition of φ, (s′ + q) colors are used. So it is enough to show that the vertices of G′ are
neighbor-distinguished with respect to φ. To be precise, it is enough to show that two vertices x, y from M are neighbor-
distinguished with respect to φ in G′ because of condition (ii) of the statement. If for some x, y ∈ M we have φ(x) = φ(y),
then that means x, y are from the same column of M . Therefore, according to the conditions of the matching, x, y must
have neighbors from separate columns of M , that is, they have neighbors of different colors. This is enough to make x, y
neighbor-distinguished. □

Let us recall a result from [1,9] which we shall use in the construction, indeed, G1 will be defined as a path (see point
(iii) of the construction below).

Theorem 8 ([1,9]). Let k ≥ 4 be an integer and Pn be a path on n vertices. If (k−1)2(k−2)
2 < n ≤

k2(k−1)
2 , then χNL(Pn) = k.

The construction of Gi+1 from Gi: Now we are ready to present our iterative construction. However, given the involved
nature of it, we need some specific nomenclatures to describe it. For convenience, we will list down some points to
describe the whole construction.

(i) An i-triplet is a 3-tuple of the type (Gi, φi, Xi) where Gi is a graph, φi is a neighbor-locating (is)-coloring of Gi, Xi is
a set of (i+ 1)-tuples of vertices of Gi, each tuple having distinct elements. Also, Xi disjointly covers the vertices of
Gi, that is, each vertex of Gi appears exactly once in one of the (i + 1)-tuples of Xi.

(ii) We will assume a partition Yi of Xi where two elements (x1, x2, . . . , xi+1) and (x′

1, x
′

2, . . . , x
′

i+1) of Xi are put in the
same cell of the partition if

{φi(xj) : j = 1, 2, . . . , i + 1} = {φi(x′

j) : j = 1, 2, . . . , i + 1}.

That is, the partition is based on the set of colors used on the vertices belonging to the (i+1)-tuples. Moreover, the
cells of the partition are given by Yi = {Xi1, Xi2, . . . , Xiki} where ki denotes the number of cells in Yi. In Lemma 9,
we will show that each cell of such partition has less than s vertices. For now, we will accept it as a fact and carry
on with the construction.

(iii) Let us describe the 1-triplet (G1, φ1, X1) explicitly. Here G1 is the path Pt = v1v2 · · · vt on t vertices where
t = 4

⌊
s2(s−1)

8

⌋
. As

(s − 1)2(s − 2)
2

< 4
⌊
s2(s − 1)

8

⌋
≤

s2(s − 1)
2

,

we must have χ (P ) = s (by Theorem 8).
NL t
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Let φ1 be any neighbor-locating s-coloring of G1 and

X1 = {(vi−1, vi+1) : i ≡ 2, 3 (mod 4)}.

Clearly each 2-tuple in X1 has distinct elements and X1 disjointly covers the vertices of G1. Therefore, (G1, φ1, X1)
satisfies (i).

(iv) Suppose an i-triplet (Gi, φi, Xi) is given. We will (partially) describe a way to construct an (i+ 1)-triplet from it. To
do so, first we will construct an intermediate graph G′

i+1 as follows: for each (i + 1)-tuple (x1, x2, . . . , xi+1) ∈ Xi
we will add a new vertex xi+2 adjacent to each vertex from the (i + 1)-tuple. Moreover, (x1, x2, . . . , xi+1, xi+2) is
designated as an (i + 2)-tuple in G′

i+1. After that, we will take s copies of G′

i+1 and call this so-obtained graph G′′

i+1.
Furthermore, we will extend φi to a function φi+1 by assigning the color (is + j) to the new vertices from the jth
copy of G′

i+1. The copies of the (i+ 2)-tuples are the (i+ 2)-tuples of G′′

i+1. Note that the set Xi+1 of all (i+ 2)-tuples
disjointly cover the vertices of G′′

i+1.
(v) Recall the notion of partition from (ii). As φi and Xi will remain unchanged when we add some edges to construct

Gi+1 (we know in hindsight) from G′′

i+1, we can already speak about the partition

Yi+1 = {X(i+1)1, X(i+1)2, . . . , X(i+1)ki+1}

of Xi+1. Recall that the last vertex of an (i+ 2)-tuple is a new vertex of G′′

i+1. Observe that two new vertices of G′′

i+1
have the same color if and only if they belong to the same copy of G′

i+1. Thus, the vertices of the (i+ 2)-tuples of a
particular cell X(i+1)r must belong to the same copy of G′

i+1 in G′′

i+1. Thus, if |X1r | < s for all r ∈ {1, 2, . . . , k1}, then
|Xir | < s for all i and for all r . In Lemma 9, we will show that each cell of Y1 has less than s vertices. For now, we
will accept it as a fact and carry on with the construction.

(vi) Here we are going to construct a matrix M using some of the new vertices. Let us assume that X(i+1)r is a cell of
the partition Yi+1 whose vertices belong to the 1st copy of G′

i+1 in G′′

i+1. Let us take the last entries (new vertices) of
the (i+2)-tuples belonging to X(i+1)r and place them in a column (without repetition). This will be the first column
of our matrix M . The lth column of the matrix can be obtained by replacing the entries of the 1st column by their
copies from the lth copy of G′

i+1 in G′′

i+1. This matrix M is a (p×q) matrix where p = |Xir | and q = s. We have p < q
assuming Lemma 9.

(vii) Let us delete all the new vertices from G′′

i+1 except for the ones in M . This graph has the exact same properties of
the graph G from Corollary 7, where M plays the role of the independent set. Thus, it is possible to add a matching
and extend the coloring (like in Corollary 7). We do that for each cell X(i+1)r of the partition Yi+1 whose vertices
belong to the 1st copy of G′

i+1 in G′′

i+1. After adding all such matchings, the graph we obtain is Gi+1. See Figs. 1 and
2 for reference.

Lemma 9. We have |X1r | < s, where X1r is any cell of the partition Y1.

Proof. Any vertex (other than the end vertices) in G1 has two color neighbors say i and j (i is possibly equal to j). Having
fixed the two color neighbors, this vertex will have at most s − 1 choices of colors. Thus |X1r | < s. □

Lemma 10. The function φi+1 is a neighbor-locating (i + 1)s-coloring of Gi+1.

Proof. The function φi+1 is constructed from φi, alongside constructing the triplet Gi+1 from Gi. While constructing, we
use the same steps from that of Corollary 7. Thus, the newly colored vertices become neighbor-distinguished in Gi+1 under
φi+1. □

The above two lemmas validate the correctness of the iterative construction of Gis. However, it remains to show how
Gis help us prove our result. To do so, let us prove certain properties of Gis.

Lemma 11. The graph Gi has maximum degree (i + 1).

Proof. We will prove this by induction. As we have started with a path, our G1 has maximum degree 2. This proves the
base case. Suppose that Gi has maximum degree (i+ 1) for all i ≤ j. This is our induction hypothesis. Observe that, in the
iteration step for constructing the graph Gi+1 from Gi, the degree of an old vertex (or its copy) can increase at most by 1,
while a new vertex of Gi+1 is adjacent to exactly (i + 1) old vertices and at most one new vertex. Hence, a new vertex in
Gi+1 can have degree at most (i + 2). □

Finally, we are ready to prove Theorem 4.

Proof of Theorem 4. We consider the graph G to be G∆−1 as in our construction. By Lemma 11, the maximum degree
of G is ∆. Let k be the neighbor-locating chromatic number of G. Observe that χNL(G1) = s and recall that s ≥ 4 due
to Theorem 8. In each iteration, s new colors are added, hence we have k = χNL(G) ≤ (∆ − 1)s. First, let us count the
number of vertices in G. Let n denote the number of vertices in the graph G . By the construction, the base graph G has
i i 1
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G
G
T
i

Fig. 1. Construction of G2 from G1 = P24 . Here χNL(P24) = 4, the red and blue edges are the two sets of newly added matchings. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

n1 = t = 4
⌊

s3−s2
8

⌋
number of vertices. Further, n1

2 new vertices are added to each copy of G1 to obtain the vertices of

2. So, n2 = s(n1 +
n1
2 ) =

3sn1
2 . Further, n2

3 new vertices are added to each of the s copies of G2 to obtain the vertices of
3. This gives n3 = s(n2 +

n2
3 ) =

4
3 sn2 =

4
3
3
2 s

2n1 =
4
2 s

2n1. Proceeding in this manner, we have in general, ni =
(i+1)
2 si−1n1.

herefore, putting i = ∆−1 and using the fact that n1 ≥
s3−s2

2 −4 it is easy to see that the number of vertices in G = G∆−1

s

n∆−1 ≥
∆

4
(s∆+1

− s∆ − 8s∆−2) =
∆

4
s∆+1

(
1 −

1
s

−
8
s3

)
=

∆

4
s∆+1

(
1 −

(s2 + 8)
s3

)
≥

5
32

∆s∆+1 (as s ≥ 4)

≥
5
32

∆

(
k

∆ − 1

)∆+1

= Ω

(
∆

(
k

∆ − 1

)∆+1
)

.

This establishes the proof. □
375



D. Chakraborty, F. Foucaud, S. Nandi et al. Discrete Applied Mathematics 358 (2024) 366–381

t
i

i

Fig. 2. Construction of G′′

i+1 from Gi .

5. Complexity of locating coloring and neighbor-locating coloring for sparse graphs

In this section, we will show that the locating coloring and the neighbor-locating coloring problems are NP-complete
even when restricted to families of sparse graphs. For the sake of precision, let us formally define the 3-coloring, the
locating coloring and the neighbor-locating coloring problems.

3-Coloring
Instance: A graph G.
Question: Does there exist a proper 3-coloring of G?

L-Coloring
Instance: A graph G and a positive integer k.
Question: Does there exist a locating k-coloring of G?

NL-Coloring
Instance: A graph G and a positive integer k.
Question: Does there exist a neighbor-locating k-coloring of G?

It is well-known that the 3-Coloring problem is NP-complete [24]. Moreover, the problem remains NP-complete even
when restricted to the family of planar graphs having maximum degree 4.

Theorem 12 ([20]). The 3-Coloring problem is NP-complete even for planar graphs of maximum degree 4.

To prove Theorem 5, we provide a reduction from the 3-Coloring problem. The proof involves construction of a graph
G∗ from a given connected graph G and a few lemmas to analyze its properties.

Construction of G∗: Let G be a connected graph on the vertices u1, u2, . . . , un. Take a copy of G and call it as G′ with
he vertices u′

1, u
′

2, . . . , u
′
n. If ui is adjacent to uj, then u′

i is made adjacent to uj and ui is made adjacent to u′

j for
, j ∈ {1, 2, . . . , n}.

Next we construct the gadgets Xi for all i ∈ {1, 2, . . . , n}. The gadget Xi consists of a vertex called xi and two
ndependent sets Ai = {xi,1, xi,2, . . . , xi,n−1} and Bi = {x′

i,1, x
′

i,2, . . . , x
′

i,n+2}. Moreover, xi is adjacent to all the vertices
of Ai and Bi. When we say that the gadget Xi is attached to a vertex z, we mean that the vertex z is made adjacent to all
the vertices in Ai. After that for each i ∈ {1, 2, . . . , n}, the gadget Xi is attached to the vertices ui and u′

i .
Finally, take another independent set Y = {y1, y2, y3} having three vertices. For each i ∈ {1, 2, . . . , n}, we will attach

every vertex of Y to the gadgets X , and make it adjacent to the vertices x s as well. See Figs. 3 and 4 for pictorial references.
i i
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L

Fig. 3. The gadget Xi from the construction of G∗ from G and its connections.

Fig. 4. A schematic diagram for the construction of G∗ .

emma 13. Let G be a connected graph on n vertices. If G admits a 3-coloring, then the graph G∗ admits a neighbor-locating
(n + 3)-coloring.

Proof. Let G be a connected graph on n vertices which admits a 3-coloring f . We want to extend f to a neighbor-locating
(n+ 3)-coloring f ∗ of G∗. In this case, we will use K = {1, 2, 3, c1, c2, c3, . . . , cn} as the set of (n+ 3) colors for f ∗. We are
going to define f ∗ first and then show that it is a neighbor-locating coloring.

As mentioned before, f ∗ is an extension of f , and hence the colors assigned to the vertices of G under f are retained.
In other words, we have

f ∗(ui) = f (ui)

for all i ∈ {1, 2, . . . , n}. Moreover, we assign the color ci to the vertices u′

i and xi, that is,

f ∗(u′

i) = f ∗(xi) = ci.

To the vertices y1, y2, and y3, we assign the colors 1, 2, and 3, respectively. That is,

f ∗(yj) = j

for all j ∈ {1, 2, 3}.
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This leaves us with assigning the colors to the vertices of the independent sets Ais and Bis. Notice that for each
∈ {1, 2, . . . , n}, the set Ai has exactly (n−1) vertices, each of them adjacent to exactly the six vertices xi, y1, y2, y3, ui, u′

i ,
nd hence are pairwise false twins. Furthermore, notice that the vertices xi, y1, y2, y3 have received four distinct colors
nder f ∗, namely, ci, 1, 2, 3, respectively. Thus, to maintain the conditions of a neighbor locating-coloring in hindsight,
e will assign distinct colors to the vertices of Ai using the colors from the set K \ {ci, 1, 2, 3}. To be precise, the value of

∗ for the vertices of Ai is decided to be any valid (fixed) solution of the following set theoretic equation:

{f ∗(xi,1), f ∗(xi,2), . . . , f ∗(xi,n−1)} = {c1, c2, . . . , cn} \ {ci}.

imilarly, the set Bi has exactly (n + 2) vertices, each of them adjacent to exactly one vertex, namely, xi, and hence are
airwise false twins. To maintain the conditions of a neighbor-locating coloring in hindsight, as f ∗(xi) = ci, we will assign

distinct colors to the vertices of Bi using the colors from the set K \ {ci}. To be precise, the value of f ∗ for the vertices of
Bi is decided to be any valid (fixed) solution of the following set theoretic equation:

{f ∗(x′

i,1), f
∗(x′

i,2), . . . , f
∗(x′

i,n+2)} = K \ {ci}.

Next, we will show that f ∗ is a neighbor-locating (n+3)-coloring of G∗. To do so, we will show that the set of vertices
having the same color are non-adjacent as well as neighbor-distinguished.

• First we will deal with the vertices that received the color j for some j ∈ {1, 2, 3}. Notice that the only vertices that
received the color j are some vertices of the original graph G, the vertex yj from Y , and exactly one vertex of Bi, say
bi, for each i ∈ {1, 2, . . . , n}.
As f ∗ is an extension of the 3-coloring f of G, any two vertices of G having the same color are non-adjacent. They
are non-adjacent to the vertices of Y as well. Moreover, none of the vertices from B are adjacent to any vertex of G
or Y . Therefore, the vertices of G∗ having the color j under f ∗ are all independent.
To observe that they are also neighbor-distinguished, note that a vertex with color j in G, say up, has all cis, except
when i = p, as its color-neighbors. Moreover, up has at least one color-neighbor from {1, 2, 3} as G is connected.
That means, the set of color-neighbors of up is

Nf ∗ (up) =
(
{c1, c2, . . . , cn} \ {cp}

)
∪
(
S \ {f (up)}

)
where S is a non-empty proper subset of {1, 2, 3}. The vertex yj is adjacent to all the vertices of the Ais, and the
vertex xi, and thus has all cis as its color-neighbors. As yj does not have any other neighbors apart from the ones
mentioned above, the set of color neighbors of yj is exactly

Nf ∗ (yj) = {c1, c2, . . . , cn}.

Furthermore, the vertex bi is adjacent only to the vertex xi, which implies that the set of color-neighbors of bi is

Nf ∗ (bi) = {ci}.

These observations readily imply that the vertices having the color j are pairwise neighbor-distinguished.
• Next we will deal with the vertices that received the color ci for some i ∈ {1, 2, . . . , n}. Notice that the only vertices

that received the color ci are u′

i from G′, the vertex xi from the gadget Xi, and exactly one vertex of Ap (resp., Bp), say
ap (resp., bp), for all p ̸= i.
From the construction of G∗, we know that u′

i and xi are non-adjacent. Moreover, u′

i and xi are both non-adjacent to
the vertices of Ap and Bp, as long as p ̸= i. Furthermore, there is no edge between the vertices of the sets Ap and Bq
for all p, q ∈ {1, 2, . . . , n}. Hence, we have shown that the vertices of G∗ that received the color cj are independent.
To observe that they are also neighbor-distinguished, note that the vertex u′

i is adjacent to some vertices of G as G is
connected. However, u′

i is not adjacent to those vertices of G that have received the color f (ui) due to the construction.
The vertex ui is also adjacent to some vertices of G′, and all the vertices of Ai. As all the vertices of G′, except u′

i ,
are colored using the set {c1, c2, . . . , cn} \ {ci}, and as all the colors of the set {c1, c2, . . . , cn} \ {ci} are used for the
vertices of Ai, we can say that the set of color-neighbors of u′

i is given by

Nf ∗ (u′

i) = ({c1, c2, . . . , cn} \ {ci}) ∪ (S \ {f (ui)})

where S is a non-empty proper subset of {1, 2, 3}. The vertex xi is adjacent to exactly the vertices of Ai, Bi, and Y .
That means, the set of color-neighbors of xi is given by

Nf ∗ (xi) = K \ {ci}.

Furthermore, bp has only one color-neighbor, which is cp, whereas the set of color-neighbors of ap is

Nf ∗ (ap) = {1, 2, 3, cp}.

These observations readily imply that the vertices having the color ci are pairwise neighbor-distinguished.

This proves that f ∗ is indeed a neighbor-locating (n + 3)-coloring of G∗. □

Lemma 14. Let G be a connected graph on n vertices. If G∗ admits a neighbor-locating (n + 3)-coloring, then G admits a

3-coloring.

378



D. Chakraborty, F. Foucaud, S. Nandi et al. Discrete Applied Mathematics 358 (2024) 366–381

w
f

r
o
S
{

f

h

Proof. Suppose that G∗ admits a neighbor-locating (n + 3)-coloring f using the set of colors K = {1, 2, 3, c1, c2, . . . , cn}.
Since the vertices y1, y2 and y3 have the same open neighborhood, under any neighbor-locating (n + 3)-coloring f of G∗,
e have to assign three distinct colors to these three vertices. Without loss of generality, we may assume f (y1) = 1,
(y2) = 2 and f (y3) = 3.
For each i ∈ {1, 2, . . . , n}, there are (n+ 2) vertices of degree one in Bi, all adjacent to xi. Thus, the vertices of Bi must

eceive (n + 2) distinct colors. Notice that, f (xi) /∈ {1, 2, 3} as it is adjacent to all the vertices of Y . Hence, xi must receive
ne of the colors, say c ∈ {c1, c2, . . . , cn}. Furthermore, the set of all color-neighbors of xi is given by Nf (xi) = K \ {c}.
o, to be neighbor distinguished, xi and xj must receive different colors whenever i ̸= j. This will force the vertices from
x1, x2, . . . , xn} to receive distinct colors from {c1, c2, . . . , cn}. Thus, without loss of generality, we may assume f (xi) = ci
or all i ∈ {1, 2, . . . , n}.

As the (n − 1) vertices of Ai are adjacent to the vertex xi, which has received the color ci, and all vertices of Y , which
ave received the colors 1,2 and 3, they cannot receive a color from the set {1, 2, 3, ci}. Moreover, as the vertices of Ai

are false twins, they must receive distinct colors. This implies that the vertices of Ai must receive (all) the colors from the
set {c1, c2, . . . , cn} \ {ci}.

Since ui and u′

i are adjacent to all the vertices of Ai, they cannot receive a color from the set {c1, c2, . . . , cn} \ {ci}.
In other words, ui and u′

i must receive colors from the set {1, 2, 3, ci} only. As ui and u′

i are false twins, they cannot
receive the same color. Therefore, one of them must receive a color from the set {1, 2, 3}. If ui receives the color ci and
f (u′

i) ∈ {1, 2, 3}, then we swap the colors of ui and u′

i so that we have f (u′

i) = ci and f (ui) ∈ {1, 2, 3}. As ui and u′

i are false
twins, this does not affect the neighbor-locating coloring of G∗. Hence, the restriction of f to the induced subgraph G will
provide a 3-coloring of G. □

Lemma 15. Let G be a connected graph on n vertices. If G admits a 3-coloring, then the graph G∗ admits a locating
(n + 3)-coloring.

Proof. Since every neighbor-locating coloring is also a locating coloring, the proof follows from Lemma 13. □

Lemma 16. Let G be a connected graph on n vertices. If G∗ admits a locating (n + 3)-coloring, then G admits a 3-coloring.

Proof. Note that, under any locating coloring, false twins must receive distinct colors as they have the same distance to
every vertex. Suppose that G∗ admits a locating (n + 3)-coloring f using the set of colors K = {1, 2, 3, c1, c2, . . . , cn}. As
the vertices y1, y2 and y3 are pairwise false twins, they must receive distinct colors, say f (y1) = 1, f (y2) = 2 and f (y3) = 3.

There are (n + 2) vertices of degree one in Bi for all i ∈ {1, 2, . . . , n}, which are pairwise false twins. So, they must
receive (n + 2) distinct colors. Further, f (xi) /∈ {1, 2, 3} as xi is adjacent to all the vertices of Y . Let c ∈ {c1, c2, . . . , cn}
be the color given to xi, where c does not appear in Bi. If xi and xj (i ̸= j) receive the same color c , then they are not
metric-distinguished as they are at distance one from all other color classes. Hence, xi and xj must receive distinct colors.
This implies that the vertices {x1, x2, . . . , xn} must receive distinct colors from {c1, c2, . . . , cn}. Without loss of generality,
let f (xi) = ci for all i ∈ {1, 2, . . . , n}.

Note that the (n − 1) vertices of Ai are adjacent to the vertex xi, which has received the color ci, and all vertices of
Y , which have received the colors 1,2 and 3. So, they cannot receive a color from the set {1, 2, 3, ci}. Moreover, as the
vertices of Ai are pairwise false twins, they must receive distinct colors. This implies that the vertices of Ai must receive
(all) the colors from the set {c1, c2, . . . , cn} \ {ci}.

As ui and u′

i are adjacent to all the vertices of Ai, they cannot receive a color from the set {c1, c2, . . . , cn}\ {ci}. The only
set of colors allowed for ui and u′

i are {ci, 1, 2, 3}. Moreover, as ui and u′

i are false twins, they must receive distinct colors.
Therefore, one of them is forced to receive a color from the set {1, 2, 3}. If ui receives the color ci and f (u′

i) ∈ {1, 2, 3},
then we swap the colors of ui and u′

i so that we have f (u′

i) = ci and f (ui) ∈ {1, 2, 3}. As ui and u′

i are false twins, this
does not affect the neighbor-locating coloring of G∗. Thus, restricting the coloring f to the induced subgraph G gives a
3-coloring of G. □

Lemma 17. If G is a connected planar graph with maximum degree 4, then G∗ has average degree at most 7.

Proof. Let G be a connected planar graph with maximum degree 4 on n vertices. Then G has m ≤ 2n edges. Let us first
count the number of vertices n∗ in G∗. There are n vertices in each of G and G′, (2n + 2) vertices in each of the n gadgets
Xi, and 3 vertices in the set Y . Thus, we have

n∗
= (n + n) + n(2n + 2) + 3 = 2n2

+ 4n + 3.

Next, let us count the number of edges m∗ in G∗. There are m edges in each of G and G′, 2m edges between the vertices
of G and G′, (n − 1) edges between each vertex ui (resp., u′

i) and the gadget Xi, (2n + 1) edges in each of the gadgets Xi,
and 3n edges between each Xi and Y . Thus, we have

m∗
= (m + m) + 2m + 2n(n − 1) + n(2n + 1) + 3n2

= 7n2
− n + 4m ≤ 7n2

+ 7n.

Therefore, G∗ is a graph with average degree at most 7. □
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Lemma 18. If G is a connected planar graph with maximum degree 4, then G∗ has maximum average degree at most 20.

roof. Let G be a connected planar graph with maximum degree 4 on n vertices. We will observe an edge decomposition
f G∗.
Let G∗

1 be the subgraph of G∗ induced by the vertices of G and G′. As G has maximum degree 4, G∗

1 has maximum degree
8. Therefore, the maximum average degree of G∗

1 is 8 or less.
Let G∗

2 be the graph obtained from G∗ by deleting the vertices of G′ and Y , and the edges of G. This is a triangle-free
planar graph, and thus has maximum average degree less than 4.

Let G∗

3 be the graph obtained by taking the vertices of G′ and the Xis, and the vertex y1. Moreover, G∗

3 also has the
edges between the vertices of G′ and the Xis, as well as the vertex y1 and the Xis. Even this is a triangle-free planar graph,
and thus has maximum average degree less than 4.

Let G∗

4 be the graph obtained by taking the vertices y2, y3, and the vertices of the Xis. Moreover, G∗

4 also have the edges
between the vertices y2, y3 and the Xis. This is also a triangle-free planar graph, and thus has maximum average degree
less than 4.

Notice that, the edges of the subgraphs G∗

1,G
∗

2,G
∗

3, and G∗

4 together give all the edges of G∗. Thus, we can say that the
maximum average degree of G∗ is at most 20. □

Lemma 19. If G is a connected planar graph with maximum degree 4, then the graph G∗ is 4-partite.

Proof. By the Four-Color Theorem [4], every planar graph is 4-colorable. Thus, there is a 4-coloring, say f , of the graph
G. We want to extend f to a 4-coloring f ∗ of G∗. As admitting a 4-coloring and being 4-partite are the same, we will be
done if we can extend f as mentioned above.

As mentioned before, f ∗ is an extension of f , and hence the colors assigned to the vertices of G under f are retained.
Moreover, for a vertex of G, we assign the same color to its false twin in G′. In other words, we have

f ∗(u′

i) = f ∗(ui) = f (ui)

for all i ∈ {1, 2, . . . , n}.
Next, if f ∗(ui) = 1, then we will assign f ∗(xi) = 1. On the other hand, if f ∗(ui) ̸= 1, then we will assign f ∗(xi) = 2.

Furthermore, we will assign the color 2 (resp., 1) to all the vertices of Ai and Bi if f ∗(xi) = 1 (resp., f ∗(xi) = 2). Finally, we
assign the color 3 to all the vertices of Y . Notice that this is a 4-coloring of G∗. □

Proof of Theorem 5. It is easy to verify whether a given coloring is a neighbor-locating coloring (resp. locating coloring),
so the problem is in NP.

On the other hand, Lemmas 13, 14 show that the NL-Coloring problem is NP-hard and Lemmas 15, 16 show that the
L-Coloring problem is NP-hard for the graphs of the type G∗ where G is a connected graph. Moreover, as the 3-Coloring
problem remains NP-hard even when restricted to the family of connected planar graphs having maximum degree at most
4, and as Lemmas 17, 18, and 19 show that under such conditions, G∗ has average degree at most 7, maximum average
degree at most 20, and is a 4-partite graph, the proof follows. □

6. Conclusions

In this article, we have studied the neighbor-locating coloring of sparse graphs. Initially, we studied how big the gaps
can be between the related parameters χ (G), χL(G) and χNL(G). Later, we have obtained an upper bound on the number of
vertices of a sparse graph in terms of neighbor-locating chromatic number. Also, we have proved that the bound is tight
by providing constructions of graphs which almost achieve the bound. Moreover, we have proved that the L-Coloring and
the NL-Coloring problems are NP-complete for sparse graphs with average degree at most 7, maximum average degree
at most 20 and 4-partite. Based on our work, and in general relevant to the topic, we would like to provide a list of open
problems.

Question 1. What is a tight bound for the maximum order of a planar graph with neighbor-locating chromatic number k? Is
the bound n = O(k7) tight?

Question 2. Under what condition does a graph have its neighbor-locating chromatic number equal to its locating chromatic
number (resp., chromatic number)?

Question 3. How much can the neighbor-locating chromatic number increase or decrease after deleting a vertex (resp., an
edge) of a graph?

Question 4. Are the L-Coloring and the NL-Coloring problems NP-hard for other restricted classes of sparse graphs, for
example planar graphs, or graphs of bounded maximum degree (for example subcubic graphs)?

Question 5. Can the lower bound obtained from the construction from Theorem 4 be further improved and made closer to the
upper bound from Theorem 3?
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