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 a b s t r a c t

We introduce a new graph-theoretic concept in the area of network monitoring. In this
area, one wishes to monitor the vertices and/or the edges of a network (viewed as a
graph) in order to detect and prevent failures. Inspired by two notions studied in the
literature (edge-geodetic sets and distance-edge-monitoring sets), we define the notion
of a monitoring edge-geodetic set (MEG-set for short) of a graph G as an edge-geodetic
set S ⊆ V (G) of G (that is, every edge of G lies on some shortest path between two
vertices of S) with the additional property that for every edge e of G, there is a vertex
pair x, y of S such that e lies on all shortest paths between x and y. The motivation is
that, if some edge e is removed from the network (for example if it ceases to function),
the monitoring probes x and y will detect the failure since the distance between them
will increase.

We explore the notion of MEG-sets by deriving the minimum size of a MEG-set
for some basic graph classes (trees, cycles, unicyclic graphs, complete graphs, grids,
hypercubes, corona products...) and we prove an upper bound using the feedback edge
set of the graph.

We also show that determining the smallest size of an MEG-set of a graph is NP-hard,
even for graphs of maximum degree at most 9.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We introduce a new graph-theoretic concept, that is motivated by the problem of network monitoring, called 
monitoring edge-geodetic sets. In the area of network monitoring, one wishes to detect or repair faults in a network; in many 
applications, the monitoring process involves distance probes [2–4,7]. Our networks are modeled by finite, undirected 
simple connected graphs, whose vertices represent systems and whose edges represent the connections between them. 
We wish to monitor a network such that when a connection (an edge) fails, we can detect the said failure by means 
of certain probes. To do this, we select a small subset of vertices (representing the probes) of the network such that all 
connections are covered by the shortest paths between pairs of vertices in the network. Moreover, any two probes are 
able to detect the current distance that separates them. The goal is that, when an edge of the network fails, some pair of 
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Fig. 1. Relations between the parameter meg and other structural parameters in graphs (with no isolated vertices). For the relationships of distance 
edge-monitoring sets, see [7,8]. Arcs between parameters indicate that the value of the bottom parameter is upper-bounded by a function of the 
top parameter.

probes detects a change in their distance value, and therefore the failure can be detected. Our inspiration comes from two 
areas: the concept of geodetic sets in graphs and its variants [11], and the concept of distance edge-monitoring sets [7,8].

We now proceed with some necessary definitions. A geodesic is a shortest path between two vertices u, v of a graph 
G [18]. The length of a path is the number of its edges, and the length of a geodesic between two vertices u, v in G is the 
distance dG(u, v) between them. For an edge e of G, we denote by G− e the graph obtained by deleting e from G. An edge 
e in a graph G is a bridge if G − e has more connected components than G. The open neighborhood of a vertex v ∈ V (G) is 
NG(v) = {u ∈ V | uv ∈ E(G)} and its closed neighborhood is the set NG[v] = NG(v) ∪ {v}.

Monitoring edge-geodetic sets. We now formally define our main concept.

Definition 1.1.  Two vertices x, y monitor an edge e in graph G if e belongs to all shortest paths between x and y. A set 
S of vertices of G is called a monitoring edge-geodetic set of G (MEG-set for short) if, for every edge e of G, there is a pair 
x, y of vertices of S that monitors e.

We denote by meg(G) the size of a smallest MEG-set of G. We note that V (G) is always an MEG-set of G, thus meg(G)
is always well-defined.

Related notions. A set S of vertices of a graph G is a geodetic set if every vertex of G lies on some shortest path between 
two vertices of S [11]. An edge-geodetic set of G is a set S ⊆ V (G) such that every edge of G is contained in a geodesic 
joining some pair of vertices in S [17]. A strong edge-geodetic set of G is a set S of vertices of G such that for each pair u, v
of vertices of S, one can select a shortest u − v path, in a way that the union of all these 

(
|S|
2

)
 paths contains E(G) [14]. It 

follows from these definitions that any strong edge-geodetic set is an edge-geodetic set, and any edge-geodetic set is a 
geodetic set (if the graph has no isolated vertices). In fact, every MEG-set is a strong edge-geodetic set. Indeed, given an 
MEG-set S, one can choose any shortest path between each pair of vertices of S, and the set of these paths covers E(G). 
Indeed, every edge of G is contained in all shortest paths between some pair of S. Hence, MEG-sets can be seen as an 
especially strong form of strong edge-geodetic sets.

A set S of vertices of a graph G is a distance-edge monitoring set if, for every edge e, there is a vertex x of S and a vertex 
y of G such that e lies on all shortest paths between x and y [7,8]. Thus, it follows immediately that any MEG-set of a 
graph G is also a distance-edge monitoring set of G.
Our results. We start by presenting some basic lemmas about the concept of MEG-sets in Section 2, that are helpful for 
understanding this concept. We then study in Section 3 the optimal value of meg(G) when G is a tree, cycle, unicyclic graph, 
complete (multipartite) graph, hypercubes, grids and corona products. In Section 4, we show that meg(G) is bounded above 
by a linear function of the feedback edge set number of G (the smallest number of edges of G needed to cover all cycles of 
G, also called cyclomatic number) and the number of leaves of G. This implies that meg(G) is bounded above by a function 
of the max leaf number of G (the maximum number of leaves in a spanning tree of G). These two parameters are popular 
in structural graph theory and in the design of algorithms. We refer to Fig.  1 for the relations between parameter meg
and other graph parameters. We show that determining meg(G) is an NP-complete problem, even in graphs of maximum 
degree at most 9, in Section 5. Finally, we conclude in Section 6.
Further related work on MEG-sets. This paper is the full version of a paper presented at the CALDAM 2023 conference [9], 
where the notion of MEG-sets was presented for the first time. It contains the full proofs of the results in the conference 
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version (with a corrected version of Theorem  3.5), as well as the new result on corona products, and the new NP-
completeness proof. In the meantime, Haslegrave [12] proved that the MEG-set problem is NP-complete on general graphs, 
and also studied MEG-sets for other graph products.

2. Preliminary lemmas

We now give some useful lemmas about the basic properties of MEG-sets.
A vertex is simplicial if its neighborhood forms a clique.

Lemma 2.1.  In a graph G with at least one edge, any simplicial vertex (in particular, any leaf) belongs to any edge-geodetic 
set and thus, to any MEG-set of G.

Proof.  Let us consider by contradiction an MEG-set of G that does not contain said simplicial vertex v. Any shortest path 
passing through its neighbors will not pass through v, because all the neighbors are adjacent, hence leaving the edges 
incident to v uncovered, a contradiction. □

Two distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed twins if N[u] = N[v]. Further, u
and v are twins in G if they are open twins or closed twins in G.

Lemma 2.2.  If two vertices are twins of degree at least 1 in a graph G, then they must belong to any MEG-set of G.

Proof.  For any pair u, v of open twins in G, for any shortest path passing through u, there is another one passing through v. 
Thus, if u, v were not part of the MEG-set, then the edges incident to u and v would remain unmonitored, a contradiction.

If u, v are closed twins, if some shortest path contains the edge uv, then it must be of length 1 and consist of the edge 
uv itself (otherwise there would be a shortcut). Thus, to monitor uv, both u, v must belong to any MEG-set. □

The next two lemmas concern cut-vertices and subgraphs, and will be useful in some of our proofs.

Lemma 2.3.  Let G be a graph with a cut-vertex v and C1, C2, . . . , Ck be the k components obtained when removing v from G. If 
S1, S2, . . . , Sk are MEG-sets of the induced subgraphs G[C1∪{v}],G[C2∪{v}], . . . ,G[Ck∪{v}], then S = (S1∪S2, . . . , ∪Sk)\{v}

is an MEG-set of G.

Proof.  Consider any edge e of G, say in C1. Then, there are two vertices x, y of S1 such that e belongs to all shortest paths 
between x and y in G1 = G[C1 ∪ {v}]. Assume first that v /∈ {x, y}. All shortest paths between x and y in G also exist in G1. 
Thus, e is monitored by {x, y} ⊆ S in G. Assume next that v ∈ {x, y}: without loss of generality, v = x. At least one edge 
exists in G[C2 ∪ {v}], which implies that S2 \ {v} is nonempty, say, it contains z. Then, e is monitored by y and z, since 
z ∈ S. Thus, S monitors all edges of G, as claimed. □

Lemma 2.4.  Let G be a graph and H an induced subgraph of G such that for all vertex pairs {x, y} in H, no shortest path 
between them uses edges in G−H. Then, for any set S of vertices of G containing an MEG-set of H, the edges of H are monitored 
by S in G.

Proof.  Consider a subset S ⊆ V (G) containing an MEG-set S ′ of H . Let e be an edge in H that lies on all shortest paths 
between some pair {x, y} of vertices of S ′. By our hypothesis, no shortest path between x and y in G uses any edges of 
G − H . Thus, the shortest paths between x and y in H are the same as in G, and therefore in G, e is also monitored by 
{x, y} ⊆ S. □

3. Basic graph classes and bounds

In this section, we study MEG-sets for some standard graph classes.

3.1. Trees

Theorem 3.1.  For any tree T  with at least one edge, the only optimal MEG-set of T  consists of the set of leaves of T .

Proof.  The fact that all leaves must be part of any MEG-set follows from Lemma  2.1, as they are simplicial. For the other 
side, let L be the set of leaves of T . Let e = xy be an edge of T  and consider two leaves of T , lx and ly, such that lx is closer 
to x than to y and that ly is closer to y than to x. We note that e belongs to the unique (shortest) path between lx and ly, 
thus e is monitored by L. Hence, L is an MEG-set of T . □

Corollary 3.2.  For any path graph P , where n ≥ 2, we have meg(P ) = 2.
n n
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This provides a lower bound which is tight for path graphs, which have order n and exactly 2 leaves.

Corollary 3.3.  For any tree T  of order n ≥ 3, we have 2 ≤ meg(T ) ≤ n − 1.

The upper bound is tight for star graphs, which have order n and n − 1 leaves.

3.2. Cycle graphs

Theorem 3.4.  Given an n-cycle graph Cn, for n = 3 and n ≥ 5, meg(Cn) = 3. Moreover, meg(C4) = 4.

Proof.  Let us first prove that we need at least three vertices to monitor any cycle. By contradiction, let us assume that 
two vertices suffice. For any arbitrary vertex pair in the cycle graph, there are two paths joining them, but there is either 
one single shortest path or two equidistant shortest paths between them. Thus, the edges on at least one of the two paths 
between the pair will not be monitored by it. Hence, we need at least three vertices in any MEG-set of Cn (n ≥ 3).

We now prove the upper bound. Let n ≥ 5 or n = 3, with the vertices of Cn from v0 to vn−1. Consider the set 
S = {v0, v⌊

n
3 ⌋, v⌊

2n
3 ⌋

}. We show that S is an MEG-set of Cn.
Consider any edge of Cn between a vertex pair vx and vy in S, then we note that it lies on every (unique) shortest path 

between these vertices, which has length at least 1 for n ≤ 5 and at least 2 otherwise, and at most ⌊ n−1
2 ⌋ < n

2 . Moreover, 
every edge of Cn lies on such a path. Thus, meg(Cn) = 3 when n ≥ 5 or n = 3.

In the case of C4, the above construction does not work. Consider a set of three vertices, say v0, v1, v2 without 
loss of generality due to the symmetries of C4. Notice that the edge v0v3 is unmonitored by this set. Thus, we have 
meg(C4) = 4. □

3.3. Unicyclic graphs

A unicyclic graph is a connected graph containing exactly one cycle [10]. We now determine the optimal size of an 
MEG-set of such graphs. Note that in the short version of this paper, published in the proceedings of CALDAM [9], the 
statement was slightly mistaken. Here, we correct it.

Theorem 3.5.  Let G be a unicyclic graph where the only cycle C has length k and whose set of pendant vertices is L(G), 
|L(G)| = l. Let V+

c  be the set of vertices of C with degree at least 3. Let p(G) = 1 if G[V (C) \ V+
c ] contains a path with at least 

⌊
k−1
2 ⌋ vertices, and p(G) = 0 otherwise. Then, if k ∈ {3, 4},

meg(G) = l + k − |V+

c |.

Otherwise (k ≥ 5), then

meg(G) =

⎧⎪⎪⎨⎪⎪⎩
3,  if |V+

c | = 0;
l + 2,  if |V+

c | = 1;
l + 2, if |V+

c | = 2, k is even, and the vertices in V+
c  are either adjacent or opposite on C;

l + p(G),  in all other cases.

Proof.  Let G be a unicyclic graph where the only cycle C has length k and whose set of pendant vertices is L(G). By Lemma 
2.1, all leaves are part of any MEG-set of G. This implies that meg(G) is at least l. If |V+

C | = 0 (i.e. l = 0), we are done by 
Theorem  3.4, so let us assume |V+

C | > 0 and thus, l > 0.
Similarly as in the proof of Lemma  2.3, for every vertex v of V+

C , we know that at least one leaf will exist in the tree 
component Tv formed if we remove the neighbors of v in C from G. Informally speaking, towards the rest of the graph, 
this leaf simulates the fact that v is in the solution set.

If k ∈ {3, 4}, we consider S = L(G) and we add to S all vertices of C that are of degree 2 in G. One can easily check that 
this is an MEG-set. Moreover, one can see that adding these degree 2 vertices is necessary by using similar arguments as 
in the proof of Theorem  3.4 on cycles.

Next, we assume that k ≥ 5. Let v0, . . . , vk−1 be the vertices of C . We have p(G) = 1 if there is an edge of the cycle 
that is not on a unique shortest path between two vertices of V+

c . In most cases, these edges would form a path in G, and 
require an additional vertex to monitor them. In some cases, these edges include all edges of C: when k is even, |V+

c | = 2
and the two vertices of V+

c  are opposite on the cycle. Then, we require two additional vertices to monitor them. In the 
special case where k is even, |V+

c | = 2 and the two vertices of V+
c  are adjacent, we also require two additional vertices. 

Let us now analyze these situations in detail.
When |V+

c | = 1, without loss of generality, consider the vertex in V+
c  to be v0. Then, the vertices {v⌊

k
3 ⌋

, v
⌊
2k
3 ⌋

} on the 
cycle together with the pendant vertices are sufficient to monitor the graph, in the same way as in Theorem  3.4, showing 
meg(G) ≤ l + 2. Moreover, by the same arguments as in the proof of Theorem  3.4, one can see that if at most one vertex 
on C is chosen in the MEG-set, some edge of C will not be monitored, proving the lower bound meg(G) ≥ l + 2.
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Consider the case where k is even and |V+
c | = 2 such that the vertices in V+

c  are adjacent (then, p(G) = 1). Then, 
G[V (C) \ V+

c ] consists of a single path P with k− 2 vertices, and the edges of P (as well as the two edges joining P to V+
c ) 

are not monitored by the set of leaves of G. We need to pick at least one vertex of P to monitor these edges. If we pick 
only one vertex of P , then at least one of the edges of P is not monitored (for example, the one that is, in the subgraph of G
induced by P , farthest from the picked vertex). Thus, we need to pick at least two additional vertices and meg(G) ≥ l+ 2. 
Picking the two middle vertices of P , for example, is sufficient and yields an MEG-set of the desired size, l + 2.

Similarly, if k is even and |V+
c | = 2 such that the vertices in V+

c  are opposite on C , there exist two paths of equal 
length between the two vertices of V+

c , no edge of C is monitored by the leaves of G, and G[V (C) \ V+
c ] consists of two 

paths P1 and P2, each with k/2− 1 vertices. We have meg(G) ≥ l+ 2 because we need to pick at least one vertex of each 
of P1 and P2. We can in fact pick any vertex of P1 and any vertex of P2, and obtain an MEG-set of size l + 2, as desired.

Let us next assume we are in neither of the previous cases.
If |V+

c | > 1 and p(G) = 0, the l pendant vertices are sufficient to monitor G. Indeed, consider an edge e. If e is not 
on C , let v be the vertex of V+

C  closest to e, and let w ̸= v be the vertex of V+

C  closest to v (it exists because |V+
c | > 1). 

Consider a leaf f  of G such that e lies on some path from v to f . Since p(G) = 0, the path from w to f  is a unique shortest 
path, and thus, e is monitored by f  and some leaf whose closest vertex on C is w.

If e is an edge of C , e lies on a path of length strictly less than k
2  between two vertices v,w of V+

C . Since p(G) = 0, 
this path is a unique shortest path between v and w, and e is monitored by two leaves, each of which has v and w as its 
closest vertex of C , respectively.

Finally, assume that |V+
c | > 1 and p(G) = 1. Now, there is only one problematic path P of G[V (C) \ V+

c ] with at 
least ⌊ k

2⌋ vertices (since we already dealt with case where k is even with two vertices in V+
c  that are opposite on C). 

As in the previous cases, we can see that the edges of P are not monitored by the set of leaves of G, which implies that 
meg(G) ≥ l+ 1. To show that meg(G) ≤ l+ 1, we select as an MEG-set, the set of leaves together with the middle vertex 
of P (if P has an odd number of vertices) or one of the middle vertices of P (if P has an even number of vertices). One 
can see that this is an MEG-set by similar arguments as in the previous cases. □

3.4. Complete graphs

The following follows immediately from Lemma  2.1, since every vertex of a complete graph is simplicial.

Theorem 3.6.  For any n ≥ 2, we have meg(Kn) = n.

3.5. Complete multipartite graphs

The complete k-partite graph Kp1,p2,...,pk  consists of k disjoint sets of vertices of sizes p1, p2, . . . , pk, with an edge 
between any two vertices from distinct sets.

Theorem 3.7.  We have meg(Kp1,p2,...,pk ) = |V (Kp1,p2,...,pk )|, with the exceptional case of a bipartite graph K1,p with an 
independent set of size 1 (a star graph), for which meg(K1,p) = p.

Proof.  In a complete k-partite graph, all vertices in a given partite set are twins. Therefore, by Lemma  2.2, all vertices of 
any partite set of size at least 2 need to be a part of any MEG-set.

If we have several partite sets of size 1, then the vertices from these sets are closed twins, and again by Lemma  2.2 
they all belong to any MEG-set.

Thus, we are done, unless there is a unique partite set of size 1, whose vertex we call v. If there are at least three partite 
sets, then note that v is never part of a unique shortest path, and thus the edges incident with v cannot be monitored if 
v is not part of the MEG-set.

On the other hand, if the graph is bipartite, it is a star K1,p. Here, we know by Theorem  3.1 that meg(G) = p, as 
claimed. □

3.6. Hypercubes

The hypercube of dimension n, denoted by Qn, is the undirected graph consisting of k = 2n vertices labeled from 0 to 
2n

− 1 and such that there is an edge between any two vertices if and only if the binary representations of their labels 
differ by exactly one bit [16]. The Hamming distance H(A, B) between two vertices A, B of a hypercube is the number of 
bits where the two binary representations of its vertices differ.

We next show that not only C4 has the whole vertex set as its only MEG-set (Theorem  3.4), but that this also holds 
for all hypercubes.

Theorem 3.8.  For a hypercube graph Q  with n ≥ 2, we have meg(Q ) = 2n.
n n
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Proof.  Assume by contradiction that there is an MEG-set M of size at most 2n
−1. Let v ∈ V (G) be a vertex that is not in M . 

It is known that for every vertex pair {vx, v} with H(vx, v) ≤ n, there are H(vx, v) vertex-disjoint paths of length H(vx, v)
between them [16]. Thus, there is no vertex pair in M with a unique shortest path going through the edges incident with 
v, and M is not an MEG-set, a contradiction. □

3.7. Grid graphs

The graph G□H is the Cartesian product of graphs G and H and with vertex set V (G□H) = V (G) x V (H), and for which 
{(x, u), (y, v)} is an edge if x = y and {u, v} ∈ E(H) or {x, y} ∈ E(G) and u = v. The grid graph G(m, n) is the Cartesian 
product Pm□Pn with vertex set {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Theorem 3.9.  For any m, n ≥ 2, we have meg(G(m, n)) = 2(m + n − 2).

Proof.  We claim that the set S = {(i, j) ∈ V (G(m, n)), i ∈ {1,m} and 1 ≤ j ≤ n or j ∈ {1, n} and 1 ≤ i ≤ m} of 2(m+n−2)
vertices of G(m, n) that form the boundary vertices of the grid, form the only optimal MEG-set.

For the necessity side, let us assume that some vertex v = (i, j) of S is not part of the MEG-set. If v is a corner vertex 
(without loss of generality say v = (1, 1), the two edges incident with v are not monitored, as for any shortest path going 
through them, there is another one going through vertex (2, 2). If v is not a corner vertex (without loss of generality say 
v = (1, j) with 2 ≤ j ≤ n−1), then the edge e between v = (1, j) and (2, j) is not monitored, indeed for any shortest path 
containing e, there is another one avoiding it, either going through vertex (2, j − 1) or through (2, j + 1).

To see that S is an MEG-set, first see that each boundary edge is monitored by its endpoints. Next, consider an edge e
that is not a boundary edge, without loss of generality, e is between (i, j) and (i+ 1, j). Then, it is monitored by (1, j) and 
(m, j), whose unique shortest path goes through e. □

3.8. Corona products

The corona product G⊙H of two graphs G and H is defined as the graph obtained by taking one copy of G and |V (G)|
copies of H and joining the ith vertex of G to every vertex in the ith copy of H .

Let graph G be simple and connected and graph H be simple. Let {gi} and {hi} denote the vertex set of G and H
respectively. Let |V (G)| = n1 and |V (H)| = n2.

Theorem 3.10.  Given a simple, connected graph G and a simple graph H, we have meg(G ⊙ H) = n1n2.

Proof.  By definition of G ⊙ H , every vertex gi is a cut-vertex in it. Therefore, the edge e = (gi, gj) lies in the unique 
shortest path connecting the ith copy Hi with the jth copy Hj in G ⊙ H . i.e. every edge of G is in the unique shortest path 
of some Hi and Hj. Hence no vertex of G is in meg(G ⊙ H).

If some vertex h of Hi is not in the MEG-set, consider an edge of Hi incident with h, if that edge is monitored, then 
there are two vertices other than h monitoring it; these two vertices must be in Hi and at distance 2 from each other, but 
then there are two edge-disjoint paths of length 2 joining them (one through h and one through gi), a contradiction. □

4. Relation to feedback edge set number

A feedback edge set of a graph G is a set of edges which when removed from G leaves a forest. The smallest size of 
such a feedback edge set of G is denoted by fes(G) and is sometimes called the cyclomatic number of G.

We next introduce the following terminology from [6]. A vertex is a core vertex if it has degree at least 3. A path with 
all internal vertices of degree 2 and whose end-vertices are core vertices is called a core path. Do note that we allow 
the two end-vertices to be equal, but that every other vertex must be distinct. A core path that is a cycle (that is, both 
end-vertices are equal) is a core cycle. For the sake of distinction, a core path that is not a core cycle is called a proper 
core path. We say that a (non-empty) path from a core vertex u to a leaf v is a leg of u if all internal vertices of the path 
have degree 2 (u is not considered to be a part of the leg). The base graph of a graph G is the graph of minimum degree 2 
obtained from G by iteratively removing vertices of degree 1. A hanging tree is a connected subtree of G which is the union 
of some legs removed from G during the process of creating the base graph Gb of G, together with the single vertex of the 
base graph to which the last removed vertices were adjacent. Thus, G can be decomposed into its base graph and a set 
of maximal hanging trees. The root of such a maximal hanging tree T  is the vertex common to T  and G.

See Fig.  2 for a graph whose core vertices are in red. It has two hanging trees, three core cycles, four proper core paths 
of length 4, and six proper core paths of length 1.

Based on the aforementioned, we have the following lemma. 

Lemma 4.1 ([6,13]). Let G be a graph with fes(G) = k ≥ 2. The base graph of G has at most 2k - 2 core vertices, that are 
joined by at most 3k - 3 edge-disjoint core paths. Equivalently, G can be obtained from a multigraph H of order at most 2k−2
and size at most 3k − 3 by subdividing its edges an arbitrary number of times and iteratively adding degree 1 vertices.
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Fig. 2. Example of a graph G with its core vertices in red.

Fig. 3. Example of a graph G and its base graph Gb with four core cycles of length 4 each.

Lemma 4.2.  Let S be an MEG-set of the base graph Gb of G and L(G) be the set of leaves in G. Then, S ∪ L(G) is an MEG-set 
of G.

Proof.  Let Gb be a base graph of G. Consider all vertices that are roots of maximal hanging trees on Gb. By Theorem  3.1, 
the optimal MEG-set of each tree consists of all leaves. We repeatedly apply Lemma  2.3 to G, where for each application 
of Lemma  2.3, the cut-vertex is the root of a hanging tree in consideration. □

Lemma  2.1, Theorem  3.1 and Lemma  4.2 together imply that if fes(G) = 0, then meg(G) ≤ fes(G) + |L(G)|. Moreover, 
if fes(G) = 1, then meg(G) ≤ fes(G) + |L(G)| + 3, where |L(G)| is the number of leaves of G. We next give a similar bound 
when fes(G) ≥ 2.

Theorem 4.3.  If fes(G) ≥ 2, then meg(G) ≤ 9 fes(G) + |L(G)| − 8 where |L(G)| is the number of leaves of G.

Proof.  Let k = fes(G). We show how to construct a MEG-set M of Gb of order at most 9k − 8 and, by applying Lemma 
4.2 to G, of order 9k− 8+ |L(G)| for G. If an edge e is part of a maximal hanging tree, then by Lemma  2.1 and Lemma  2.3, 
it is monitored by the leaves of G on the maximal hanging tree. M is constructed as follows.

• We let all core vertices of Gb be part of M .
• One or two internal vertices from each proper core path belongs to M , only if the length is at least 2, as explained 

below.
• Two or three internal vertices from each core cycle, as explained below.

Consider a proper core path P of length at least 2, with core vertex endpoints c and c ′, and the median vertex x1 in the 
case of an even-length path and x , x  in the case of an odd-length path, with d edges (on P) between the endpoints and 
1 2
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the respective medians in P . Then, we choose the single median vertex x1 or the two median vertices x1, x2 from each of 
the core paths and add them to M .

For each core cycle C , in addition to the core vertex of that cycle, if C has length 4, we add all three non-core vertices 
of C to M . Otherwise, we add two non-core vertices of C to M , so that now C has three vertices in M . We do this so that 
these three vertices are as equidistant as possible on the cycle, to be part of M (similar as in Theorem  3.4).

This finishes the description of the construction of M .
We now show that M monitors all edges of Gb. Let e be any edge of G. If e lies on a core cycle C , assume an origin 

core vertex of v0. Then, based on Lemma  2.3 and Theorem  3.4, we deduce that in the worst case, v0 and the two or three 
other vertices of C in M together suffice to monitor the edges.

If the edge e lies on a proper core path P , then let c and c ′ be the core vertex endpoints of P . Let the median vertex 
of P be x1 in the case of an even-length path and x1, x2 the two medians in the case of an odd-length path. Assume that 
there are d edges between the medians and closest endpoints of P . Without loss of generality, let us say that e lies on the 
path P such that its closest core vertex is c , and closest median x1. Given that the distance between c and x1 is d in P , the 
length of any other path between them must be at least d+ 1 (or d+ 2 if P has odd length). Therefore, c and x1 monitor 
e, which lies on the unique shortest path of length d between them. If e lies in between the median vertices x1 and x2, 
then we know that those vertices would monitor e because they are adjacent. This justifies our construction of M , which 
is an MEG-set of Gb, as claimed.

Let us now estimate the size of M . By Lemma  4.1, the number of core vertices of Gb is at most 2k − 2, and there are 
at most 3k − 3 core paths.

If we have core cycles in our graph, then we must note that there can be at most k such cycles in the graph. Indeed, 
if there were k + 1 core cycles in the graph, since they are all edge-disjoint, we need at least k + 1 edges to be removed 
from G to obtain a forest, a contradiction to the fact that fes(G) = k.

Let nc be the number of core cycles and np be the number of proper core paths. Recall that after adding the core 
vertices to M , we added at most three vertices of each core cycle and two for each core path to M . Hence, we have 
|M| ≤ 3nc +2np +2k−2. Since nc ≤ k and nc +np ≤ 3k−3 by Lemma  4.1, we get |M| ≤ 3k+2(2k−3)+2k−2 = 9k−8.

Also note that this value is only reached if all core cycles are of length 4 and all core paths are of odd length. □

The max leaf number of G, denoted mln(G), is the maximum number of leaves in a spanning tree of G. It can be seen 
as a refinement of the feedback edge set number of G [5]. We get the following corollary.

Corollary 4.4.  For any graph G, we have meg(G) = O(mln(G)2), where mln(G) is the max leaf number of G.

Proof.  It is known that fes(G) = O(mln(G)2) [5], and clearly, |L(G)| ≤ mln(G), thus the bound follows from Theorem 
4.3. □

In the following, we show that Theorem  4.3 is best possible up to constant factors.

Proposition 4.5.  For any integer k ≥ 2, there exists a graph G with fes(G) = k and meg(G) = 3k + |L(G)|.

Proof.  Consider G and its base graph Gb in Fig.  3. We know that the leaves must be part of any MEG-set by Lemma 
2.1. The MEG-set for Gb consists of all the vertices in each of the core cycles (each a C4) in Gb, except the common core 
vertex. It is easy to check that no smaller set can work. The size of the optimal MEG-set in this example is 3k+|L(G)| and 
therefore, this is an instance where this proposition holds. □

5. NP-completeness for graphs of small maximum degree

The Monitoring Edge Geodetic Set decision problem is defined as follows.

Monitoring Edge Geodetic Set
Instance: A graph G = (V (G), E(G)) and an integer k.
Question: Is there an MEG-set S ⊆ V (G) of G of size at most k?

In this section, we show that the problem is NP-hard by a reduction from Vertex Cover.

Vertex Cover
Instance: A graph G = (V (G), E(G)) and an integer k.
Question: Is there a vertex cover C ⊆ V (G) of size at most k such that every edge in E(G) is incident with 
some vertex in C?
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Fig. 4. Choice of C when u ∈ C ′ and u, v ∈ C ′ .

Overview of the reduction. Consider a cubic planar graph. We subdivide each edge of this graph four times. Let this graph 
be G with vertex set V (G) and edge set E(G). Also, let |V (G)| = n. Observe that the vertices of G have degree 2 or 3 and its 
girth is at least 15. It is well known that Vertex Cover is NP-hard when the input graph is cubic, see for example [15]. 
We show that it is also NP-hard when the input graph is restricted to resemble graphs such as G. (Note that such a result 
seems to be already known for Independent Set [1], which has the same complexity as Vertex Cover. We state the proof 
for Vertex Cover for completeness, as [1] is in Russian.)

Then, given G, we construct a new graph HG of maximum degree 8 and show that G has a vertex cover of size k if and 
only if HG has an MEG-set of size 3n + k. This completes our proof.

Lemma 5.1 ([1]).  Vertex Cover is NP-complete, even for input graphs obtained from a cubic graph by subdividing every edge 
four times.

Proof.  Let G′ be the original (cubic planar) graph before subdivision and let |E(G′)| = m′. To show that finding the 
minimum vertex cover in G is NP-hard it suffices to show that G′ has a vertex cover of size k if and only if G has a vertex 
cover of size 2m′

+ k.
(The if part.) Let C be a vertex cover of G of size 2m′

+ k. We construct a vertex cover C ′ of G′ of size at most k as 
follows. Consider all maximal paths of G of length 5 whose end points are degree 3 vertices and whose internal points are 
degree 2 vertices. Let πuv, u, v ∈ V (G′), represent one such path. Observe that πuv which is in G, represents the edge uv
in G′. Since C is a vertex cover, all edges in πuv are covered by some vertex in C . We add to C ′ the vertex u and/or v if it 
was included in C . If both u and v were not in C then we arbitrarily choose one of these two vertices and add it to C ′.

Since for each edge of G′ we have included one of its end points, C ′ is a vertex cover of G. Also, πuv needs at least 3 
vertices to cover all its edges. Therefore, if one of u or v is inserted into C ′, two other vertices of πuv , which are in C , are 
excluded. Again, if u and v both belong to C then πuv needs at least 4 vertices to cover all its edges. Therefore, if both u
and v are inserted into C ′, two other vertices of πuv , which are in C , are excluded. See Fig.  4 for reference. Since for every 
such maximal path we excluded at least 2 vertices from C from being inserted into C ′, the size of C ′ is at most k.
(The only if part.) Let C ′ be a vertex cover of G′ of size k. We construct a vertex cover of G of size at most 2m′

+ k as 
follows. As before, consider all maximal paths of G and let πuv, u, v ∈ V (G′), be one such path. Either u or v need to be in 
C ′. We insert u or v or both into C if they belong to C ′ and are not already inserted. We select two additional vertices of 
πuv such that all its edges are covered and insert them into C ′. As evident from Fig.  4 this is always possible. C is a vertex 
cover of G. Since for each maximal path πuv we insert two additional vertices into C , the size of C is at most 2m′

+ k. □

Now we show how to construct HG from G.
Construction. For each degree 3 vertex u ∈ V (G), we construct a vertex-gadget Hu

G , with 16 vertices and 18 edges as shown 
in Fig.  5(a). Each vertex f ui , i ∈ {1, 2, 3}, is associated with a unique side of the triangle △cu1c

u
2c

u
3  as depicted in the figure. 

For example, f u1  is associated with the side cu1du1cu2 . Each f ui  also has a unique associate vertex cui . Note that cui  belongs 
to the side of △cu1c

u
2c

u
3  associated with f ui  and its distance from au is 2. For a degree 2 vertex v ∈ V (G), we construct a 

vertex-gadget Hv
G , with 14 vertices and 15 edges as shown in Fig.  5(b). Again, each f v

i , i ∈ {1, 2}, vertex is associated with 
a unique side of the triangle △cv

1 c
v
2 c

v
3  depicted in the figure. In this case however, the associate vertex of f v

1  is cv
1  and that 

of f v
2  is cv

3 . Again note that the associate vertex of f v
i  belongs to the side of △cv

1 c
v
2 c

v
3  associated with f ui  and its distance 

from av is 2. Also, observe that the missing elements in Hv
G , corresponding to Hu

G , are the vertices bv
2 and f v

3  and their 
incident edges.

Let u be a degree 3 vertex in G and let v ∈ V (G) be such that uv ∈ E(G). According to our construction of G, v is 
always of degree 2. We connect the vertices of Hu and Hv using two vertices (guv and guv) and five edges as shown in 
G G 1 2
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Fig. 5. The vertex-gadgets. 

Fig. 6. Connections between vertex-gadgets Hu
G and Hv

G (shown in the dashed circles), where u is a degree 3 vertex and v is a degree 2 vertex in G.

Fig.  6. Observe that Hu
G and Hv

G are connected to each other via vertices f u1  and f v
2 , thus guv

1  and guv
2  are connected to f u1 ’s 

and f v
2 ’s associated sides. Since u is of degree 3 in G, there are also similar connections between Hu

G and two additional 
vertex-gadgets which are shown in the figure. One of them is labeled H t

G, the other is not labeled.
For a degree 2 vertex v of G, the connections are similar with the only exception being that, instead of three, the 

vertex-gadget is connected to only two other vertex-gadgets. This means that cv
1  and cv

3  are both adjacent to one vertex 
of type gxv

i , i ∈ {1, 2}, x ∈ V (G), while cv
2 , similar to the cuj ’s (u is of degree 3 in G), is adjacent to two such vertices.

Next, consider any two vertices u, w ∈ V (G) such that the distance between them in G is 2. Let us again assume u to 
be of degree 3 in G. By the structure of G, this implies w to be of degree 2. Let v ∈ V (G) be the unique vertex adjacent 
to both u and w. Let f ui′  (resp. f w

j′ ) be the vertex in Hu
G (resp. Hw

G ) which is connected to Hv
G . Let cui′  be the associate vertex 

of f ui′  and cw
h  the associate vertex of f w

j′ . We connect cui′  and cw
h . This ensures that the length of the (unique) shortest path 

between au and aw in HG is 5 and it passes through the edge cui′ cw
h .

Now consider two vertices t, w ∈ V (G) such that the distance between them in G is 3. Let u, v ∈ V (G) be the two 
vertices included in the unique shortest path between t and w in G. Also let u be adjacent to t and v to w in G. Let f ti′
(resp. f w

j′ ) be the vertex in H t
G (resp. Hw

G ) which is connected to Hu
G (resp. Hv

G). Let ctg  and cw
h  be the associate vertices of 

f ti′  and f w
j′ , respectively. We connect ctg  and cw

h , such that the length of the (unique) shortest path between at and aw is 5 
and it passes through the edge ctgcw

h . See Fig.  7 for reference.
Description of the various gadgets and connections. In Fig.  7, the vertex-gadget colored red (u) is corresponding to a degree 
3 vertex. The vertex-gadgets adjacent to u (which are all of degree 2) are colored in forest-green, blue (v) and pink (t), 
respectively. The edges connecting Hu

G and Hv
G are shown in violet. The edges connecting Hu

G and H t
G are shown in purple. 

The vertex-gadget colored yellow (w) is at a distance 2 from u and adjacent to v. The edges shown in green connect 
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Fig. 7. A sample of the original graph G with its vertices (shown as squares), along with the constructed graph HG . Here, vertex u is of degree 3, 
while the other vertices are of degree 2. The dashed circles contain the vertex-gadgets. Connections between vertex-gadgets in HG are highlighted 
with thicker lines.

the gadgets of v and w. The edges connecting u and w are highlighted in orange. All such other connections have been 
highlighted in different colors for ease of understanding. The edges of the vertex-gadgets are thinner than the edges 
connecting the gadgets.

The subgraphs Hu
G, ∀u ∈ V (G), along with the connections between them constitute the graph HG. Recall that the 

maximum degree of a vertex in G is 3 and any two degree 3 vertices of G are at least distance 5 apart. Therefore, for any 
vertex u ∈ V (G), the maximum number of vertices at distance either exactly 2 or 3 in G is 3. If u is of degree 3 in G then 
any vertex cui , i ∈ {1, 2, 3}, is connected to four vertices from V (Hu

G), two vertices of type gux
j , j ∈ {1, 2}, x ∈ V (G), and one 

vertex each of type cyh , where h ∈ {1, 3} and y ∈ V (G) is either at a distance 2 or 3 from u. This makes the total degree of 
cui  to be 8. If v is of degree 2 in G then a vertex cv

i , i ∈ {1, 2, 3}, is connected to at most 4 vertices from V (Hv
G), at most 

two vertices of type gvx
j , j ∈ {1, 2}, x ∈ V (G), and at most 2 vertex each of type cy

′

h′ , where h′
∈ {1, 2, 3} and y′

∈ V (G) is 
either at a distance 2 or 3 from v. This makes the total degree of cv

i  to be at most 10. A close inspection of HG reveals that 
this upper bound is actually 9 and the maximum degree of HG is determined by some cv

i  and hence is also 9. We prove 
the following result.
Intuition of the reduction. Before delving into the technical proof of validity of the reduction in the next lemma, let us 
first provide some intuition behind the design of the vertex-gadgets. We begin by focusing on the three pendant vertices 
in each vertex-gadget, which must belong to any MEG-set by Lemma  2.1. Any two pendant vertices of the same vertex-
gadget, say eui  and euj , will monitor all the edges along the unique shortest path between them. As a result, all the boundary 
edges of a vertex-gadget are effectively monitored. Moreover, these pendant vertices also monitor the edges used to 
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connect two adjacent vertex-gadgets e.g. Hu
G and Hv

G , specifically those involving the vertices guv
1  and guv

2 . (Refer to Fig.  6 
or Fig.  7.)

Now, consider including the central vertex au in the MEG-set. This vertex monitors all paths from au to each of the 
pendant vertices eui  of the same vertex-gadget, thereby covering the internal edges of the gadget. Moreover, it also helps 
monitoring the edges involving the vertices of type f ui , and the internal edges of adjacent vertex-gadgets, such as the 
edges of the path of length 3 from av to ev

1 in Figs.  6 and 7.
On the other hand, in order to monitor the edges of type f ui f v

j , one can show that one necessarily needs to include a 
vertex from one of the vertex-gadgets Hu

G and Hv
G in the MEG-set. This design mirrors the behavior of a vertex cover in G, 

where each edge must have at least one of its endpoints included in the cover.

Lemma 5.2. G has a vertex cover of size k if and only if HG has a MEG-set of size 3n + k.

Proof (The if part). Let S ⊆ V (HG) be an MEG-set of HG of size 3n+k and let S ′
⊂ S be the set which remains after removing 

all degree 1 vertices from S. Since HG has 3n degree 1 vertices, all of which have to be included in every MEG-set, the 
size of S ′ is k. Let C ⊆ V (G) be the set of all vertices v ∈ V (G) for which V (Hv

G) has at least one element in S. It is easy to 
see that the size of C is at most k. We show that it is also a vertex cover of G.

Let us assume for the sake of contradiction that C is not a vertex cover of G. Then, there exists an edge uv ∈ E(G), u, v ∈

V (G), such that neither u nor v belong to C . Let us assume u to be a degree 3 vertex of G and let Hu
G and Hv

G be connected 
as shown in Fig.  7. The other case, when u is of degree 2, is similar. Now, consider the edge f u1 f v

2 ∈ E(HG). Since S is 
still an MEG-set, there exists a pair of vertices x, y ∈ S which monitors the edge f u1 f v

2  i.e. every shortest path from x to 
y passes through f u1 f v

2 . Let πxy be one such path. Without loss of generality we assume that f u1  is encountered before f v
2

while traversing πxy from x to y.
Let V ′(Hv

G) = V (Hv
G) \ {ev

1, e
v
2, e

v
3}. Let x′ (resp. y′) be the first vertex from V ′(Hu

G) (resp. V ′(Hv
G)) encountered when 

traversing πxy starting at x (resp. y). Since both u and v do not belong to C , from our construction of C , no element of S
belongs to V ′(Hu

G)∪ V ′(Hv
G). This implies that neither x nor y belong to V ′(Hu

G)∪ V ′(Hv
G). Since x does not belong to V ′(Hu

G), 
x′ is either cui , i ∈ {1, 2, 3}, or f ui′ , i′ ∈ {2, 3}, and similarly since y does not belong to V ′(Hv

G), y′ is either cv
j , j ∈ {1, 2, 3}, 

or f v
1 . We have the following cases.

Case 1 (x′ is cui  and y′ is cv
j ). Note that in this case i, j ∈ {1, 2, 3}. It is easy to see that any shortest path between cui  and cv

j
passes through either the vertex guv

1  or guv
2  and does not include the edge f v

1 f
v
2 . This means that x and y cannot monitor 

the edge f u1 f v
2 , which implies a contradiction.

Case 2 (x′ is cui  and y′ is f v
1 ). Note that in this case i ∈ {1, 2, 3}. Let f w

j′ , j′ ∈ {1, 2} and w ∈ V (G), be the vertex encountered 
just before f v

1  when traversing πxy starting at y. Since the distance between u and w in G is 2, by construction there exists 
an edge cui′ cw

h , i′ = 1 and h ∈ {1, 3}, in G. Therefore, the length of the shortest path between cui  and f w
j′  is at most 6 and 

passes through the edge cui′ cw
h  and not f u1 f v

2 . This means that x and y cannot monitor the edge f u1 f v
2 , which is a contradiction. 

The other case when x′ is some f ug , g ∈ {2, 3}, and y′ some cv
h , h ∈ {1, 2, 3}, can be similarly disproved.

Case 3 (x′ is f ui  and y′ is f v
1 ). Note that in this case i ∈ {2, 3}. Let f ti′ , i′ ∈ {1, 2} and t ∈ V (G), be the vertex encountered 

just before f ui  when traversing πxy starting at x. Similarly, let f w
j′ , j′ ∈ {1, 2} and w ∈ V (G), be the vertex encountered 

just before f v
1  when traversing πxy starting at y. Since u is of degree 3, both t and w are degree 2 vertices of G. Since the 

distance between t and w in G is 3, by construction there exists an edge ctgcw
h , g, h ∈ {1, 3}, in HG. Therefore, there are at 

least two shortest path (of length 7) between f ti′  and f w
j′ , one which includes the edge f u1 f v

2  and the other which includes 
the edge ctg ′cw

h . This means that x and y cannot monitor the edge f u1 f v
2 , a contradiction.

(The only if part.) Let C ⊆ V (G) be a vertex cover of G of size k. We construct the set S ⊂ V (HG) as follows. For each 
vertex v ∈ V (G), insert into S the vertices ev

1, e
v
2 and ev

3 of HG. If v ∈ C then we also add the vertex av
∈ V (Hv

G) to S. 
Observe that the size of S is 3n + k. We show that it is also an MEG-set of HG.

For every vertex u ∈ V (G), the vertices eu1, eu2, eu3 ∈ S monitor all the edges in the cycle cu1 , du1, cu2 , du2, cu3 , du3 of Hu
G , as 

well as the edges cv
i e

v
i , ∀i ∈ {1, 2, 3}. This is because for each pair of vertices from ev

1, e
v
2 and ev

3 , the shortest path between 
them is unique and hence all edges on the shortest path are monitored. For example, for the vertex pair ev

1 and ev
2 , the 

unique shortest path is ev
1, c

v
1 , d

v
1, c

v
2 , e

v
2 and all its edges are monitored by the vertex pair. Here we assume u to be a 

degree 3 vertex of G; the other case, when u is degree 2, is similar.
Next, with respect to an edge uv ∈ E(G), let the subgraphs Hu

G and Hv
G be connected as shown in Fig.  7. Again, the 

shortest path between eu1 and ev
3 (which passes through the vertex guv

1 ), and between eu2 and ev
2 (which passes through 

the vertex guv
2 ) are unique. Therefore, all edges of HG incident on guv

1  and guv
2  are monitored.

If u ∈ V (G) is part of the vertex cover C , then au ∈ S and au, bui , cui , eui  is the unique shortest path between au and eui , 
∀i ∈ {1, 2, 3}. Therefore, all edges on these paths are monitored.

If u ∈ V (G) is not part of the vertex cover C , then all three neighbors of u in G belong to C . Let v ∈ V (G) be 
one such neighbor. Then av

∈ V (Hv
G) is part of S. Observe that the only shortest path between eu3 and av is the path 

eu3, c
u
3 , b

u
3, a

u, f u1 , f v
2 , av of length 6. Therefore, all edges on this path are monitored. Any other path between eu3 and av

passes through either cu1  or cu2  and is of length at least 7. This is ensured in the construction phase by restricting cu3  from 
being directly connected to any cw

i′ , i′ ∈ {1, 3}. Similarly, we can show that edges aubui  and bui cui , ∀i ∈ {1, 2}, are also 
monitored.
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Now consider all edges cti cw
j , i, j ∈ {1, 2, 3} and t, w ∈ V (G), of HG such that t and w are at distance 2 or 3 in G. The 

shortest path between eti  and ew
j  is of length 3, is unique, and passes through the edge cti cw

j , thereby monitoring it. Since 
we have shown all edges of HG to be monitored by some vertex pair in S, therefore S is an MEG-set of HG. □

Since Monitoring Edge Geodetic Set is clearly in NP [12] and HG has maximum degree 9, Lemmas  5.1 and 5.2 imply 
the following theorem.

Theorem 5.3.  Monitoring Edge Geodetic Set is NP-complete, even for graphs of maximum degree 9.

6. Conclusion

Inspired by a network monitoring application, we have defined the new concept of MEG-sets of a graph, which 
is a common refinement of the popular concept of a geodetic set and its variants, and of the previously studied 
distance-edge-monitoring sets.

We have studied the concept on basic graph classes. It is interesting to note that there are many graph classes which 
require the entire vertex set in any MEG-set: complete graphs, complete multipartite graphs, and hypercubes. More 
examples are provided in [12]. It would be an interesting question to characterize all such graphs, if they can be described 
in a meaningful way.

Our upper bound using the feedback edge set number is probably not tight. What is a tight bound on this regard?
Finally, it remains to investigate further computational aspects of the problem. Clearly, Monitoring Edge Geodetic 

Set is polynomial-time solvable on the graph classes studied in Section 3, such as trees, unicyclic graphs, etc. What 
about graphs of bounded tree-width? Also, Vertex Cover remains NP-hard on planar cubic graphs [15]. However, our 
NP-hardness reduction does not preserve planarity. Is Monitoring Edge Geodetic Set NP-complete for planar graphs? 
For subcubic graphs? What about other standard graph classes like interval graphs? Also, the approximation complexity 
and the parameterized complexity of the problem could be investigated. Regarding parameterized complexity, parameters 
of interest are the solution size or structural parameters, like the feedback edge set number.
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