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A dominating set of a graph G is a set D ⊆ V (G) such that every vertex in V (G) \ D
is adjacent to at least one vertex in D . A set L ⊆ V (G) is a locating set of G if every 
two vertices in V (G) \ L have pairwise distinct open neighborhoods in L. A set D ⊆ V (G)

is a locating-dominating set of G if D is a dominating set and a locating set of G . The 
location-domination number of G , denoted by γLD (G), is the minimum cardinality among 
all locating-dominating sets of G . A well-known conjecture in the study of locating
dominating sets is that if G is an isolate-free and twin-free graph of order n, then 
γLD (G) ≤ n 

2 . Recently, Bousquet et al. (2025) [5] proved that if G is an isolate-free and 
twin-free graph of order n, then γLD(G) ≤ ⌈ 5n

8 ⌉ and posed the question whether the vertex 
set of such a graph can be partitioned into two locating sets. We answer this question 
affirmatively for twin-free distance-hereditary graphs, maximal outerplanar graphs, split 
graphs, and co-bipartite graphs. In fact, we prove a stronger result: for any graph G without 
isolated vertices and twin vertices, if G is a distance-hereditary graph or a maximal 
outerplanar graph or a split graph or a co-bipartite graph, then the vertex set of G can be 
partitioned into two locating-dominating sets. Consequently, this also confirms the original 
conjecture for these graph classes.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction

All the graphs considered in this paper are finite, simple, and undirected. For a graph G , we use V (G) and E(G) to 
denote the vertex set and the edge set of G , respectively. Two vertices u and v of G are adjacent if uv ∈ E(G). The neighbors
of v in G are the vertices adjacent to v in G . The open neighborhood NG(v) of a vertex v in G is the set of neighbors of v , 
while the closed neighborhood of v is the set NG [v] = {v} ∪ NG(v). The degree of a vertex v in G is the number of vertices 
adjacent to v in G , and is denoted by degG(v). An isolated vertex in a graph G is a vertex of degree 0. A graph without any 
isolated vertex is called an isolate-free graph. A vertex of degree 1 in G is a leaf of G . The maximum degree of G is the value 
max{degG(v) : v ∈ V (G)}. For vertices u and v , u and v are called false (respectively, true) twins in G if NG(u) = NG(v)

(respectively, NG [u] = NG [v]). Further, u and v are twins in G if they are false twins or true twins in G . A graph is twin-free 
if it does not contain twins. In a rooted tree, one vertex is designated as the root. Consider a tree T with the vertex r as 
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the root. For each vertex v ≠ r of T , the parent of v in T is the neighbor of v on the unique path from the root r to v in T . 
A child of v in T is any of its neighbors other than its parent.

In this paper, we study distance-hereditary graphs, maximal outerplanar graphs, split graphs, and co-bipartite graphs. 
A distance-hereditary graph is a graph in which the distance between any two vertices in any connected induced subgraph 
is the same as in the original graph. Their structure allows them to be built up recursively, which makes them useful for 
studying certain domination parameters (see [4,17,19]). Similarly, maximal outerplanar graphs, abbreviated as mops, form 
a fundamental subclass of planar graphs. A graph is a mop if it can be embedded in the plane such that all vertices lie 
on the boundary of its outer face (unbounded face) and all interior faces are triangles. Their well-understood structure 
allows for detailed combinatorial analysis, and they have been extensively studied in the context of domination parameters 
(see [1,2,10--12]). The set X ⊆ V (G) is called a clique (independent set) of G if every pair of vertices of X are adjacent 
(nonadjacent) in G . A graph is a split graph if its vertex set can be partitioned into an independent set and a clique. A graph 
is a co-bipartite graph if its vertex set can be partitioned into two cliques.

A dominating set D of G is a locating-dominating set, abbreviated as LD-set, of G if all vertices not in D have pairwise 
distinct open neighborhoods in D . In other words, for every pair of vertices u, v ∈ V (G)\ D , we have NG(u)∩ D ≠ NG(v)∩ D . 
The location-domination number of G , denoted by γLD (G), is the minimum cardinality among all LD-sets of G . Slater [20] in 
1988 introduced this variant of domination, namely location-domination. Since its birth, location-domination remained an 
active area of research (see [5,13--16]). This is due to its relevance in network science and theoretical computer science. For 
a comprehensive overview of locating-dominating sets in graphs, we recommend the book chapter [18].

1.1. Motivation

Research on locating-dominating sets has been significantly influenced by a conjecture made by Garijo et al. [16] in 2014. 
Foucaud and Henning [14] later proposed a reformulation of this conjecture. The conjecture is stated below.

Conjecture 1 ([14,16]). If G is an isolate-free and twin-free graph of order n, then γLD(G) ≤ n 
2 .

Garijo et al. [16] showed that if G is a twin-free graph of order n, then γLD(G) ≤ ⌊ 2n
3 ⌋ + 1. Later, Foucaud et al. [15] 

subsequently improved this upper bound to ⌊ 2n
3 ⌋. Recently, Bousquet et al. [5] further reduced the upper bound to ⌈ 5n

8 ⌉, 
which is currently the best known bound to Conjecture 1. Conjecture 1 has not yet been proven, but has been shown to be 
true for some important graph classes.

Theorem 1.1. Conjecture 1 is true for isolate-free and twin-free graph G of order n if at least one of the following is satisfied.

(a) [16] G has no 4-cycle.
(b) [16] G has independence number at least n 

2 .
(c) [16] G has clique number at least ⌈ n 

2 ⌉ + 1.
(d) [3] G has girth at least 5 and minimum degree at least 2.
(e) [15] G is a split graph or a co-bipartite graph.
(f) [13] G is a line graph.
(g) [11] G is a maximal outerplanar graph.
(h) [6] G is a block graph.
(i) [7] G is a subcubic graph.

Given a graph G , if there exist two LD-sets D1 and D2 such that D1 ∪ D2 = V (G) and D1 ∩ D2 = ∅, then [D1, D2] is called 
an LD-partition of G . Motivated by Conjecture 1, several authors have explored the following, a slightly stronger question.

Question 1 ([8,14--16]). For an isolate-free and twin-free graph G , does G admit an LD-partition?

Recently, Chakraborty et al. [8] showed that if G is an isolate-free (and not necessarily twin-free) graph, then V (G)

can be partitioned into a dominating set and an LD-set. It is already known that Question 1 has a positive answer for 
bipartite graphs [16] and block graphs [6], which naturally motivates investigating its validity in the superclasses of these 
graph classes. In this context, we provide a positive answer to Question 1 for the class of distance-hereditary graphs, a 
well-known superclass of block graphs. Additionally, while Conjecture 1 is known to hold for maximal outerplanar graphs, 
split graphs, and co-bipartite graphs, we go further by establishing an affirmative answer to Question 1 for each of these 
graph classes as well.

This paper is organized as follows. In Section 2, we show that if G is an isolate-free and twin-free distance-hereditary 
graph, then G admits an LD-partition. In Section 3, we prove that every maximal outerplanar graph of order at least 4 
admits an LD-partition. In Section 4, we prove that every isolate-free and twin-free split graph and co-bipartite graph also 
admit an LD-partition. Finally, in Section 5, we discuss potential directions for future research.
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Fig. 1. An example of a distance-hereditary graph with its decomposition tree. 

2. Distance-hereditary graphs

Our objective in this section is to show that every twin-free and isolate-free distance-hereditary graph admits an LD
partition. In this section, we assume that G is a connected distance-hereditary graph.

Chang et al. [9] characterized distance-hereditary graphs via edge connections between two special sets of vertices, called 
twin sets. The comprehensive procedure is given in the next paragraph. At its base level, a graph G with a single vertex v
is recognized as a distance-hereditary graph, endowed with the twin set T S(G) = {v}.

A distance-hereditary graph G can be constructed from two existing vertex-disjoint distance-hereditary graphs, Gl and 
Gr , each possessing twin sets T S(Gl) and T S(Gr), respectively, by using any of the subsequent three operations.

• If the true twin operation ⊗ is applied to construct the graph G from Gl and Gr , then
– The vertex set of G is V (G) = V (Gl) ∪ V (Gr).
– The edge set of G is E(G) = E(Gl) ∪ E(Gr) ∪ {v1 v2|v1 ∈ T S(Gl), v2 ∈ T S(Gr)}.
– The twin set of G is T S(G) = T S(Gl) ∪ T S(Gr).

• If the false twin operation ⊙ is employed to construct the graph G from Gl and Gr , then
– The vertex set of G is V (G) = V (Gl) ∪ V (Gr).
– The edge set of G is E(G) = E(Gl) ∪ E(Gr).
– The twin set of G is T S(G) = T S(Gl) ∪ T S(Gr).

• If the attachment operation ⊕ is employed to construct the graph G from Gl and Gr , then
– The vertex set of G is V (G) = V (Gl) ∪ V (Gr).
– The edge set of G is E(G) = E(Gl) ∪ E(Gr) ∪ {v1 v2 | v1 ∈ T S(Gl), v2 ∈ T S(Gr)}.
– The twin set of G is T S(G) = T S(Gl).

By employing the three operations detailed above, one can systematically construct any distance-hereditary graph. This 
process leads to the creation of a binary tree representation for a given distance-hereditary graph G , commonly referred to 
as a decomposition tree. The definition of this tree is structured as follows: it articulates the sequence of operations through a 
full binary tree T , where the leaves of T correspond to the vertices of G . Furthermore, each internal vertex in T is assigned 
one of the labels ⊗,⊙, or ⊕, signifying the true twin operation, false twin operation, and attachment operation, respectively.

In this representation, each leaf of T corresponds to a distance-hereditary graph with a single vertex. A rooted subtree 
T ′ of T corresponds to the induced subgraph of G on the vertices represented by the leaves of T ′ . Note that this induced 
subgraph is itself a distance-hereditary graph. For an internal vertex v of T , the label of v corresponds to the operation 
between the subgraphs represented by the subtrees rooted at the left and right children of v . Note that the order of the 
children only matters for the ⊕ operation. An example is illustrated in Fig. 1.

Next, we prove the main theorem of this section.

Theorem 2.1. If G is an isolate-free and twin-free distance-hereditary graph, then G admits an LD-partition.

Proof. We prove this using induction on |V (G)| + |E(G)| = n + m. For the base cases, it can be easily checked for all 
isolate-free and twin-free distance-hereditary graphs of order 4 (as the only example of twin-free and isolate-free distance
hereditary graph of order 4 is P4). So, let the statement be true for all isolate-free and twin-free distance-hereditary graphs 
of order < n + m.

Let G be an isolate-free and twin-free distance-hereditary graph of order n. Suppose G is disconnected. Let G1, G2, . . . , Gk
be the components of G . Then by the induction hypothesis, each Gi admits an LD-partition [Di

1, Di
2] for all i ∈ {1,2, . . . ,k}. 
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Fig. 2. The subtree of T G rooted at t′ in Case 1. 

Fig. 3. Case 1. 

Let D1 = D1
1 ∪ D2

1 ∪ . . . ∪ Dk
1 and D2 = D1

2 ∪ D2
2 ∪ . . . ∪ Dk

2. Then [D1, D2] is an LD-partition of G . So we assume that G is 
connected. Let TG be the decomposition tree of G . Consider the BFS levels of TG and let t be an internal node of TG that is 
situated at the second last BFS level. Note that both children (say a and b) of t are vertices of G .

Suppose t has label ⊙ (or ⊗). This implies that a and b are false twins (or true twins), which contradicts the fact that 
G is twin-free. Hence, t has label ⊕. Let t′ be the parent of t . Now, a vertex t′ can be labeled as ⊙, ⊗, or ⊕. Moreover, if 
t′ has the label ⊕ and its child is a leaf node, then two cases arise: either t is the left child of t′ , or t is the right child of 
t′ . Moreover, if the child of t′ other than t , say t′′ , is an internal node, then t′′ has the label ⊕ (a similar argument can be 
given as the one used to show that t′ has the label ⊕). Based on these observations, we consider the following cases.

(1) t′ has label ⊕, t is the right child of t′ , and the left child of t′ is a leaf node c;
(2) t′ has label ⊕, t is the left child of t′ , and the right child of t′ is a leaf node c;
(3) t′ has label ⊙ and the other child of t′ is a leaf node c;
(4) t′ has label ⊗ and the other child of t′ is a leaf node c;
(5) t′ has label ⊕ and the other child of t′ is an internal node t′′ which also has label ⊕;
(6) t′ has label ⊙ and the other child of t′ is an internal node t′′ which has label ⊕;
(7) t′ has label ⊗ and the other child of t′ is an internal node t′′ which has label ⊕.

We now analyze these cases separately.

Case 1: t′ has label ⊕, t is the right child of t′ , and the left child of t′ is a node c. For a clear understanding, see Fig. 2 and 
Fig. 3.

Let G1 = G \ {a,b}. If G1 is twin-free and isolate-free, then by the induction hypothesis, G1 admits an LD-partition 
[D ′

1, D ′
2]. Without loss of generality, let c ∈ D ′

1 and c / ∈ D ′
2. Define D1 = D ′

1 ∪ {b} and D2 = D ′
2 ∪ {a}. Observe that [D1, D2]

is an LD-partition of G . If G1 is not twin-free, then there exists a vertex in V (G1), say x, such that c and x are twins in G1. 
In the following, we consider two cases and in each case, we prove that G admits an LD-partition.

Case 1.1: c and x are false twins in G1.

Let G ′ = G \ {a,b, c}. Suppose there exist twins in G ′, say y and z. Clearly, exactly one of y and z is adjacent to c, which 
implies that exactly one of y and z is adjacent to x. Since x ∈ V (G ′), NG ′ (y) ≠ NG ′ (z), contradicting that y and z are twins. 
Hence, G ′ is twin-free. Then by the induction hypothesis, let [D ′

1, D ′
2] be an LD-partition of G ′ such that x ∈ D ′

1 and x / ∈ D ′
2. 

We define D1 = D ′
1 ∪ {c,b} and D2 = D ′

2 ∪ {a}. It is easy to check that D1 is an LD-set of G .

Clearly, D2 is a dominating set of G . For the sake of contradiction, assume that D2 is not an LD-set of G . This implies 
that there exist two vertices in V (G) \ D2 which have the same neighborhood in D2. The only candidates for these two 
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Fig. 4. The subtree of T G rooted at t′ in Case 2. 

Fig. 5. The subtree of T G rooted at t′ in Case 3. 

vertices are c and b (as the rest of the vertices in V (G) \ D2 have different neighborhoods in D2 since D ′
2 is an LD-set of 

G ′). But note that x is dominated by some vertex z in D ′
2, so NG(z) contains c but not b, which contradicts the fact that c

and b have the same neighborhood in D2. This implies that D2 is an LD-set. So [D1, D2] is an LD-partition of G .

Case 1.2: c and x are true twins of G1.

Let G ′ = G \ {b}. Note that G ′ is a twin-free distance-hereditary graph. By the induction hypothesis, let [D ′
1, D ′

2] be an 
LD-partition of G ′ . If {c,a} ⊆ D ′

1, then c and a do not belong to D ′
2, which contradicts the fact that D ′

2 is a dominating set. 
So {c,a} ⊈ D ′

1. Similarly, {c,a} ⊈ D ′
2. Hence, without loss of generality, let c ∈ D ′

1 and a ∈ D ′
2. We define D1 = D ′

1 ∪ {b} and 
D2 = D ′

2. Clearly, D1 is an LD-set of G and D2 is a dominating set of G . For the sake of contradiction, assume that D2 is 
not an LD-set of G , this implies that NG (c) ∩ D2 = NG(b) ∩ D2 = {a}. This means NG ′ [c] ∩ D2 = NG ′ [c] ∩ D ′

2 = {a}, implying 
NG ′ [x] ∩ D ′

2 = ∅ which contradicts the fact that D ′
2 is a dominating set of G ′ . Hence, [D1, D2] is an LD-partition of G .

Case 2: t′ has label ⊕, t is the left child of t′ , and the right child of t′ is a node c. For a clear understanding, see Fig. 4.

In this case, b and c are leaves in G that are adjacent to the vertex a. Hence b and c are twins, which contradicts the 
fact that G is twin-free. So this is not a valid case.

Case 3: t′ has label ⊙ and the other child of t′ is a leaf node c. For clear understanding, see Fig. 5.

Let G ′ = G \ {a,b}. By similar arguments as we did at the beginning of Case 1.1, it can be shown that G ′ is also twin-free 
and isolate-free. By the induction hypothesis, let [D ′

1, D ′
2] be an LD-partition of G ′ . Without loss of generality, let c ∈ D ′

1
and c / ∈ D ′

2. We define D1 = D ′
1 ∪ {a} and D2 = D ′

2 ∪ {b}. By using analogous arguments like in Case 1.1, it can be shown 
that [D1, D2] is an LD-partition of G .

Case 4: t′ has label ⊗ and the other child of t′ is a leaf node c. For clear understanding, see Fig. 6.

Let G ′ be obtained from G by deleting all the edges between NG (c) \ {a} and a. By similar arguments as we did at the 
beginning of Case 1.1, it can be proved that G ′ is twin-free. Let G ′′ = G ′ \ {a,b}. Note that G ′ and G ′′ are isolate-free. In the 
following, we consider two cases and in each case, we prove that G admits an LD-partition.

Case 4.1: G ′′ is twin-free.

By the induction hypothesis, G ′′ admits an LD-partition [D ′
1, D ′

2] such that c ∈ D ′
1. We define D1 = D ′

1 ∪ {a} and D2 =
D ′

2 ∪ {b}. By using analogous arguments as in Case 1.1, it can be shown that [D1, D2] is an LD-partition of G .

Case 4.2: G ′′ is not twin-free.
Since G ′′ is not twin-free, there exists a vertex in V (G ′′), say x, such that c and x are twins in G ′′ . First, we prove that 

c and x are false twins. For the sake of contradiction, let c and x be true twins in G ′′ , implying x ∈ NG(c) ⊆ NG(a). Hence 
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Fig. 6. The subtree of T G rooted at t′ in Case 4. 

Fig. 7. Case 4.2 (c and x are false twins in G ′′). 

Fig. 8. Case 5. 

NG ′′ (x) = NG ′′ (c) implies that NG [x] = NG [c], which contradicts the fact that G is twin-free. Hence, c and x must be false 
twins in G ′′ (refer to Fig. 7).

Recall that G ′ is twin-free. Note that G ′ has the same structure as in Case 1.1. Hence, by the analysis of Case 1.1 and 
the induction hypothesis, it can be concluded that G ′ admits an LD-partition [D1, D2] such that D1 contains x, c,b and D2
contains a. It is easy to see that D1 is also an LD-set of G .

Next, we prove that D2 is an LD-set of G . Note that D2 is a dominating set of G , as it is a dominating set of G ′ . 
For the sake of contradiction, assume that D2 is not an LD-set of G . This implies that adding back the deleted edges has 
created some problem. Hence, there exists y ∈ V (G) such that NG(y) ∩ D2 = NG(c) ∩ D2. This implies that NG ′ (y) ∩ D2 =
(NG ′ (c) ∩ D2) \ {a}, implying NG ′ (y) ∩ D2 = NG ′ (x) ∩ D2 which contradicts the fact that D2 is an LD-set in G ′ . Hence D2 is 
an LD-set in G . So [D1, D2] is an LD-partition of G .

Case 5: t′ has label ⊕ and the other child of t′ is an internal node t′′ which also has label ⊕. For a clear understanding, see 
Fig. 8.

Let G ′ = G \ {c,d}. Observe that G ′ is a twin-free and isolate-free distance-hereditary graph. By the induction hypothesis, 
G ′ admits an LD-partition [D ′

1, D ′
2] such that D ′

1 contains a and D ′
2 contains b. We define D1 = D ′

1 ∪ {c} and D2 = D ′
2 ∪ {d}. 

It is easy to observe that [D1, D2] is an LD-partition of G .

Case 6: t′ has label ⊙ and the other child of t′ is an internal node t′′ which has label ⊕. Refer to Fig. 9 for clear under
standing.

6 
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Fig. 9. Case 6. 

Fig. 10. Case 7. 

Let G ′ = G \ {c,d}. Observe that G ′ is a twin-free and isolate-free distance-hereditary graph. By the induction hypothesis, 
G ′ admits an LD-partition [D ′

1, D ′
2] such that D ′

1 contains a and D ′
2 contains b. We define D1 = D ′

1 ∪ {c} and D2 = D ′
2 ∪ {d}. 

It is easy to observe that [D1, D2] is an LD-partition of G .

Case 7: t′ has label ⊗ and the other child of t′ is an internal node t′′ which has label ⊕. Refer to Fig. 10 for clear under
standing.

Let G ′ = G \ {c,d}. Observe that G ′ is a twin-free and isolate-free distance-hereditary graph. By the induction hypothesis, 
G ′ admits an LD-partition [D ′

1, D ′
2] such that D ′

1 contains a and D ′
2 contains b. We define D1 = D ′

1 ∪ {c} and D2 = D ′
2 ∪ {d}. 

It is easy to observe that [D1, D2] is an LD-partition of G .
This completes the proof of Theorem 2.1. □

3. Maximal outerplanar graphs

Note that the only mops with twin vertices are those of order 3 and 4: the cycle of order 3, and the graph obtained 
by deleting an edge from the complete graph of order 4. In question 1, we are only interested in the twin-free graphs. 
However, in this section, we prove that every mop of order at least 4 has an LD-partition. To prove the above result, we 
need the following observation.

Observation 3.1. If G is a mop of order 4 or 5, then there exists a vertex adjacent to all other vertices of G .

Let G be a mop of order n ≥ 4 vertices. Hence, there exists a plane embedding of G such that all vertices of G are on 
the outer face, and all inner faces are triangles. We construct a new graph T associated with a given mop G as follows.

• Each vertex of T represents a triangle in G .
• Two vertices in T are adjacent by an edge if their corresponding triangles in G share an edge.

Note that T is connected. If T has a cycle, then there exists a vertex in G that is enclosed by triangles, which is not possible 
since G is outerplanar. So T must be a tree. The maximum degree of any vertex in T is at most 3. We will analyze the tree 
T and understand its corresponding structure in mop G .

Theorem 3.1. If G is a mop of order at least 4, then G admits an LD-partition.

7 
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Fig. 11. Subtree Tx and possible subgraph of G . 

Proof. Let G be a mop of order n ≥ 4. We will use induction on n. Let v1 v2 v3 . . . vn v1 be the vertices on the outer face of 
G , listed in order. If n = 4, then by Observation 3.1, without loss of generality, assume that v1 is adjacent to v2, v3, and v4
in G . Since G is a mop, v2 v4 / ∈ E(G). Then {v1, v2} and {v3, v4} are LD-sets of G . If n = 5, then by Observation 3.1, without 
loss of generality, assume that v1 is adjacent to v2, v3, v4, and v5 in G . Since G is a mop, v2 v4, v2 v5, v3 v5 / ∈ E(G). Then 
{v1, v2, v5} and {v3, v4} are LD-sets of G . So assume that n ≥ 6.

Let T be the tree associated with the mop G , where T is rooted at a leaf w . Since T has at least two leaves, there exists 
a leaf other than w , say y. Since n ≥ 6, |V (T )| ≥ 4. Let x be the parent of y in T . We define Tx as the subtree of T that is 
rooted at the vertex x. Since the maximum degree of T is at most 3, x has at most two children in T . In the following, we 
consider two cases based on the number of children of x.

Case 1: x has two children in T .

Let z be a child of x other than y. Let Rx be the triangle in G corresponding to the vertex x. Let V (Rx) = {v1, v2, v3}. Let 
R y and Rz be the triangles in G corresponding to the vertices y and z, respectively. Further, let V (R y) = {v1, v3, v4} and 
V (Rz) = {v2, v3, v5}. Thus, G contains the subgraph illustrated in Fig. 11(b), where the shaded triangle corresponds to the 
vertex x in Tx . Since y and z are leaves in T , we have that degG(v4) = degG(v5) = 2 and degG(v3) = 4. Recall that n ≥ 6.

Let H be the graph of order n′ obtained from G by deleting the vertices v4 and v5. Since n ≥ 6, we have n′ = n − 2 ≥ 4. 
We note that H is also a mop. Then by the induction hypothesis, let [D ′

1, D ′
2] be an LD-partition of H . Since degH (v3) = 2, 

each D ′
i contains at least one vertex from the set {v1, v2, v3} for i ∈ {1,2}. In the following, we consider three cases and in 

each case, we prove that G admits an LD-partition.

Case 1.1: v1, v2 ∈ D ′
1 and v3 ∈ D ′

2.

Let D1 = D ′
1 ∪ {v3} and D2 = (D ′

2 \ {v3}) ∪ {v4, v5}. Now we show that each Di is an LD-set of G for i ∈ {1,2}. Since 
NG(v4) ∩ D1 = {v1, v3} and NG (v5) ∩ D1 = {v2, v3}, D1 is an LD-set of G . Note that NG (v1) ∩ {v4, v5} = {v4}, NG(v2) ∩
{v4, v5} = {v5}, and NG(v3) ∩ {v4, v5} = {v4, v5}. Moreover, {v4, v5} ⊂ D2. Therefore, D2 is an LD-set of G .

Case 1.2: v1, v3 ∈ D ′
1 and v2 ∈ D ′

2.

Let D1 = D ′
1 ∪ {v5} and D2 = D ′

2 ∪ {v4}. Now we show that each Di is an LD-set of G for i ∈ {1,2}. Note that NG(v2) ∩
{v1, v3, v5} = {v1, v3, v5} and NG (v4) ∩ {v1, v3, v5} = {v1, v3}. Moreover, {v1, v3, v5} ⊂ D1. Therefore, D1 is an LD-set of G . 
Since D ′

2 is an LD-set of H , we have NH (v1) ∩ D ′
2 ≠ NH (v3) ∩ D ′

2. Hence NG(v1) ∩ D2 ≠ NG(v3) ∩ D2. Note that {v2, v4} ⊆
NG(v1) ∩ D2, NG(v3) ∩ D2 = {v2, v4}, and NG(v5) ∩ D2 = {v2}. Therefore, D2 is an LD-set of G .

Case 1.3: v2, v3 ∈ D ′
1 and v1 ∈ D ′

2.

Let D1 = D ′
1 ∪ {v4} and D2 = D ′

2 ∪ {v5}. We can make similar arguments as we did in Case 1.2.
Hence G admits an LD-partition [D1, D2].

Case 2: x has only one child in T .

Since n ≥ 6, |V (T )| ≥ 4. So the parent of x exists in T . Let x′ be the parent of x in T . Recall that x is the parent of y
in T . Let Rx′ be the triangle in G corresponding to the vertex x′ . Let V (Rx′ ) = {v1, v2, v3}. Let Rx and R y be the triangles 
in G corresponding to the vertices x and y, respectively. Further, due to symmetry, without loss of generality, assume that 
V (Rx) = {v1, v2, v4} and V (R y) = {v2, v4, v5}. Thus, G contains the subgraph illustrated in Fig. 12(b), where the shaded 
triangle corresponds to the vertex x′ in Tx′ . Since y is a leaf and x has exactly one child in T , we have degG(v5) = 2 and 
degG(v4) = 3.

Let H be the graph of order n′ obtained from G by deleting the vertices v4 and v5. Since n ≥ 6, we have n′ = n − 2 ≥ 4. 
We note that H is also a mop. Then by the induction hypothesis, let [D ′

1, D ′
2] be an LD-partition of H . In the following, we 

consider four cases and in each case, we prove that G admits an LD-partition.
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Fig. 12. Subtree Tx′ and possible subgraph of G . 

Case 2.1: v1, v2 ∈ D ′
1 and v3 ∈ D ′

2.
Let D1 = D ′

1 ∪ {v5} and D2 = D ′
2 ∪ {v4}. Now we show that each Di is an LD-set of G for i ∈ {1,2}. Note that NG(v3) ∩

{v1, v2, v5} = {v1, v2} and NG (v4) ∩ {v1, v2, v5} = {v1, v2, v5}. Moreover, {v1, v2, v5} ⊂ D1. Therefore, D1 is an LD-set of G . 
Since D ′

2 is an LD-set of H , we have NH (v1) ∩ D ′
2 ≠ NH (v2) ∩ D ′

2. Hence NG(v1) ∩ D2 ≠ NG(v2) ∩ D2. Note that {v3, v4} ⊆
NG(v1) ∩ D2, {v3, v4} ⊆ NG(v2) ∩ D2, and NG (v5) ∩ D2 = {v4}. Therefore, D2 is an LD-set of G .

Case 2.2: v1, v3 ∈ D ′
1 and v2 ∈ D ′

2.

Let D1 = D ′
1 ∪ {v4} and D2 = D ′

2 ∪ {v5}. Now we show that each Di is an LD-set of G for i ∈ {1,2}. Note that NG(v2) ∩
{v1, v3, v4} = {v1, v3, v4} and NG (v5) ∩ {v1, v3, v4} = {v4}. Moreover, {v1, v3, v4} ⊂ D1. Therefore, D1 is an LD-set of G . 
Since D ′

2 is an LD-set of H , we have NH (v1) ∩ D ′
2 ≠ NH (v3) ∩ D ′

2. Hence NG(v1) ∩ D2 ≠ NG(v3) ∩ D2. Note that v5 / ∈
NG(v1) ∩ D2, v5 / ∈ NG(v2) ∩ D2, and NG(v4) ∩ D2 = {v2, v5}. Therefore, D2 is an LD-set of G .

Case 2.3: v2, v3 ∈ D ′
1 and v1 ∈ D ′

2.

Let D1 = D ′
1 ∪ {v5} and D2 = D ′

2 ∪ {v4}. We can make similar arguments as we did in Case 2.2.

Case 2.4: v1, v2, v3 ∈ D ′
1 and v1, v2, v3 / ∈ D ′

2.

Let D1 = D ′
1 ∪ {v4} and D2 = D ′

2 ∪ {v5}. Clearly, D1 is an LD-set of G . Now we show that D2 is an LD-set of G . Since 
D ′

2 is an LD-set of H , NH (v1) ∩ D ′
2, NH (v2) ∩ D ′

2, and NH (v3) ∩ D ′
2 are distinct and nonempty sets. Hence NG (v1) ∩ D2, 

NG(v2) ∩ D2, and NG(v3) ∩ D2 are distinct and nonempty sets. Note that NG(v4) ∩ D2 = {v5}. Moreover, we have NG(vi) ∩
D2 ≠ NG(v4) ∩ D2 for all i ∈ {1,2,3} since D ′

2 is an LD-set of H . Therefore, D2 is an LD-set of G . □
4. Split graphs and co-bipartite graphs

In this section, we show that every isolate-free and twin-free split graph and co-bipartite graph admit LD-partitions. In 
[15], it has been proved that if G is a twin-free and isolate-free split graph or co-bipartite graph, then γLD(G) ≤ n 

2 . Our 
proofs are an extension of the ones from [15] used to prove Conjecture 1 for split and co-bipartite graphs, but the key 
arguments are similar.

Theorem 4.1. If G is an isolate-free and twin-free split graph, then G admits an LD-partition.

Proof. Assume that G is an isolate-free and twin-free split graph. Let X be a clique of G and Y be an independent set of 
G such that X ∩ Y = ∅ and X ∪ Y = V (G). Note that every vertex in Y has at least one neighbor in X . Moreover, for every 
a,b ∈ X , we have NG(a) ∩ Y ≠ NG(b) ∩ Y since G is twin-free. Further, for every c,d ∈ Y , we have NG(c) ∩ X ≠ NG(d) ∩ X .

We may assume that the set S = {a ∈ X | NG(a) ∩ Y = ∅} is empty (otherwise, S has exactly one vertex, say S = {u}, and 
letting X ′ = X \ {u} and Y ′ = Y ∪ {u}, we obtain that the set S ′ = {a ∈ X ′ | NG(a) ∩ Y ′ = ∅} is empty). Under this assumption, 
[X, Y ] is already an LD-partition of G . Thus G admits an LD-partition. □
Theorem 4.2. If G is an isolate-free and twin-free co-bipartite graph, then G admits an LD-partition.

Proof. Assume that G is an isolate-free and twin-free co-bipartite graph. Let X and Y be the two cliques of G such that 
X ∩ Y = ∅ and X ∪ Y = V (G). Let S1 = {a ∈ X |NG(a) ∩ Y = ∅} and S2 = {c ∈ Y |NG(c) ∩ X = ∅}. Since G is twin-free, we have 
NG(a) ∩ Y ≠ NG(b) ∩ Y and NG (c) ∩ X ≠ NG(d) ∩ X for every a,b ∈ X and c,d ∈ Y . So |S1| ≤ 1 and |S2| ≤ 1.

If S1 = ∅ and S2 = ∅, then X and Y are LD-sets of G and so G admits an LD-partition. Suppose now that at least one of 
the sets from S1 and S2 is nonempty. First suppose that |S1| = 1 and |S2| = 1. Let X ′ = (X \ S1) ∪ S2 and Y ′ = (Y \ S2) ∪ S1. 
Now we show that X ′ and Y ′ are LD-sets of G . It is easy to observe that X ′ is a dominating set of G . Since NG(c) ∩ X ≠
NG(d)∩ X for every c,d ∈ Y , NG(c)∩ X ′ ≠ NG(d)∩ X ′ for every c,d ∈ Y \{S2}. Since |S2| = 1, we have NG(x)∩ X ′ ≠ NG(y)∩ X ′
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for x ∈ S1 and every y ∈ Y \ {S2}. Hence X ′ is an LD-set of G . Similarly, Y ′ is also an LD-set of G and so G admits an LD
partition. Hence we assume that either S1 = ∅ or S2 = ∅. Without loss of generality, assume that |S1| = 1 and S2 = ∅. Let 
S1 = {x}. If there is no vertex y ∈ Y such that NG(y) ∩ X \ {x} = X \ {x}, then let X ′ = X \ {x} and Y ′ = Y ∪ {x}. Then X ′ and 
Y ′ are LD-sets of G and so G admits an LD-partition. Hence there exists a vertex y ∈ Y such that NG (y) ∩ X \ {x} = X \ {x}. 
Note that there is no vertex y′ ∈ Y other than y such that NG (y′) ∩ X \ {x} = X \ {x}; otherwise, G contains twins. Let 
X ′ = (X \ {x}) ∪ {y} and Y ′ = (Y \ {y}) ∪ {x}. Clearly, X ′ is an LD-set of G . Now we show that Y ′ is an LD-set of G . Note that 
NG(y) ∩ Y ′ = Y ′ \ {x} and NG (v) ∩ Y ′ ≠ ∅ for all v ∈ X \ {x}. Moreover, every vertex in X \ {x} has distinct neighborhood in 
Y ′ since G is twin-free and x ∈ Y ′ . Hence Y ′ is also an LD-set of G . Thus G admits an LD-partition. □
5. Conclusion

Conjecture 1 is already known to hold for several important graph classes, including bipartite graphs, split graphs, co
bipartite graphs, line graphs, maximal outerplanar graphs, subcubic graphs, and block graphs. In this work, we addressed 
Question 1 and provided a positive answer for well-structured graph classes, namely distance-hereditary graphs, maximal 
outerplanar graphs, split graphs, and co-bipartite graphs.

This work contributes to a deeper structural understanding of locating-dominating sets and their properties within well
defined graph classes. As a natural direction for future research, it would be worthwhile to investigate whether Conjecture 1
holds for the class of chordal graphs.
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