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1. Introduction

The metric dimension of a (di)graph G is the smallest size of a set of vertices that distinguishes all vertices of G by their
vectors of distances from the vertices of the set. This concept was introduced in the 1970s by Harary and Melter [14] and by
Slater [30] independently. Due to its interesting nature and numerous applications (such as robot navigation [19], detection
in sensor networks [30] or image processing [22], to name a few), it has enjoyed a lot of attention. It also has been studied
in the more general setting of metric spaces [3], and is generally part of the rich area of identification problems of graphs
and other discrete structures [18].

More formally, let us denote by dist(x, y) the distance from x to y in a digraph. Here, the distance dist(x, y) is taken
as the length of a shortest directed path from x to y; if no such path exists, dist(x, y) is infinite, and we say that y is not
reachable from x. We say that a set S is a resolving set of a digraph G if for any pair of distinct vertices v, w from G, there
is a vertex x in S with dist(x, v) # dist(x, w). Furthermore, we require that every vertex of G is reachable from at least one
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vertex of S. The metric dimension of G is the smallest size of a resolving set of G, and a minimume-size resolving set of G is
called a metric basis of G.>

We denote by METRIC DIMENSION the computational version of the problem: given a (di)graph G, determine its metric
dimension.

For undirected graphs, METRIC DIMENSION has been extensively studied, and its non-local nature makes it highly non-
trivial from an algorithmic point of view. On the hardness side, METRIC DIMENSION was shown to be NP-hard for planar
graphs of bounded degree [7], split, bipartite and line graphs [9], unit disk graphs [17], interval and permutation graphs of
diameter 2 [11], and graphs of pathwidth 24 [20]. On the positive side, it can easily be solved in linear time on trees [4,
14,19,30]. More involved polynomial-time algorithms exist for unicyclic graphs [29] and, more generally, graphs of bounded
cyclomatic number [9], outerplanar graphs [7], cographs [9], chain graphs [10], cactus-block graphs [16], and bipartite
distance-hereditary graphs [24]. There are fixed parameter tractable (FPT) algorithms for the undirected graph parameters
max leaf number [8], tree-depth [13], modular-width [2] and distance to cluster [12], but FPT algorithms are highly unlikely
to exist for the parameters solution size [15] and feedback vertex set [12].

Due to the interest for METRIC DIMENSION on undirected graphs, it is natural to ask what can be said in the context
of digraphs. The metric dimension of digraphs was first studied in [5] under a somewhat restrictive definition; for our
definitions, we follow the recent paper [1], in which the algorithmic aspects of METRIC DIMENSION on digraphs have been
addressed. We call oriented graph a digraph without directed 2-cycles. A directed acyclic digraph (DAG for short) has no di-
rected cycles at all. The underlying multigraph of a digraph is the one obtained by ignoring the arc orientations; its underlying
graph is obtained from it by ignoring multiple edges. In a digraph, a strongly connected component is a subgraph where every
vertex is reachable from all other vertices. Note that for the METRIC DIMENSION problem, undirected graphs can be seen as a
special type of digraphs where each arc has a symmetric arc (i.e., replace every edge of the undirected graph by a directed
2-cycle).

The NP-hardness of METRIC DIMENSION was proven for oriented graphs in [27] and, more recently, for bipartite DAGs of
maximum degree 8 and maximum distance 4 [1] (the maximum distance being the length of a longest directed path without
shortcuts). A linear-time algorithm for METRIC DIMENSION on oriented trees was given in [1].

Our results. We generalize the linear-time algorithm for METRIC DIMENSION on oriented trees from [1] to all digraphs whose
underlying graph is a tree. In other words, here we allow 2-cycles. This makes a significant difference with oriented trees,
and as a result our algorithm is non-trivial. We then extend the used methods to solve METRIC DIMENSION in linear time for
unicyclic digraphs (digraphs with a unique cycle). Then, we prove that METRIC DIMENSION can be solved in time f(t)n°® for
digraphs of order n and modular-width t (a parameter recently introduced for digraphs in [31]). This extends the same result
for undirected graphs from [2], and is the first FPT algorithm for METRIC DIMENSION on digraphs. Finally, we complement
the hardness result from [1] by showing that METRIC DIMENSION is NP-hard even for planar triangle-free DAGs of maximum
degree 6 and maximum distance 4.
A short preliminary version of this paper has appeared in the proceedings of the WG 2023 conference [6].

2. Digraphs whose underlying graph is a tree (di-trees)

For the sake of convenience, we call di-tree a digraph whose underlying graph is a tree. Trees are often the first non-
trivial class to study for a graph problem. METRIC DIMENSION is no exception to this, having been studied in the first papers
for the undirected [4,14,19,30] and the oriented [1] cases. In the undirected case, a minimum-size resolving set can be
found by taking, for each vertex of degree at least 3 spanning k legs, the endpoint of k — 1 of its legs (a leg is an induced
path spanning from a vertex of degree at least 3, having its inner vertices of degree 2, and ending in a leaf). In the case of
oriented trees, taking all the sources (a source is a vertex with no in-neighbor) and k — 1 vertices in each set of k in-twins
yields a metric basis (two vertices are in-twins if they have the same in-neighborhood). Our algorithm, being on di-trees
(which include both undirected trees and oriented trees), will reuse those strategies, but we will need to refine them in
order to obtain a metric basis. The first refinement is of the notion of in-twins, for which we need the following notion:

Definition 1. A strongly connected component E of a di-tree is an escalator if it satisfies the following conditions:

1. its underlying graph is a path with vertices e, ..., e (k > 2);
2. there is a unique vertex y ¢ E such that the arc ﬁ exists and for all i € {2, ..., k}, e; has no in-neighbors from outside E;
3. for every i€ {1,...,k— 1}, no arc e_fz with z € E exists.

An example of an escalator is depicted on Fig. 1b. Note that there can be any number (possibly, zero) of vertices z ¢ E
such that the arc ez exists.

2 The definition that we use has been called strong metric dimension in [1], as opposed to weak metric dimension, where one single vertex may be
unreachable from any resolving set vertex. The former definition seems more natural to us. However, the term strong metric dimension is already used for a
different concept, see [25]. Thus, to prevent confusion, we avoid the prefix strong in this paper.
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y
(b) An escalator. (c) A set of almost-in-twins.
Fig. 1. Illustrations of Definitions 1 to 3. The vertex names are taken from those definitions.
Definition 2. In a di-tree, a set of vertices A ={aq,...,ax} is a set of almost-in-twins if there is a vertex x such that:
1. for every i € {1, ..., k}, the arc xd; exists and the arc a;x does not exist;
2. for every i € {1,...,k}, either g; is a trivial strongly connected component and N~ (a;) = {x}, or g; is the endpoint of an

escalator and N~ (a;) = {x, y} where y is its neighbor in the escalator.

An example of a set of almost-in-twins is depicted on Fig. 1c. Note that regular in-twins are also almost-in-twins. The
second refinement is the following (for a given vertex x in a strongly connected component with C as an underlying graph,
we call d¢(x) the degree of x in C):

Definition 3. Given the underlying graph C of a strongly connected component of a di-tree and a set D of vertices, we call
a set S of vertices inducing a path of order at least 2 in C a special leg if it verifies the four following properties:

1. S has a unique vertex v such that v € D or dc(v) > 3;

2. S has a unique vertex w such that dc(w) =1, furthermore w ¢ D: w is called the endpoint of S;
3. all of the other vertices x of S verify dc(x) =2 and x ¢ D;

4. at least one of the vertices y € S\ {w} has an out-arc 575 with z¢ C and N~ (2) ={y}.

An example of a special leg is depicted on Fig. 1a. Note that several special legs can span from the same vertex, from
which regular legs can also span. Algorithm 1, illustrated in Figs. 2 and 3, computes a metric basis of a di-tree.

Explanation of Algorithm 1. The algorithm will compute a metric basis 5 of a di-tree T in linear time. The first thing we do
is to add every source in T to B (line 1). Then, for every set of almost-in-twins, we add all of them but one to B (lines 2-3).
Those two first steps, depicted in Fig. 2a, are the ones used to compute the metric basis of an orientation of a tree [1],
and as such they are still necessary for managing the non-strongly connected components of the di-tree. Note that we are
specifically managing sets of almost-in-twins, which include sets of in-twins, since it is necessary to resolve the specific case
of escalators. The rest of the algorithm consists in managing the strongly connected components.

For each strongly connected component having C as an underlying graph, we first identify each vertex x of C that has
an in-arc coming from outside C. Indeed, since x is the “last” vertex of a path coming from outside C, there are vertices of
B “behind” this in-arc (or they can themselves be a vertex in B), which we will call B;. However, the vertices in Bx can
be “projected” on x since, T being a di-tree, x is on every shortest path from the vertices of B “behind” the in-arc to the
vertices of C. Hence, we will mark x as a dummy vertex (lines 5-7, depicted in Fig. 2b): we will consider that it is in 5 for
the rest of this step, and acts as a representative of the set By with respect to C.

We then have to manage some specific cases whenever C is a path (lines 8-17). Indeed, the last two steps of the
algorithm do not always work under some conditions. Those specific conditions will be highlighted in the proof, and are
depicted in Fig. 3.

The last two steps are then applied. First, we have to consider the special legs defined in Definition 3. The idea behind
those special legs is the following: for every out-arc 37% with y in the special leg and z outside of C, any vertex in the metric
basis “before” the start of the special leg will not distinguish z and the next neighbor of y in the special leg. Hence, we have
to add at least one vertex to B for each special leg, and we choose the endpoint of the special leg (lines 18-19, depicted in



A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

Algorithm 1: An algorithm computing the metric basis of a di-tree.

Input : A di-tree T.

Output: A metric basis B of T.
1 B <« Every source of T
2 foreach set I of almost-in-twins do
3 | Add |I] -1 vertices of I to B

4 foreach strongly connected component with C as an underlying graph do

5 D« ¢
6 foreach arc uv with v e C and u ¢ C do
7 |_ Add v to D
8 if C is a path with endpoints x and y then
9 if there is no vertexin C N D then
10 if there is no arc iV such that u € C, v ¢ Cand N~ (v) = {u} then
11 | Addxto B
12 else if the only arcs uv such thatu € C, v ¢ Cand N~ (v) = {u} are such that u = x (resp. u = y) then
13 | Add y (resp. x) to B
14 else
15 | Addxand yto B
16 else if there is exactly one vertex w in C N D, w is neither x nor y, and there is no arc W such that z ¢ C and N~ (z) = {w} then
17 | Addxto B
18 foreach special leg L of C do
19 | Add the endpoint of L to B
20 foreach vertex of degree > 3 in C from which span k > 2 legs of C that do not have a vertex in B orin D do
21 |_ Add the endpoint of k — 1 such legs to B

22 return B

almost-
in-twins

< ,o ._\’ source oe
source ;)
o o

dummy dummy
O O
o o
(a) The first step (lines 1-3) is to add every source and manage (b) The second step (lines 5-7) is to mark the dummy vertices of
sets of almost-in-twins. the strongly connected component.

e}

(d) The fourth and final step (lines 20-21) is to manage the re-
(c) The third step (lines 18-19) is to manage all the special legs. maining legs with a common ancestor.

Fig. 2. lllustration of Algorithm 1. For the sake of simplicity, there are only two strongly connected components, for which we only represent the underlying
graph with bolded edges, so every bolded edge is a 2-cycle. One of the two strongly connected components is a simple path that does not require any
action. Vertices in the metric basis are filled in red.

Fig. 2c). Finally, we apply the well-known algorithm for computing the metric basis of a tree to the remaining parts of C
(lines 20-21, depicted in Fig. 2d). The special legs and the legs containing a dummy vertex, being already resolved, are not
considered in this part.
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(o]
NN/ \NN-0O
(a) Neither in-arc nor out-arc. (b) No in-arc, out-arc only at an endpoint.
(o] (o] (o]
(@] (o] (o] (o] (o]
(c) No in-arc, other cases. (d) One in-arc, in the middle.

Fig. 3. The cases of Algorithm 1 where a strongly connected component is a path and we have to add specific vertices (filled in red) to the metric basis.
The path is depicted as wavy bolded edges. Note that the considered out-arcs have to be towards a vertex with no other in-neighbor than the one in the
path (out-arcs to vertices with other in-neighbors can still exist).

Theorem 4. Algorithm 1 computes a metric basis of a di-tree in linear time.

Proof. Let T be a di-tree, and B be the set of vertices returned by Algorithm 1. We need to prove that B resolves every
pair of vertices of T, that B is of minimum size, and that Algorithm 1 runs in linear time.

First, note that, if T is either an orientation of a tree or a strongly connected graph (and thus seen as an undirected
graph), then, Algorithm 1 does compute a metric basis. In the first case, B will contain only the vertices added in lines 1-3
(which correspond to a so-called adequate set of vertices in [1], see Lemma 2.10 and Theorem 2.11); and in the second
case, B will contain either only a vertex added in lines 10-11 (if T is a path) or only the vertices added in lines 20-21
(which correspond to the well-known resolving set of trees, see for example Theorem 2.4 in [19]); those two cases do form
a metric basis of T.

Hence, we will consider that T contains at least one strongly connected component and at least one non-strongly con-
nected component. We will first show that the vertices we select in 3 are necessary to resolve at least one pair of vertices,
and then that they do indeed form a resolving set, and thus that B is a metric basis.

First, let us consider the sources. It is easy to see that each source has to be in B, since otherwise they would not be
reachable from any other vertex in 3. Now, let us consider the in-twins. Again, it is easy to see that the only way to resolve
two in-twins will be to have at least one of them in . However, Algorithm 1 considers almost-in-twins, which are more
general than regular in-twins. This is because of the escalators: let u be the endpoint of an escalator having an in-arc coming
from outside of it. If u has an almost-in-twin v, then, by definition, u and v cannot be resolved without taking in B either
at least one of these or another vertex from the escalator. Thus, we choose to take either u or v, which will resolve vertices
in the escalator as well as the almost-in-twins.

Note that sources and in-twins can only exist in a non-strongly connected component. Hence, in the rest of this part of
the proof, we will consider a strongly connected component with C as an underlying graph. Note that, by our construction,
if a vertex x € C is a dummy vertex, then, there will be a vertex b € BB such that there is a path from b to x (even if it is not
necessarily the case yet).

We first consider the case of the special legs of C. Let L be a special leg with vertices x1, ..., x¢, starting from a vertex
x1 such that dc(x1) > 3 or x; is a dummy verteX, and ending at a vertex x; verifying dc(x;) =1. Let x; (i€ {1,...,¢}) be a
vertex such that d¢(x;) > 2 and there is an arc 773)/ with y ¢ C and N~ (y) = {x;}. Note that, at this point, no vertex in the
special leg can be in B3, and there is no arc from outside of C to a vertex of L apart from x;. This means that, for vertices of
L, x1 can be seen as a representative from the set 3: every path from a vertex in 3 to a vertex in L has to go through x;.
Furthermore, y, having no other in-neighbor, is only reached by vertices of 3 through x;. In practice, this means that x;41
and y are not resolved: since they are at the same distance from xq, they are at the same distance from any vertex in B.

Hence, it is necessary to add either a vertex from the set {xj;1,...,X¢} or y to B in order to resolve this pair. Since other
such situations might occur in L, the easiest solution to resolve this pair is to add x; to B, since doing so will resolve all
such pairs.

We then consider the rest of C. Since T is a di-tree, C is a tree. Let L1 and L, be two (non-special) legs spanning from a
vertex X, and assume that neither of those legs have an in-arc coming from outside of C. If no vertex from either L1 or Ly
is in B, then, the vertices from L; and L, cannot be resolved. Here, we add the endpoint of either L1 or L, to B. Note that,
since C is not a path (which either is a special case that we will consider below, or has been considered in the special leg
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case), if one of L1 or Ly has a dummy vertex or a vertex in B, then, the vertices from Li and L, will be resolved without
having to add another vertex in B.

However, note that there are cases where the above method does not create a resolving set. Indeed, when C is a path
with vertices x1, ..., Xy, it is possible to fall into some patterns where we need to add specific vertices to . The patterns
are the following:

1. There is no arc y_x), with y € C, in which case we have the following subpatterns depending on the presence of out-arcs
— _
xiy with y ¢ C and N~ (y) = {x;}:

(a) there is no such arc )Tf/ in which case we have to add either x; or x; to B (the vertices of C have to be reached
from B and separated);

(b) there is such an arc and we have u = x; (resp. u = xi), in which case we have to add a vertex from C to B in
order to reach the vertices of C; we add x; (resp. x1) to B since, otherwise, either y and x, (resp. xx_1) will not be
resolved or some pair of vertices in the path will not be resolved;

(c) in every other case (that is, there are such arcs leaving C from different vertices), we have to add both x; and x; to
B (since, otherwise, one vertex from C and one vertex reached by an out-arc from C will not be resolved).

Note that there can be arcs )Tf/ with y € C and where y has an in-neighbor not in C; those do not matter for this
specific analysis, since such y are already resolved from the vertices in C by vertices in 5 that are ancestors of their
other in-neighbors.

2. There is exactly one x;, i & {1,k}, such that there exists an arc y%; with y ¢ C and there is no arc Xiz with z ¢ C and
N~ (z) = {x;}, in which case we add either endpoint to B (since, otherwise, x;_1 and x;+1 will not be resolved). Note that
if such an arc ;?E exists, then we have two special legs spanning from x; and thus no problem arises.

In every other case where C is a path, the cases considered above (in particular, the special leg and the sources and almost-
in-twins) will have us add to B3 the vertices necessary to resolve the vertices of C and its direct out-neighborhood.

At this point, every vertex that we added to B was necessary to resolve at least one pair of vertices which could not
be resolved any other way. At each step, when we had the choice between several vertices, we chose as few as possible to
resolve everything. Hence, we only need to check that every pair of vertices is resolved by 3, which will prove that B is a
metric basis.

Assume by contradiction that two vertices u and v are not resolved by B. This means that, for every vertex b € I3, either
both u and v are not reachable from b, or there are two unique shortest paths P2 between b and u and P2 between b
and v such that |Pﬂ| = |P€|. Note that Pﬂ and Pe are unique because the underlying graph of T is a tree. Given a vertex
b € B, let x be the last common vertex of P2 and P% (note that we may have x = b). Note that we can consider u and v
to be the out-neighbors of x on Pﬁ and Pf’,, since if those out-neighbors were resolved by any vertex b’ € 5 then u and v
would be resolved by b’ too, a contradiction. Now, u and v cannot be in-twins, since, otherwise, one of them would be in
B, a contradiction. Thus, one vertex, say without loss of generality u, has an in-neighbor w that is not an in-neighbor of v.
There are now several cases to consider.

If there is no arc uw, then, w has to be reachable from a vertex b’ € B. However, since the underlying graph of T is a
tree, the only path from b’ to v (which necessarily exists, since otherwise b’ resolves u and v since u is reachable from b/,
a contradiction) goes through u, and thus dist(b’, v) = dist(b’, u) + 2, and thus b’ resolves u and v, a contradiction.

Hence, w and u are in a common strongly connected component C. First, assume that the arc % does not exist, that is,
v is not reachable from u. Note that if any vertex from C is in B, then, u and v will be resolved, a contradiction. Now, there
are only a limited number of cases where no vertex from C has been added to B. In all those cases, the underlying graph
of C is a path, and they are the cases that were considered neither in lines 8-17 of Algorithm 1 nor in the special legs case.
The first case is if C is an escalator. The only possibility for this, by definition, is that u and v are almost-in-twins (since,
otherwise, there would be another in-arc than the one at one endpoint), in which case, either u or v are added in B, and
thus they are resolved, a contradiction. The other case is if either both endpoints of C have in-arcs coming from outside of
C, or if the in-arcs coming from outside of C the closest to the endpoints are not followed by any out-arc from the same
vertex. However, note that, in this case, there is at least one vertex b’ € B such that u is reachable from b’ but v is not
(there is necessarily at least one vertex in 3 “behind” every in-arc of a strongly connected component), a contradiction.

This implies that the arc X exists, and thus x also belongs to C. First, if any vertex y € C such that dist(y, u) # dist(y, v)
is in B, then, u and v are resolved, a contradiction. Hence, there are only two possibilities: either no vertex from C is in
B, or vertices in C N B are either x or in a part of C that can only reach u and v through x. As in the previous case, if no
vertex from C is in B, then, we reach a contradiction. Indeed, C cannot be an escalator: either x is an endpoint of C and
then xv is an out-arc that prevents C from being an escalator, or it is not an endpoint and then the in-arc arriving at x from
Pﬁ (x # b since no vertex from C is in B) prevents C from being an escalator. In the other cases, the underlying graph of
C is a path with specific properties (either both endpoints have an in-arc coming from outside, or the two in-arcs coming
from the outside the closest to the endpoints do not have out-arcs leaving C from the same vertex), and the in-arcs coming
from outside of C will allow u and v to be resolved, a contradiction.
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Thus, there is at least one vertex b’ € C N B, and it can only reach u and v through x. This implies that u and w are
in a leg of C with no in-arc from outside of C (since, otherwise, we would have added a vertex in 5 on this side of C,
which would resolve u and v, a contradiction). There are three cases. First, if there is an in-arc from outside of C to x and
v ¢ C, then u and w are in a special leg, and thus its endpoint would be in B and would resolve u and v, a contradiction.
Now, if there is no in-arc from outside of C to x and v € C, then either u and w are in a special leg (a contradiction, like
before), or the underlying graph of C is a path, and our construction would have added the endpoint of C on the side of
u to B, which would resolve u and v, a contradiction. Finally, if v € C, then, v has to be in a regular leg (since, otherwise,
we would have added a vertex in B on this side of C, which would resolve u and v, a contradiction), but now either the
underlying graph of C is a path and it would have an in-arc or we would have added one of its endpoints to I3, resolving u
and v, a contradiction; or u and v are the first vertices in two regular legs of C spanning from the same vertex x and we
would have added one of the endpoints of the legs to B, resolving u and v, a contradiction.

Thus, by our construction, every pair of vertices is resolved, and thus B is a resolving set. This proves that 3 is a metric
basis, and thus that Algorithm 1 is correct.

Finally, it is easy to see that Algorithm 1 computes B in linear time, which proves the statement of Theorem 4. O

In [1], the authors used the notion of removable source to characterize orientations of trees with a weak metric di-
mension® lower than the metric dimension. In the case of di-trees, however, the definition of removable source is not so
clear-cut. Indeed, there are several cases where a source meets (resp. does not meet) the conditions of the removable source
as defined in [1] and yet cannot (resp. can) be removed from a metric basis in order to obtain a weak metric basis. While
we do not have a proper definition of a removable source in the context of di-trees, we get the following result:

Proposition 5. There is a polynomial-time algorithm computing a weak metric basis of a di-tree.

Proof. The result comes from two facts. The first is that every vertex we added to the metric basis in Algorithm 1 was
necessary to either guarantee that every vertex is reached from the basis (sources) or “locally” resolve some pairs of vertices
(almost-in-twins, special legs...), which still need to be resolved, and thus we cannot avoid adding those second ones to the
weak metric basis either. The second is that the only possible infinite-vertex (that is, a vertex that is not reachable from any
vertex in the basis) in a directed graph is a source (Proposition 2.2 in [1]). Indeed, if the infinite-vertex s is not a source,
then, any vertex u such that there is a path from u to s cannot be reached from any vertex in the basis, and thus we would
have several infinite-vertices, a contradiction.

Hence, in a di-tree, the only possible way to have a weak metric basis is to remove a source from a metric basis without
creating a pair of non-resolved vertices. This is possible in polynomial time, since the actualization of distance vectors in a
di-tree will take linear time. O

3. Orientations of unicyclic graphs

A unicyclic graph U is constituted of a cycle C with vertices cq,...,c;, and each vertex ¢; is the root of a tree T;
(we can have T; be simply the isolated c; itself). The metric dimension of an undirected unicyclic graph has been studied
in [26,28,29]. In [26], Poisson and Zhang proved bounds for the metric dimension of a unicyclic graph in terms of the metric
dimension of a tree obtained by removing one edge from the cycle. Sedlar and Skrekovski showed more recently that the
metric dimension of a unicyclic graph is one of two values in [28], and then the exact value of the metric dimension based
on the structure of the graph in [29]. In this section, we will show that one can compute a metric basis of an orientation of
a unicyclic graph in linear time. The algorithm mostly consists in using sources and in-twins, with a few specific edge cases
to consider. =

In this section, an induced directed path P is the orientation of an induced path with only one source and one sink which
are its two endpoints. It is said to be spanning from u if u is its source endpoint, and its length is its number of edges. We
also need the following definition:

.. - . . L . . . - .
Definition 6. Let U be the orientation of a unicyclic graph. Given an orientation of a cycle C of even length n = 2k with
two sources, if its sources are ¢; and cjy, its sinks are c;y1 and ¢j;+14+k, and there are, in C \ {c;, ¢iy2}, neither in-twins nor

—

—
in-arcs coming from outside of C, we call an induced directed path P a concerning path if it verifies the three following
properties:

—
1. P spans from cj;1;
2. 73) has length k — 2;
3. P has no in-arc coming from outside of P U C.

w

In which one vertex may be unreachable from any resolving set vertex.
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Algorithm 2: An algorithm computing the metric basis of an orientation of a unicyclic graph.

Input : An orientation T ofa unicyclic graph U.
Output: A metric basis B of T])
Add to B every source of T
Apply the special cases in Algorithm 3
foreach set I of in-twins in T that are not already in B do
if all the vertices of I are in concerning paths then
| Add |I| — 1 vertices of I to B, prioritizing vertices in unfixable paths
else
|_ Add |I| — 1 vertices of I to B, prioritizing vertices in the cycle ? or in concerning paths, if there are any

N ook W N=

-]

return B

Algorithm 3: Special cases of Algorithm 2.

1 if the cycle ? has no sink, there is no in-arc coming from outside of C, and no vertex of C is in a set of in-twin then
2 |_ Add c¢; to B

3 if the cycle ? has no sink, there is exactly one in-arc E), withu ¢ Z‘) no vertex cj with j # i is an in-twin or has in-arc coming from outside of_C), and u has
an out-neighbor v with N~ (v) = {u} then
4 |_ Add ¢; to B

5 if the cycle ? has exactly one source c¢; then

—
if the one sink is either c;_1 or cj;1, and no vertex cj with j # i is an in-twin or has an in-arc coming from outside of C then
7 |_ Add ¢;_1 to B

N

8 else if the one sink is c;1 withk > 1, | C | > 2k, ¢j1k—1 (resp. Citk+1) has an out-neighbor v such that N~ (v) = {ci1x—1} (resp. N~ (v) = {Citk+1}), no
vertex in {ci_1,Ci—2, ..., Ci+k} (Tesp. {Ci+1, Cix2, ..., Citk}) has an in-arc, and no vertex in {c;_», ¢i_3, ..., Citkt1) (Tesp. {Ci+2, Cit3, ..., Citk—1})isan
in-twin then

9 | Add ¢ (resp. ciy1) to B

10 else if the one sink is c;; withk > 1, \?| =2k, Ciyk—1 has an out-neighbor v_ such that N~ (v_) = {Ci1k—1}, Citk+1 has an out-neighbor v such that
.= . .= . . . . . ,

N~ (vy4) = {Citk+1}, no vertexin C except c; has an in-arc, no vertex in C \ {ci, Ci—1, Ci+1} is an in-twin, and c;_1 and c;41 are not in a set I of in-twins

verifying |I| > 3 then

1 | Add ¢y to B

. - - , . - . . .
12 if the cycle C has exactly two sources c; and ci4, | C | = 2k with k > 2, the two sinks are ci+1 and c;j14x, no vertex from C except c; and ¢ is an in-twin

or has an in-arc coming from outside of—C>, there is at least one unfixable path, and there is no fixable path then
13 | Addciygto B

Furthermore, if, for every vertex in P belonging to a non-empty set I of in-twins, every vertex in I belongs to a concerning

path, then, we call T’) an unfixable path.

A path that is a concerning path, but not an unfixable path, will be called a fixable path.

Finally, a vertex might belong both to an unfixable path and to a fixable path; in this case, the fixable path takes
precedence (i.e., we will consider that the vertex belongs to the fixable path).

Explanation of Algorithm 2. The algorithm will compute a metric basis B of an orientation T]) of a unicyclic graph U in
—
linear time. The result on several cases is depicted in Figs. 4 and 5. The first thing we do is to add every source in U to B

(line 1). We will also manage the sets of in-twins in Tf (lines 3-7), which we need to do after taking care of some special
cases that might influence the choice of in-twins. When we have the choice, we prioritize taking in-twins that are in the
cycle to guarantee reachability of vertices in the cycle. Note that those two sets (along with the right priority) are enough
in most cases, as depicted in Fig. 5.

We then have to manage six specific cases (line 2). Those special cases are handled in Algorithm 3, to which the line
numbers in the next five paragraphs will refer. The first two special cases occur when the cycle has no sink. First, if the
cycle has no sink, no in-twin, and no arc coming from outside, then, we have to add one vertex of the cycle to B in order
to maintain reachability (lines 1-2, depicted in Fig. 4a). Then, if the cycle has no sink, only one in-arc ﬁ is coming from
outside of it, and there is a vertex v with N~ (v) = {u}, then, we add c; or v to B in order to resolve them (lines 3-4,
depicted in Fig. 4b).

The next three special cases occur when the cycle has one sink. First, if there is only one sink in the cycle, it is an
out-neighbor of the source, and no vertex from the cycle apart from the source is an in-twin or has an in-arc coming from
outside of the cycle, then we need to add one of the out-neighbors of the source in the cycle to 5 in order to resolve them
(lines 6-7), depicted in Fig. 4c).

Then, there are two specific cases when the cycle has one sink, both based on the same principle. Both happen when
the source is c;, the sink is cj4y, it has no in-arc, and the cycle contains at least 2k vertices. In the fourth special case
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. . . .= .
{ci—1,Ci—2,...,Ci+x} has an in-arc, and an in-arc, no vertex in C \ {c, ci—1,Ci+1} is C \ {ci, ci+2}, and there is at least one un-
no vertex in {cj_»,Cj-3,...,Citk+1} IS an an in-twin, and ¢;_; and c;4q are not in a set fixable path (in bolded arcs) and no fixable
in-twin. of in-twins of size at least 3. path.

Fig. 4. The special cases of Algorithm 2, managed in Algorithm 3, where we have to add to 13 one more vertex other than the sources and the resolution of
sets of in-twins. Vertices in B are filled in red, and the supplementary vertex added to B is identified by a square around it.

(lines 8-9), depicted in Fig. 4d), the vertex c;j;x—1 has an out-neighbor v verifying N~ (v) = {cj;x—1}. We can see that, if
no vertex in the other path from ¢; to c;; (the path going through ci_1,c¢i—3, ..., Cizk+1) is in B, then, v and cj4 will
not be resolved. Those vertices can be added to B if they have an in-arc or if they are an in-twin (they will have priority).
However, note that ¢;_; might be an in-twin of c;11, in which case it should be added to 13, resolving the conflict. Hence, if
none of ¢j_1,Cj—3, ..., Citk+1 has an in-arc or is an in-twin, then, we can add c¢;_1 to B in order to resolve v and c;;. Note
that, in this case, in comparison to just the sources and the resolution of sets of in-twins, we add one more vertex to B if
¢i—1 is the only in-twin of ¢;y1. The same reasoning can be made with the symmetric case.

The fifth special case (lines 10-11), depicted in Fig. 4e), occurs when the cycle contains exactly 2k vertices and both
Citk—1 and cjyx+1 have an out-neighbor (respectively v_ and v, ) with in-degree 1: the pairs of vertices (v_, cix) and
(v4, citk) might not be resolved. We can see that any in-arc or in-twin along a path from c; to c;4 will resolve c;y; and
the pendent v on the other path (thus either fully resolving those two pairs, or bringing us back to the previous special
case), except if c;_1 and c;4q are the only in-twins in the cycle and if they do not have another in-twin. Hence, if no vertex
from the cycle except ¢; has an in-arc, no vertex from the cycle except c;, ¢j—1 and ¢j4+1 is an in-twin, and c;_1 and c;j;+1 do
not have another in-twin, then, we need to add at least one more vertex to 53 in order to resolve the two pairs of vertices,
and adding c;yy does exactly that.

Finally, the sixth special case is more complex (lines 12-13, depicted in Fig. 4f, and consideration in the choice of in-
twins, depicted in Fig. 5g). Assume that the cycle ? is of even length n, has neither in-twin nor in-arc coming from outside
(except the sources), and that there are two sinks in C: one at distance 1 from the sources, and the other at the opposite
end of C. Now, if the first sink has spanning concerning paths, then, the second sink and the endpoints of those concerning
paths might not be resolved, since they are at the same distance (% — 1) from both sources of ? Thus, we need to apply a
strategy in order to resolve those vertices while trying to not add a supplementary vertex to 8. This is done by considering
the two kinds of concerning paths, and having a priority in the selection of in-twins. The details will be in the proof.

All the other cases of the cycle are already resolved through the sources and in-twins steps.

Theorem 7. Algorithm 2 computes a metric basis of an orientation of a unicyclic graph in linear time.

Proof. Let U be an orientation of a unicyclic graph with cycle <. First, note that sources and |I| — 1] of each set I of
in-twins must be in the metric basis 3. Furthermore, when a vertex of a set I of in-twins is in C, then, it should be
prioritized for reachability reasons. However, this is not sufficient to obtain a metric basis, since either some vertices may
be unreachable or some pairs of vertices may be non-resolved, which is why we will need the six special cases. In those
cases, we will either have to give stronger priority to some in-twins, or have to add one more vertex to B.
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Fig. 5. The standard cases of Algorithm 2, when a metric basis B of an orientation of a unicyclic graph contains every source and resolves every set of
in-twins (with some priority, identified with a diamond). Vertices in B are filled in red.

- .= . . .. e 2 .

The first case is if vertices in C are not reachable from any source or in-twin. This is only possible if C contains no
. . . . . — - . . . .
sink, no in-arc is coming from outside of C, and no vertex of C is an in-twin. In this case, we need to add any vertex

—
from C to B. N
The second case is if there is exactly one in-arc Lﬁ), with u ¢ C, the cycle has no sink, no cj with j#i is an in-twin

or has an in-arc coming from outside of C, and there is a vertex v verifying N~ (v) = {u}. In this case, v and c¢; are not
resolved, and thus we need to add at least one of thenl)to B.
The third case is if there is only one source ¢; in C, the sink is either c;_; or ciy1, and no vertex c; with j#i is an

in-twin or has any in-arc coming from outside of . In this case, the out-neighbors of c; are not in-twins but cannot be
resolved without taking at least one of them into 5.

The fourth and fifth case are linked. In both cases, the cycle _C) contains at least 2k vertices, one source c;, and one sink
ci+k with no in-arc. The problem will be when an in-neighbor of the sink has an out-neighbor v with in-degree 1: v and
ci+k might not be resolved. Let us see when this can happen.

In the fourth case, either cj ;1 or cj1x+1 has one out-neighbor v with in-degree 1. Without loss of generality, we will
consider that it is ¢j4k—1. Assume furthermore that no vertex from {c;_1, ¢i_2, ..., Citk+1} has an in-arc, and no vertex from
{ci—2,Ci—3,...,Citk+1} IS an in-twin (since, otherwise, v and c;;; would be resolved). Now, whether c¢;_; is an in-twin of
Ci+1 or not, we add c;_1 to B3, resolving v and cj . Note that c;_; could have been added to 5 at the in-twin step, but we
ensure that it is added in order to resolve the two conflicting vertices.

In the fifth case, _C) contains exactly 2k vertices, and both c¢;;¢_1 and ¢j;x4+1 have out-neighbors v_ and v, respectively,
with in-degree 1. Assume furthermore that no vertex in ? \ {ci} has an in-arc, and that no vertex in C \ {cj, ci_1, Ci+1} is
an in-twin. Now, if ¢;_1 and c;;1 are in-twins and have another in-twin, then, they will both be added to 13, and the pairs

10
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(v_,citk) and (v4,ciqk) are resolved. Otherwise, at least one of v_ and v, will remain non-resolved with c;y, and thus
we add cjyk to B in order to resolve the two pairs with the addition of just one vertex.

Finally, for the sixth case, assume that _C) is of even length and contains two sources c; and c;y,, that the two sinks are
at equal distance of the sources (so they are cjy; and Cit14+2 ), and that there is neither in-twin nor in-arc coming from

outside of ? (except the sources themselves). Now, if there are concerning paths, then, their endpoints and ¢; 4 +1 might
not be resolved, since they are all at distance § — 1 from the sources. Hence, we have to pick carefully among the potential
sets of in-twins, and we may need to add another vertex to BB. There are three cases to cover. First, if all the concerning
paths are fixable paths, then, by prioritizing the in-twins that are in the fixable paths, the endpoints and ¢; 4 +1 will be
resolved without having to add another vertex in 3. Now, if all the concerning paths are unfixable paths, then, every in-twin
along the concerning paths belongs to a concerning path, and thus we will need to add a supplementary vertex to 3 in
order to resolve the endpoints and the sink Cip140 here, we choose the sink c;;1. Finally, if there are both unfixable paths
and fixable paths, then, we can resolve the endpoints and the second sink by having the following priority on in-twins:
those on unfixable paths followed by those on fixable paths followed by those on non-concerning paths. Doing this will
guarantee that the endpoints and ¢;, 4 +1 are resolved. This settles the sixth and last special case.

We will now prove that the vertices we added to B (sources, in-twins, and the six special cases) do form a resolving set.
Since they were necessary to add, this will prove that 5 is indeed a metric basis.

First, note that every vertex in T]) is reachable from some vertex in B. Furthermore, recall that Algorithm 2 gives priority
to vertices in the cycle when resolving a set of in-twins, which will be important in some parts of the proof: if we know
that the cycle contains an in-twin, we know that it will be in B.

Now, assume by contradiction that two vertices u and v are not resolved by 8. Since they are reachable, there is a vertex
b € B such that there are paths P} and P from b to u and v, respectively. Let x be the last common vertex of P% and P
(we can have x = b), and we can assume that every pair of predecessors of u and v is resolved (since, otherwise, we can
just take the first unresolved pair of vertices on both paths). There are two cases to consider:

1. u,v e NT(x). Since u and v are not resolved, they cannot be in-twins (since, otherwise, one of them would be in B, a
contradiction), and hence there is a vertex w such that, without loss of generality, the arc Wil exists and the arc wv
does not exist. Now, w has to be reachable from a vertex in 13, so there are two more possibilities.

First, assume that there is a path from x to w. There are two subcases here. In the first subcase, u, w and x are in the
cycle < (of which x is the only source and u is the only sink). Then, whether v is also in the cycle or not, either there
is an in-twin or an in-arc coming from outside of C along the cycle, which would resolve u and v, a contradiction; or
we are in the third special case considered in Algorithm 2, and thus u and v are resolved, a contradiction. In the second
subcase, the path from x to w goes through u, and thus u and w are both in the cycle ? (which has no sink). Then,
either there is an in-arc reaching v or a vertex in _C) or there is an in-twin in ? or we are in the second special case
considered in Algorithm 2, and thus u and v are resolved, a contradiction.

Now, assume that there is no such path, and thus there exists a vertex b’ € B such that there is a path of length k from
b’ to w. Since u is an out-neighbor of w, this implies that there is a path of length k + 1 from b’ to v. There are two
subcases here. First, x and b’ (or a representative along the path from b’ to w) are the two sources of the cycle ? u
and v are its two sinks, and C contains at least 6 vertices. In this subcase, it is necessary that, in _C) a vertex outside of
the two sources is an in-twin or has an in-arc coming from outside of _C) which resolves u and v, a contradiction. The
second subcase is if the path from b’ to v goes through x (whether b =b’ or not). But then, either there is an in-twin or
an in-arc which resolves u and v, a contradiction, or we are in the fourth or fifth special case considered in Algorithm 2,
and thus u and v are resolved, a contradiction.

2. u,v¢&NT(x), hence, u and v each have a predecessor (respectively, u’ and v’) on PZ and Pe. By hypothesis, there exists
a vertex b’ € B that resolves u’ and v’ but not u and v, so there is a path of length k from b’ to u’ and a path of length
k+1 from b’ to v that does not go through v'. Note that b’ cannot be behind x in P} or PJ since otherwise it would not
resolve v’ and v/, and it cannot be after in P or PJ since otherwise it would resolve u and v, a contradiction. Hence, b’
(or a representative along the path from b’ to v) and x are the two sources of the cycle ? u’ and v are its two sinks,
and C contains at least six vertices. Like in the previous case, it is necessary that, either we are in the sixth special
case considered in Algorithm 2, or, in ? a vertex outside of the two sources is an in-twin or has an in-arc coming from
outside of ?, which resolves u and v, a contradiction.

Hence, Algorithm 2 resolves every pair of vertices in Tf and thus it returns a metric basis of a unicyclic graph. Finally, it
is easy to see that it computes B in linear time; for the concerning paths in the sixth special case, we can do a breadth-first
search of the graph starting from the sink c;;q to identify them, then go through the search tree again to compute, for
each set of in-twins, which are all comprised of vertices in concerning paths (giving us unfixable paths) and which are not
(giving us fixable paths), and a third loop to correctly relabel the concerning paths. O

11
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Fig. 6. An example on how to decompose and draw a digraph using modules.

4. FPT algorithm for modular width

In a digraph G, a set X C V(G) is a module if every vertex not in X ‘sees’ all vertices of X in the same way. More
precisely, for each v € V(G) \ X one of the following holds: (i) (v, x), (x, v) € E(G) for all x € X, (ii) (v,x), (x,Vv) ¢ E(G) for
all x € X, (iii) (v,x) € E(G) and (x,Vv) ¢ E(G) for all x € X, (iv) (v,x) ¢ E(G) and (x, v) € E(G) for all x € X. The singleton
sets, ¥, and V (G) are trivially modules of G. We call the singleton sets the trivial modules of G.

The graph G[X] where X is a module of G is called a factor of G. A family X = {Xy, ..., X} is a factorization of G if X
is a partition of V(G), and each X; is a module of G. If X and Y are two non-intersecting modules, then the relationship
between x € X and y € Y is one of (i)-(iv) and always the same no matter which vertices x and y are exactly. Thus, given a
factorization X', we can identify each module with a vertex, and connect them to each other according to the arcs between
the modules. More formally, we define the quotient G/X with respect to the factorization X as the graph with the vertex
set X ={X1,..., X5} and (X;, X;) € E(G/X) if and only if (x;,x;) € E(G) where x; € X; and x; € X;. A quotient depicts the
connections of the different modules of a factorization to each other while omitting the internal structure of the factors.
Each factor itself can be factorized further (as long as it is nontrivial, i.e. not a single vertex). By factorizing the graph G
and its factors until no further factorization can be done, we obtain a modular decomposition of G. An example of a modular
decomposition of a digraph is depicted on Fig. 6. The width of a decomposition is the maximum number of sets in a
factorization (or equivalently, the maximum number of vertices in a quotient) in the decomposition. The modular width of G
is defined as the minimum width over all possible modular decompositions of G, and we denote it by mw(G). An optimal
modular decomposition of a digraph can be computed in linear time [21]. METRIC DIMENSION for undirected graphs was
shown to be fixed parameter tractable when parameterized by modular width by Belmonte et al. [2]. We will generalize
their algorithm to directed graphs and strong and weak metric dimensions.

The following result lists several useful observations.

Proposition 8. Let X = {X1, ..., X} be a factorization of G, and let W C V (G) be a resolving set of G. Denote W; = W N X; for each
ief{l,...,s}

(i) Forallx,y € X; and z € Xj, i # j, we have dist¢ (x, z) = distg (y, z) and distg (z, x) = distg(z, y).
(ii) Forallx € X; and y € X}, i # j, we have distg (x, y) = distg, x (Xi, X}).
(iii) Forall x, y € V (G) we have either distg (x, y) < mw(G) or distg (x, y) = oc.
(iv) The set {X; € X'| W; # @} is a resolving set of the quotient G/ X.
(v) For all distinct x, y € X;, where X; € X is non-trivial, we have distg (w, x) # distg(w, y) for some w € W;.
(vi) Let wi, wy € X;. Ifdistg (w1, X) # distg (w3, x), then x € X; and distg (w1, x) # distg (w1, ¥) or distg (w, X) # distg (w3, ¥)
foreach y ¢ X;.

The basic idea of our algorithm (and that of [2]) is to compute metric bases that satisfy certain conditions for the
factors and combine these local solutions into a global solution. We know that non-trivial modules must contain elements
of a resolving set, as modules must be resolved locally (Proposition 8 (i)). While combining the local solutions of non-
trivial modules, we need to make sure that a vertex x € X;, where X; is non-trivial, is resolved from all y ¢ X;. If x and
y are resolved as described in Proposition 8 (vi), then we need to do nothing special. However, if x € X; is such that
distg(w,x) =d for all w e W; and a fixed d € {1, ..., mw(G), oo}, there might exist a vertex y ¢ X; such that W; does not
resolve x and y. We call such a vertex x d-constant (with respect to W;). We need to keep track of d-constant vertices and
make sure they are resolved when we combine the local solutions. There are at most mw(G) + 1 d-constant vertices in each
factor due to Proposition 8 (iii). We need to also make sure vertices in different modules that contain no elements of the
solution set are resolved. To do this, we might need to include some vertices from the trivial modules in addition to the
vertices we have included from the non-trivial modules.

In the algorithm presented in [2], the problems described above are dealt with by computing values w(H, p, q) for every
factor H, where w(H, p, q) is the minimum cardinality of a resolving set of H (with respect to the distance in G) where
some vertex is 1-constant iff p =true and some vertex is 2-constant iff ¢ = true (for undirected graphs these are the only
two relevant cases). The same values are then computed for the larger graph by combining different solutions of the factors
and taking their minimum. Our generalization of this algorithm is along the same lines as the original, however, we have
more boolean values to keep track of. One difference to the techniques of the original algorithm is that we do not use the
auxiliary graphs Belmonte et al. use. These auxiliary graphs were needed to simulate the distances of the vertices of a factor
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in G as opposed to only within the factor. In our approach, we simply use the distances in G and not the distances in the
factors or the auxiliary graphs.

Theorem 9. The metric dimension of a digraph G with mw(G) <t can be computed in time O(t52t2n +n3 +m) wheren = |V (G)|
and m = |E(G)|.

Proof. Let us consider one level of an optimal modular decomposition of G. Let H be a factor somewhere in the decompo-
sition, and let X = {X1, ..., X5} be the factorization of H according to the modular decomposition. For the graph H (and its
non-trivial factors H[X;]) we denote by w(H, p) the minimum cardinality of a set W € V (H) such that

(i) W resolves V(H) in G,
(ii) p=(p1, ..., Pmw(G), Poc) Where py = true if and only if H contains a d-constant vertex with respect to W.

If such a set does not exist, then w(H, p) = co. In order to compute the values w(H, p), we next introduce the auxiliary
values w(p, I, P). The values w(H[X;], p) are assumed to be known for all p and non-trivial modules X;. Let the factorization
X be labeled so that the modules X; are trivial for i € {1, ..., h} and non-trivial forie {h+1,...,s}. Let I C{1,...,h} and

h+1
p+

p's
We define w(p, I, P) = |I| + Zf:hH w(H[X;], p') if the following conditions (a)-(d) hold. In what follows, a representative
of a module X; is denoted by x;.

(a) The set Z={X;e X|ielU{h+1,...,s}} resolves the quotient H/X with respect to the distances in G.

(b) Forde{1,...,mw(G),o0} and i € {h +1,...,s}, if p,; =true, then for each trivial module X; = {x;} where j ¢ I we
have distg (x;, xj) #d or there exists X € Z \ {X;} such that distc (x, x;) # distc (X, X;).

(c) For dy,dy € {1,...,mw(G), o0} and distinct i,j € {h +1,...,s}, if pfj] = péz = true, then distg(x;, Xj) # d1, or
distc (xj, X;) # da, or there exists X € Z \ {X;, X} such that distg (xx, x;) # distc (xk, X;).

(d) Foralld e{1,...,mw(G), oo}, we have pg =true (in p) if and only if for some i € {1, ..., h}\I we have distg(xj,x;) =d
for all X; e Z, or for some i e {h+1,...,s} we have pfi =true and distg(xj,x;) =d for all X; € Z\ {X;}.

If these conditions cannot be met, then we set w(p, I, P) = oco.

Here we give an outline of a proof for the equality w(H, p) = min; p o(p, I, P).

We will first show that w(H, p) < min; p w(p, I, P). This clearly holds if min; p w(p, I, P) = co. So assume that I and
P are such that w(p, I, P) is as small as possible. Let W C V(G) be such that each W; = X; N W is a w(H[X;], p')-set for
ielh+1,...,s}, IW|=w(p,I, P), and W fulfills the conditions (a)-(d). We will show that W fulfills the conditions (i) and
(ii), and thus |W| > w(H, p).

(i) W resolves V(H) in G: If x,y € X;, thenie {h+1,...,s} and x and y are resolved by W;. Assume that x € X; and
y € Xj, i # j. Suppose that x and y are not resolved due to Proposition 8 (vi). Then at least one of them is d-constant or
they are both in trivial modules. Now, if i, j € {1, ..., h}, then x and y are resolved due to condition (a). If i € {1,..., h}
and je{h+1,...,s}, then x and y are resolved due to condition (b). If i, je{h+1,...,s}, then x and y are resolved
due to condition (c).

(ii) This holds due to condition (d).

Therefore, w(H, p) < min; p o(p, I, P).

Let us then show that w(H, p) > min; p w(p, I, P). Again, if w(H, p) = oo, then the claim clearly holds. So assume that
W C V(G) is such that |W|=w(H,p) and W fulfills conditions (i) and (ii). Consider the sets W; forie {h+1,...,s}. Each
W; resolves X; in G due to Proposition 8 (v), and thus |W;| > w(H[X;],p') for p’ defined with respect to W;. Let P be
defined with these pi’s, and let I = {i € {1,..., h}| W; % @}. Now, |W| > |I| + Zf-:hﬂ W(H[X;], p'). Moreover, the conditions
(a)-(d) hold:

(a) Holds due to condition (i).

(b) Assume to the contrary that pfj =true and j e {1,...,h}\ I is such that distg (x, x;) = distg (xi, x;) for all X € Z\ {X;}.
Let x € X; be d-constant. Since W resolves x and y, there exists w € W; such that distg (w, x) # distg(w, x;), and thus
distg (x;, xj) = distg (w, xj) #d.

(c) Can be shown with the same technique as (b).

(d) Clear.
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Fig. 7. Illustration of the reduction for an edge e = uv of G in M, and the surrounding edges ux, uy, vs and vt. Squared vertices are the original ones
from G.

Therefore, |W| > w(p, I, P) and w(H, p) > min; p w(p, I, P).

Let us then discuss the complexity of this algorithm. As a preprocessing step, we need to compute the distances between
all pairs of vertices. This can be done using the Floyd-Warshall algorithm in @ (n?) time. An optimal modular decomposition
can be computed in O(n + m) time [21]. We then need to compute the values w(H, p) for each factor H starting from the
trivial modules and working our way up in the decomposition. The values w(H, p) are computed using the auxiliary values
w(p, I, P). There are (’)(th) different possibilities for I and P and their combinations (note that the vector p is determined
based on I and P). For each pair I, P, we need to check the conditions (a)-(d), out of which (c) is the most costly time-wise
and can be checked in O(t>) time. Thus, computing the values w(H,p) can be done in O(t52t2) time for each H. The
total computing time then follows from the fact that there are at most 2n factors in any modular decomposition of a graph
with n vertices. (The decomposition can be presented as a rooted tree where the vertices represent the factors and edges
represent inclusion. In this tree the leaves are exactly the trivial modules, and there are n of them. Every internal vertex has
degree at least 3, except the root has degree at least 2. Using the handshake lemma it is then straightforward to show that
this tree can have at most 2n vertices.) O

The original algorithm of Belmonte et al. has conditions (a)-(g), of which (a) is (essentially) the same as (a) above,
(b) and (c) are covered by (b), (d) and (e) by (c), and (f) and (g) by (d). Notice that our condition (c) is true whenever
distg (x;, Xj) = distg (xj, x;) and dq # dy. Specifically, if G is undirected, we do not need to care about (c) for pairs where
di #ds.

5. NP-hardness for restricted DAGs

We now complement the hardness result from [1], which was for bipartite DAGs of maximum degree 8 and maximum
distance 4.

Theorem 10. METRIC DIMENSION is NP-complete, even on planar triangle-free DAGs of maximum degree 6 and maximum distance 4.

Proof. The problem is clearly in NP: a certificate is a set of vertices, for which we can check in polynomial time if it is of
the required size and if it resolves all vertices by computing the distance vectors and comparing them.

For completeness, we reduce from VERTEX COVER on 2-connected planar cubic graphs, which is known to be NP-
complete [23, Theorem 4.1].

Given a 2-connected planar cubic graph G, we construct a DAG G’ as follows. First of all, note that by Petersen’s theorem,
G contains a perfect matching M C E(G), that can be constructed in polynomial time. A planar embedding of G can also be

constructed in polynomial time, so we fix one. We let V(G’) = V(G) Ue:uveE(G){ae,be,ce,d’e‘,dg’}Ue:uvem{fe,ge,he}. For
—_— s — — — — .
every edge e =uv of G, we add the arcs {aebe, bece, cedy, cedy , udy, vdy}. For every edge e = uv of the perfect matching M

of G, assuming the neighbors of u (in the clockwise cyclic order with respect to the planar embedding of G) are v, x, y and
those of v are u, s, t, we arbitrarily fix one side of the edge uv to place the vertices f., g. and h, (say, on the side that is
—_— .y — — —

close to the edges ux and vt). We add the arcs {fege, 8eCe, ehe, hell, heV, CeCyy, CeCys, ReCux, ReCyt ).

Using the embedding of G, G’ can also be drawn in a planar way, it has maximum degree 6 (the vertices of type c, are
of degree 6 when e € M), has no triangles, and no shortest directed path of length 5. See Fig. 7 for an illustration.

Now, we claim that G has a vertex cover of size at most k if and only if G’ has metric dimension at most k + |E(G)| +
IM| =k+4|E(G)|/3 =k + 2|V (G)|.

If G has a vertex cover C of size k, we construct a resolving set R(C) of G’ as follows. Include the vertices of C in R(C),
as well as all vertices of {a. | e € E(G)}U{fe | e € M}. The vertices in R(C) are clearly uniquely resolved. For a given edge e
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of G, the vertices b, and c. are uniquely at distance 1 and 2 from a., respectively, so all vertices of these types are uniquely
resolved. Among the other vertices associated to e, di and d} are the only ones at distance 3 from a.; moreover, d} is at
distance 1 from u and d; at distance 1 from v, but not vice-versa, so CN{u, v} resolves d; and d;. Thus, all vertices of these
types are uniquely resolved. Among the remaining vertices, g, and h, are uniquely at distance 1 and 2 from f,, respectively,
so all vertices of these types are uniquely resolved. Finally, the vertices in V(G) \ R(C) are resolved by the unique vertex of
type fe from which each of them is at distance 3. Hence, all vertices are uniquely resolved and R(C) is indeed a resolving
set of G'.

Conversely, let R be a resolving set of G’ of size at most k + |E(G)| + |M|. Notice that for each edge e of G, one of ae, b,
belongs to R in order to resolve this pair, and similarly, for each edge e in M, one of f,, g, belongs to R (in the case of
strong metric dimension, a. and f. belong to the solution, since they are sources).

We construct a potential vertex cover C(R) by taking R NV (G). Moreover, for each edge e =uv in M, we add to C(R)
any of u, v (if possible, one that is not yet in C(R)) in case the set {ae, be, Ce, fe, 8. he, dy, d}} contains three vertices of R.
If it contains at least four, both u, v are put into C(R). Similarly, for each edge e =uv in E(G) \ M, we add to C(R) any of
u,v in case the set {a.,be,ce,dy,d}} contains two vertices of R (if possible, we add one that is not yet in C(R)), and we
add both u, v if it contains more than two vertices of R.

By the above paragraph, the resulting set C(R) contains at most |R|—|E(G)| —|M| < k vertices. Now, consider a pair df, d}
for some edge e. If u or v is in R, it is also in C(R), and e is covered by C(R). Assume now that none of u, v isin R. If e € M,
necessarily one of u, v, d¥, d] belongs to R to resolve that pair, and so, as none of u, v are in R, |de, be., Ce, fe, e, he,dy,d}| >
3 and by our construction, either u or v (or both) have been added to C(R). Thus, e is covered by C(R). If e ¢ M, the only
vertices that can resolve dY,d} are again u,v,dY,d}, or a vertex h,, where e’ # e is an edge of G in M incident with u
or v and h, is not adjacent to c.. Again, as none of u, v is in R, if one of dY,d; belongs to R, |ae,be,ce,dy,d}| > 2 and
by our construction, either u or v (or both) have been added to C(R). Otherwise, it must be that some vertex hy is in
R, where ¢’ # e is an edge of G in M incident with u or v (say, u and ¢’ =uw) and he is not adjacent to c.. But notice
that he does not resolve df, and d}/, as e’ € M. Thus, either w € R and |ae/, be', Cre, fer, 8ers her, dyy,, d}/| = 3, or w ¢ R and
e, ber, Cre, fers 8ers her,dy,, d¥| > 4. In both cases, by our construction, we would have added u to C(R). Thus, in all cases,
one of u, v belongs to C(R) and e is covered. Thus, C(R) is a vertex cover of size at most k, as needed. O

6. Conclusion

METRIC DIMENSION can be solved in polynomial time on outerplanar graphs, using an involved algorithm [7]. Can one
generalize our algorithms for trees and unicyclic graphs to solve METRIC DIMENSION for directed (or at least, oriented)
outerplanar graphs in polynomial time? Extending our algorithm to cactus graphs already seems non-trivial.

One open question is whether METRIC DIMENSION is NP-hard on planar bipartite subcubic DAGs?

Also, it would be interesting to see which hardness results known for MeTRIC DIMENSION of undirected graphs also hold
for DAGs, or for oriented graphs.
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