
Journal of Computer and System Sciences 158 (2026) 103776

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

Algorithms and hardness for Metric Dimension on digraphs ✩

Antoine Dailly a,∗, Florent Foucaud a, Anni Hakanen b,c,1

a Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France
b Department of Mathematics and Statistics, University of Turku, FI-20014, Finland
c Turku Collegium for Science, Medicine and Technology TCSMT, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 July 2023
Received in revised form 12 March 2025
Accepted 19 January 2026
Available online 3 February 2026

Keywords:
Graphs
Digraphs
Directed graphs
Metric dimension
Algorithms
Fixed-parameter tractability
Parameterized complexity
Complexity
Trees
Modular-width

In the Metric Dimension problem, one asks for a minimum-size set R of vertices
such that for any pair of vertices of the graph, there is a vertex from R whose two
distances to the vertices of the pair are distinct. This problem has mainly been studied
on undirected graphs and has gained a lot of attention in the recent years. We focus on
directed graphs, and show how to solve the problem in linear time on digraphs whose
underlying undirected graph (ignoring multiple edges) is a tree. This (non-trivially) extends
a previous algorithm for oriented trees. We then extend the method to orientations of
unicyclic graphs. We also give a fixed-parameter-tractable algorithm for digraphs when
parameterized by the directed modular-width, extending a known result for undirected
graphs. Finally, we show that Metric Dimension is NP-hard even on planar triangle-free
acyclic digraphs of maximum degree 6.

© 2026 Elsevier Inc. All rights are reserved, including those for text and data mining, AI
training, and similar technologies.

1. Introduction

The metric dimension of a (di)graph G is the smallest size of a set of vertices that distinguishes all vertices of G by their
vectors of distances from the vertices of the set. This concept was introduced in the 1970s by Harary and Melter [14] and by
Slater [30] independently. Due to its interesting nature and numerous applications (such as robot navigation [19], detection
in sensor networks [30] or image processing [22], to name a few), it has enjoyed a lot of attention. It also has been studied
in the more general setting of metric spaces [3], and is generally part of the rich area of identification problems of graphs
and other discrete structures [18].

More formally, let us denote by dist(x, y) the distance from x to y in a digraph. Here, the distance dist(x, y) is taken
as the length of a shortest directed path from x to y; if no such path exists, dist(x, y) is infinite, and we say that y is not
reachable from x. We say that a set S is a resolving set of a digraph G if for any pair of distinct vertices v, w from G , there
is a vertex x in S with dist(x, v) ≠ dist(x, w). Furthermore, we require that every vertex of G is reachable from at least one

✩ Work financed by the French government IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001), the International Research Center ``Innovation
Transportation and Production Systems'' of the I-SITE CAP 20-25, and by the ANR project GRALMECO (ANR-21-CE48-0004).

* Corresponding author.
E-mail address: antoine.dailly@inrae.fr (A. Dailly).

1 Research supported by the Jenny and Antti Wihuri Foundation and partially by Research Council of Finland grant number 338797.

https://doi.org/10.1016/j.jcss.2026.103776
0022-0000/© 2026 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.jcss.2026.103776
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2026.103776&domain=pdf
mailto:antoine.dailly@inrae.fr
https://doi.org/10.1016/j.jcss.2026.103776

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

vertex of S . The metric dimension of G is the smallest size of a resolving set of G , and a minimum-size resolving set of G is
called a metric basis of G .2

We denote by Metric Dimension the computational version of the problem: given a (di)graph G , determine its metric
dimension.

For undirected graphs, Metric Dimension has been extensively studied, and its non-local nature makes it highly non
trivial from an algorithmic point of view. On the hardness side, Metric Dimension was shown to be NP-hard for planar
graphs of bounded degree [7], split, bipartite and line graphs [9], unit disk graphs [17], interval and permutation graphs of
diameter 2 [11], and graphs of pathwidth 24 [20]. On the positive side, it can easily be solved in linear time on trees [4,
14,19,30]. More involved polynomial-time algorithms exist for unicyclic graphs [29] and, more generally, graphs of bounded
cyclomatic number [9], outerplanar graphs [7], cographs [9], chain graphs [10], cactus-block graphs [16], and bipartite
distance-hereditary graphs [24]. There are fixed parameter tractable (FPT) algorithms for the undirected graph parameters
max leaf number [8], tree-depth [13], modular-width [2] and distance to cluster [12], but FPT algorithms are highly unlikely
to exist for the parameters solution size [15] and feedback vertex set [12].

Due to the interest for Metric Dimension on undirected graphs, it is natural to ask what can be said in the context
of digraphs. The metric dimension of digraphs was first studied in [5] under a somewhat restrictive definition; for our
definitions, we follow the recent paper [1], in which the algorithmic aspects of Metric Dimension on digraphs have been
addressed. We call oriented graph a digraph without directed 2-cycles. A directed acyclic digraph (DAG for short) has no di
rected cycles at all. The underlying multigraph of a digraph is the one obtained by ignoring the arc orientations; its underlying
graph is obtained from it by ignoring multiple edges. In a digraph, a strongly connected component is a subgraph where every
vertex is reachable from all other vertices. Note that for the Metric Dimension problem, undirected graphs can be seen as a
special type of digraphs where each arc has a symmetric arc (i.e., replace every edge of the undirected graph by a directed
2-cycle).

The NP-hardness of Metric Dimension was proven for oriented graphs in [27] and, more recently, for bipartite DAGs of
maximum degree 8 and maximum distance 4 [1] (the maximum distance being the length of a longest directed path without
shortcuts). A linear-time algorithm for Metric Dimension on oriented trees was given in [1].

Our results. We generalize the linear-time algorithm for Metric Dimension on oriented trees from [1] to all digraphs whose
underlying graph is a tree. In other words, here we allow 2-cycles. This makes a significant difference with oriented trees,
and as a result our algorithm is non-trivial. We then extend the used methods to solve Metric Dimension in linear time for
unicyclic digraphs (digraphs with a unique cycle). Then, we prove that Metric Dimension can be solved in time f (t)nO (1) for
digraphs of order n and modular-width t (a parameter recently introduced for digraphs in [31]). This extends the same result
for undirected graphs from [2], and is the first FPT algorithm for Metric Dimension on digraphs. Finally, we complement
the hardness result from [1] by showing that Metric Dimension is NP-hard even for planar triangle-free DAGs of maximum
degree 6 and maximum distance 4.

A short preliminary version of this paper has appeared in the proceedings of the WG 2023 conference [6].

2. Digraphs whose underlying graph is a tree (di-trees)

For the sake of convenience, we call di-tree a digraph whose underlying graph is a tree. Trees are often the first non
trivial class to study for a graph problem. Metric Dimension is no exception to this, having been studied in the first papers
for the undirected [4,14,19,30] and the oriented [1] cases. In the undirected case, a minimum-size resolving set can be
found by taking, for each vertex of degree at least 3 spanning k legs, the endpoint of k − 1 of its legs (a leg is an induced
path spanning from a vertex of degree at least 3, having its inner vertices of degree 2, and ending in a leaf). In the case of
oriented trees, taking all the sources (a source is a vertex with no in-neighbor) and k − 1 vertices in each set of k in-twins
yields a metric basis (two vertices are in-twins if they have the same in-neighborhood). Our algorithm, being on di-trees
(which include both undirected trees and oriented trees), will reuse those strategies, but we will need to refine them in
order to obtain a metric basis. The first refinement is of the notion of in-twins, for which we need the following notion:

Definition 1. A strongly connected component E of a di-tree is an escalator if it satisfies the following conditions:

1. its underlying graph is a path with vertices e1, . . . , ek (k ≥ 2);
2. there is a unique vertex y ∉ E such that the arc −→ye1 exists and for all i ∈ {2, . . . ,k}, ei has no in-neighbors from outside E;
3. for every i ∈ {1, . . . ,k − 1}, no arc −→ei z with z ∉ E exists.

An example of an escalator is depicted on Fig. 1b. Note that there can be any number (possibly, zero) of vertices z ∉ E
such that the arc −→ek z exists.

2 The definition that we use has been called strong metric dimension in [1], as opposed to weak metric dimension, where one single vertex may be
unreachable from any resolving set vertex. The former definition seems more natural to us. However, the term strong metric dimension is already used for a
different concept, see [25]. Thus, to prevent confusion, we avoid the prefix strong in this paper.

2

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

. . .

. . .

v wy

z

v = y

w

z

(a) Two examples of a special leg in a strongly connected component.

e1

e2 e3

e4

y

z

(b) An escalator.

a1y

a2

a3 a4

y

x

(c) A set of almost-in-twins.

Fig. 1. Illustrations of Definitions 1 to 3. The vertex names are taken from those definitions.

Definition 2. In a di-tree, a set of vertices A = {a1, . . . ,ak} is a set of almost-in-twins if there is a vertex x such that:

1. for every i ∈ {1, . . . ,k}, the arc −→xai exists and the arc −→ai x does not exist;
2. for every i ∈ {1, . . . ,k}, either ai is a trivial strongly connected component and N−(ai) = {x}, or ai is the endpoint of an

escalator and N−(ai) = {x, y} where y is its neighbor in the escalator.

An example of a set of almost-in-twins is depicted on Fig. 1c. Note that regular in-twins are also almost-in-twins. The
second refinement is the following (for a given vertex x in a strongly connected component with C as an underlying graph,
we call dC (x) the degree of x in C):

Definition 3. Given the underlying graph C of a strongly connected component of a di-tree and a set D of vertices, we call
a set S of vertices inducing a path of order at least 2 in C a special leg if it verifies the four following properties:

1. S has a unique vertex v such that v ∈ D or dC (v) ≥ 3;
2. S has a unique vertex w such that dC (w) = 1, furthermore w ∉ D: w is called the endpoint of S;
3. all of the other vertices x of S verify dC (x) = 2 and x ∉ D;
4. at least one of the vertices y ∈ S \ {w} has an out-arc −→yz with z / ∈ C and N−(z) = {y}.

An example of a special leg is depicted on Fig. 1a. Note that several special legs can span from the same vertex, from
which regular legs can also span. Algorithm 1, illustrated in Figs. 2 and 3, computes a metric basis of a di-tree.

Explanation of Algorithm 1. The algorithm will compute a metric basis ℬ of a di-tree T in linear time. The first thing we do
is to add every source in T to ℬ (line 1). Then, for every set of almost-in-twins, we add all of them but one to ℬ (lines 2-3).
Those two first steps, depicted in Fig. 2a, are the ones used to compute the metric basis of an orientation of a tree [1],
and as such they are still necessary for managing the non-strongly connected components of the di-tree. Note that we are
specifically managing sets of almost-in-twins, which include sets of in-twins, since it is necessary to resolve the specific case
of escalators. The rest of the algorithm consists in managing the strongly connected components.

For each strongly connected component having C as an underlying graph, we first identify each vertex x of C that has
an in-arc coming from outside C . Indeed, since x is the ``last'' vertex of a path coming from outside C , there are vertices of
ℬ ``behind'' this in-arc (or they can themselves be a vertex in ℬ), which we will call ℬx . However, the vertices in ℬx can
be ``projected'' on x since, T being a di-tree, x is on every shortest path from the vertices of ℬ ``behind'' the in-arc to the
vertices of C . Hence, we will mark x as a dummy vertex (lines 5-7, depicted in Fig. 2b): we will consider that it is in ℬ for
the rest of this step, and acts as a representative of the set ℬx with respect to C .

We then have to manage some specific cases whenever C is a path (lines 8-17). Indeed, the last two steps of the
algorithm do not always work under some conditions. Those specific conditions will be highlighted in the proof, and are
depicted in Fig. 3.

The last two steps are then applied. First, we have to consider the special legs defined in Definition 3. The idea behind
those special legs is the following: for every out-arc −→yz with y in the special leg and z outside of C , any vertex in the metric
basis ``before'' the start of the special leg will not distinguish z and the next neighbor of y in the special leg. Hence, we have
to add at least one vertex to ℬ for each special leg, and we choose the endpoint of the special leg (lines 18-19, depicted in

3

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

Algorithm 1: An algorithm computing the metric basis of a di-tree.
Input : A di-tree T .
Output : A metric basis ℬ of T .

1 ℬ ← Every source of T
2 foreach set I of almost-in-twins do
3 Add |I| − 1 vertices of I to ℬ
4 foreach strongly connected component with C as an underlying graph do
5 D ← ∅
6 foreach arc −→uv with v ∈ C and u ∉ C do
7 Add v to D

8 if C is a path with endpoints x and y then
9 if there is no vertex in C ∩ D then

10 if there is no arc −→uv such that u ∈ C , v ∉ C and N−(v) = {u} then
11 Add x to ℬ
12 else if the only arcs −→uv such that u ∈ C , v ∉ C and N−(v) = {u} are such that u = x (resp. u = y) then
13 Add y (resp. x) to ℬ
14 else
15 Add x and y to ℬ

16 else if there is exactly one vertex w in C ∩ D, w is neither x nor y, and there is no arc −→wz such that z ∉ C and N−(z) = {w} then
17 Add x to ℬ

18 foreach special leg L of C do
19 Add the endpoint of L to ℬ
20 foreach vertex of degree ≥ 3 in C from which span k ≥ 2 legs of C that do not have a vertex in ℬ or in D do
21 Add the endpoint of k − 1 such legs to ℬ

22 return ℬ

source

source

almost-
in-twins

(a) The first step (lines 1-3) is to add every source and manage
sets of almost-in-twins.

dummy dummy

(b) The second step (lines 5-7) is to mark the dummy vertices of
the strongly connected component.

special leg

special leg

(c) The third step (lines 18-19) is to manage all the special legs.
(d) The fourth and final step (lines 20-21) is to manage the re
maining legs with a common ancestor.

Fig. 2. Illustration of Algorithm 1. For the sake of simplicity, there are only two strongly connected components, for which we only represent the underlying
graph with bolded edges, so every bolded edge is a 2-cycle. One of the two strongly connected components is a simple path that does not require any
action. Vertices in the metric basis are filled in red.

Fig. 2c). Finally, we apply the well-known algorithm for computing the metric basis of a tree to the remaining parts of C
(lines 20-21, depicted in Fig. 2d). The special legs and the legs containing a dummy vertex, being already resolved, are not
considered in this part.

4

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

(a) Neither in-arc nor out-arc. (b) No in-arc, out-arc only at an endpoint.

(c) No in-arc, other cases. (d) One in-arc, in the middle.

Fig. 3. The cases of Algorithm 1 where a strongly connected component is a path and we have to add specific vertices (filled in red) to the metric basis.
The path is depicted as wavy bolded edges. Note that the considered out-arcs have to be towards a vertex with no other in-neighbor than the one in the
path (out-arcs to vertices with other in-neighbors can still exist).

Theorem 4. Algorithm 1 computes a metric basis of a di-tree in linear time.

Proof. Let T be a di-tree, and ℬ be the set of vertices returned by Algorithm 1. We need to prove that ℬ resolves every
pair of vertices of T , that ℬ is of minimum size, and that Algorithm 1 runs in linear time.

First, note that, if T is either an orientation of a tree or a strongly connected graph (and thus seen as an undirected
graph), then, Algorithm 1 does compute a metric basis. In the first case, ℬ will contain only the vertices added in lines 1-3
(which correspond to a so-called adequate set of vertices in [1], see Lemma 2.10 and Theorem 2.11); and in the second
case, ℬ will contain either only a vertex added in lines 10-11 (if T is a path) or only the vertices added in lines 20-21
(which correspond to the well-known resolving set of trees, see for example Theorem 2.4 in [19]); those two cases do form
a metric basis of T .

Hence, we will consider that T contains at least one strongly connected component and at least one non-strongly con
nected component. We will first show that the vertices we select in ℬ are necessary to resolve at least one pair of vertices,
and then that they do indeed form a resolving set, and thus that ℬ is a metric basis.

First, let us consider the sources. It is easy to see that each source has to be in ℬ, since otherwise they would not be
reachable from any other vertex in ℬ. Now, let us consider the in-twins. Again, it is easy to see that the only way to resolve
two in-twins will be to have at least one of them in ℬ. However, Algorithm 1 considers almost-in-twins, which are more
general than regular in-twins. This is because of the escalators: let u be the endpoint of an escalator having an in-arc coming
from outside of it. If u has an almost-in-twin v , then, by definition, u and v cannot be resolved without taking in ℬ either
at least one of these or another vertex from the escalator. Thus, we choose to take either u or v , which will resolve vertices
in the escalator as well as the almost-in-twins.

Note that sources and in-twins can only exist in a non-strongly connected component. Hence, in the rest of this part of
the proof, we will consider a strongly connected component with C as an underlying graph. Note that, by our construction,
if a vertex x ∈ C is a dummy vertex, then, there will be a vertex b ∈ ℬ such that there is a path from b to x (even if it is not
necessarily the case yet).

We first consider the case of the special legs of C . Let L be a special leg with vertices x1, . . . , xℓ , starting from a vertex
x1 such that dC (x1) ≥ 3 or x1 is a dummy vertex, and ending at a vertex xℓ verifying dC (xℓ) = 1. Let xi (i ∈ {1, . . . , ℓ}) be a
vertex such that dC (xi) ≥ 2 and there is an arc −→xi y with y ∉ C and N−(y) = {xi}. Note that, at this point, no vertex in the
special leg can be in ℬ, and there is no arc from outside of C to a vertex of L apart from x1. This means that, for vertices of
L, x1 can be seen as a representative from the set ℬ: every path from a vertex in ℬ to a vertex in L has to go through x1.
Furthermore, y, having no other in-neighbor, is only reached by vertices of ℬ through x1. In practice, this means that xi+1
and y are not resolved: since they are at the same distance from x1, they are at the same distance from any vertex in ℬ.
Hence, it is necessary to add either a vertex from the set {xi+1, . . . , xℓ} or y to ℬ in order to resolve this pair. Since other
such situations might occur in L, the easiest solution to resolve this pair is to add xℓ to ℬ, since doing so will resolve all
such pairs.

We then consider the rest of C . Since T is a di-tree, C is a tree. Let L1 and L2 be two (non-special) legs spanning from a
vertex x, and assume that neither of those legs have an in-arc coming from outside of C . If no vertex from either L1 or L2
is in ℬ, then, the vertices from L1 and L2 cannot be resolved. Here, we add the endpoint of either L1 or L2 to ℬ. Note that,
since C is not a path (which either is a special case that we will consider below, or has been considered in the special leg

5

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

case), if one of L1 or L2 has a dummy vertex or a vertex in ℬ, then, the vertices from L1 and L2 will be resolved without
having to add another vertex in ℬ.

However, note that there are cases where the above method does not create a resolving set. Indeed, when C is a path
with vertices x1, . . . , xk , it is possible to fall into some patterns where we need to add specific vertices to ℬ. The patterns
are the following:

1. There is no arc −→yxi with y ∉ C , in which case we have the following subpatterns depending on the presence of out-arcs −→xi y with y ∉ C and N−(y) = {xi}:

(a) there is no such arc −→xi y , in which case we have to add either x1 or xk to ℬ (the vertices of C have to be reached
from ℬ and separated);

(b) there is such an arc and we have u = x1 (resp. u = xk), in which case we have to add a vertex from C to ℬ in
order to reach the vertices of C ; we add xk (resp. x1) to ℬ since, otherwise, either y and x2 (resp. xk−1) will not be
resolved or some pair of vertices in the path will not be resolved;

(c) in every other case (that is, there are such arcs leaving C from different vertices), we have to add both x1 and xk to
ℬ (since, otherwise, one vertex from C and one vertex reached by an out-arc from C will not be resolved).

Note that there can be arcs −→xi y with y ∉ C and where y has an in-neighbor not in C ; those do not matter for this
specific analysis, since such y are already resolved from the vertices in C by vertices in ℬ that are ancestors of their
other in-neighbors.

2. There is exactly one xi , i ∉ {1,k}, such that there exists an arc −→yxi with y ∉ C and there is no arc −→xi z with z ∉ C and
N−(z) = {xi}, in which case we add either endpoint to ℬ (since, otherwise, xi−1 and xi+1 will not be resolved). Note that
if such an arc −→xi z exists, then we have two special legs spanning from xi and thus no problem arises.

In every other case where C is a path, the cases considered above (in particular, the special leg and the sources and almost
in-twins) will have us add to ℬ the vertices necessary to resolve the vertices of C and its direct out-neighborhood.

At this point, every vertex that we added to ℬ was necessary to resolve at least one pair of vertices which could not
be resolved any other way. At each step, when we had the choice between several vertices, we chose as few as possible to
resolve everything. Hence, we only need to check that every pair of vertices is resolved by ℬ, which will prove that ℬ is a
metric basis.

Assume by contradiction that two vertices u and v are not resolved by ℬ. This means that, for every vertex b ∈ ℬ, either
both u and v are not reachable from b, or there are two unique shortest paths P b

u between b and u and P b
v between b

and v such that |P b
u | = |P b

v |. Note that P b
u and P b

v are unique because the underlying graph of T is a tree. Given a vertex
b ∈ ℬ, let x be the last common vertex of P b

u and P b
v (note that we may have x = b). Note that we can consider u and v

to be the out-neighbors of x on P b
u and P b

v , since if those out-neighbors were resolved by any vertex b′ ∈ ℬ then u and v
would be resolved by b′ too, a contradiction. Now, u and v cannot be in-twins, since, otherwise, one of them would be in
ℬ, a contradiction. Thus, one vertex, say without loss of generality u, has an in-neighbor w that is not an in-neighbor of v .
There are now several cases to consider.

If there is no arc −→uw , then, w has to be reachable from a vertex b′ ∈ ℬ. However, since the underlying graph of T is a
tree, the only path from b′ to v (which necessarily exists, since otherwise b′ resolves u and v since u is reachable from b′ ,
a contradiction) goes through u, and thus dist(b′, v) = dist(b′, u) + 2, and thus b′ resolves u and v , a contradiction.

Hence, w and u are in a common strongly connected component C . First, assume that the arc −→ux does not exist, that is,
v is not reachable from u. Note that if any vertex from C is in ℬ, then, u and v will be resolved, a contradiction. Now, there
are only a limited number of cases where no vertex from C has been added to ℬ. In all those cases, the underlying graph
of C is a path, and they are the cases that were considered neither in lines 8-17 of Algorithm 1 nor in the special legs case.
The first case is if C is an escalator. The only possibility for this, by definition, is that u and v are almost-in-twins (since,
otherwise, there would be another in-arc than the one at one endpoint), in which case, either u or v are added in ℬ, and
thus they are resolved, a contradiction. The other case is if either both endpoints of C have in-arcs coming from outside of
C , or if the in-arcs coming from outside of C the closest to the endpoints are not followed by any out-arc from the same
vertex. However, note that, in this case, there is at least one vertex b′ ∈ ℬ such that u is reachable from b′ but v is not
(there is necessarily at least one vertex in ℬ ``behind'' every in-arc of a strongly connected component), a contradiction.

This implies that the arc −→ux exists, and thus x also belongs to C . First, if any vertex y ∈ C such that dist(y, u) ≠ dist(y, v)

is in ℬ, then, u and v are resolved, a contradiction. Hence, there are only two possibilities: either no vertex from C is in
ℬ, or vertices in C ∩ ℬ are either x or in a part of C that can only reach u and v through x. As in the previous case, if no
vertex from C is in ℬ, then, we reach a contradiction. Indeed, C cannot be an escalator: either x is an endpoint of C and
then −→xv is an out-arc that prevents C from being an escalator, or it is not an endpoint and then the in-arc arriving at x from
P b

u (x ≠ b since no vertex from C is in ℬ) prevents C from being an escalator. In the other cases, the underlying graph of
C is a path with specific properties (either both endpoints have an in-arc coming from outside, or the two in-arcs coming
from the outside the closest to the endpoints do not have out-arcs leaving C from the same vertex), and the in-arcs coming
from outside of C will allow u and v to be resolved, a contradiction.

6

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

Thus, there is at least one vertex b′ ∈ C ∩ ℬ, and it can only reach u and v through x. This implies that u and w are
in a leg of C with no in-arc from outside of C (since, otherwise, we would have added a vertex in ℬ on this side of C ,
which would resolve u and v , a contradiction). There are three cases. First, if there is an in-arc from outside of C to x and
v ∉ C , then u and w are in a special leg, and thus its endpoint would be in ℬ and would resolve u and v , a contradiction.
Now, if there is no in-arc from outside of C to x and v ∉ C , then either u and w are in a special leg (a contradiction, like
before), or the underlying graph of C is a path, and our construction would have added the endpoint of C on the side of
u to ℬ, which would resolve u and v , a contradiction. Finally, if v ∈ C , then, v has to be in a regular leg (since, otherwise,
we would have added a vertex in ℬ on this side of C , which would resolve u and v , a contradiction), but now either the
underlying graph of C is a path and it would have an in-arc or we would have added one of its endpoints to ℬ, resolving u
and v , a contradiction; or u and v are the first vertices in two regular legs of C spanning from the same vertex x and we
would have added one of the endpoints of the legs to ℬ, resolving u and v , a contradiction.

Thus, by our construction, every pair of vertices is resolved, and thus ℬ is a resolving set. This proves that ℬ is a metric
basis, and thus that Algorithm 1 is correct.

Finally, it is easy to see that Algorithm 1 computes ℬ in linear time, which proves the statement of Theorem 4. □
In [1], the authors used the notion of removable source to characterize orientations of trees with a weak metric di

mension3 lower than the metric dimension. In the case of di-trees, however, the definition of removable source is not so
clear-cut. Indeed, there are several cases where a source meets (resp. does not meet) the conditions of the removable source
as defined in [1] and yet cannot (resp. can) be removed from a metric basis in order to obtain a weak metric basis. While
we do not have a proper definition of a removable source in the context of di-trees, we get the following result:

Proposition 5. There is a polynomial-time algorithm computing a weak metric basis of a di-tree.

Proof. The result comes from two facts. The first is that every vertex we added to the metric basis in Algorithm 1 was
necessary to either guarantee that every vertex is reached from the basis (sources) or ``locally'' resolve some pairs of vertices
(almost-in-twins, special legs...), which still need to be resolved, and thus we cannot avoid adding those second ones to the
weak metric basis either. The second is that the only possible infinite-vertex (that is, a vertex that is not reachable from any
vertex in the basis) in a directed graph is a source (Proposition 2.2 in [1]). Indeed, if the infinite-vertex s is not a source,
then, any vertex u such that there is a path from u to s cannot be reached from any vertex in the basis, and thus we would
have several infinite-vertices, a contradiction.

Hence, in a di-tree, the only possible way to have a weak metric basis is to remove a source from a metric basis without
creating a pair of non-resolved vertices. This is possible in polynomial time, since the actualization of distance vectors in a
di-tree will take linear time. □
3. Orientations of unicyclic graphs

A unicyclic graph U is constituted of a cycle C with vertices c1, . . . , cn , and each vertex ci is the root of a tree Ti
(we can have Ti be simply the isolated ci itself). The metric dimension of an undirected unicyclic graph has been studied
in [26,28,29]. In [26], Poisson and Zhang proved bounds for the metric dimension of a unicyclic graph in terms of the metric
dimension of a tree obtained by removing one edge from the cycle. Sedlar and Škrekovski showed more recently that the
metric dimension of a unicyclic graph is one of two values in [28], and then the exact value of the metric dimension based
on the structure of the graph in [29]. In this section, we will show that one can compute a metric basis of an orientation of
a unicyclic graph in linear time. The algorithm mostly consists in using sources and in-twins, with a few specific edge cases
to consider.

In this section, an induced directed path
−→
P is the orientation of an induced path with only one source and one sink which

are its two endpoints. It is said to be spanning from u if u is its source endpoint, and its length is its number of edges. We
also need the following definition:

Definition 6. Let
−→
U be the orientation of a unicyclic graph. Given an orientation of a cycle

−→
C of even length n = 2k with

two sources, if its sources are ci and ci+2, its sinks are ci+1 and ci+1+k , and there are, in
−→
C \ {ci, ci+2}, neither in-twins nor

in-arcs coming from outside of
−→
C , we call an induced directed path

−→
P a concerning path if it verifies the three following

properties:

1.
−→
P spans from ci+1;

2.
−→
P has length k − 2;

3.
−→
P has no in-arc coming from outside of

−→
P ∪ −→

C .

3 In which one vertex may be unreachable from any resolving set vertex.

7

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

Algorithm 2: An algorithm computing the metric basis of an orientation of a unicyclic graph.

Input : An orientation −→U of a unicyclic graph U .

Output : A metric basis ℬ of −→U .

1 Add to ℬ every source of −→U
2 Apply the special cases in Algorithm 3
3 foreach set I of in-twins in −→U that are not already in ℬ do
4 if all the vertices of I are in concerning paths then
5 Add |I| − 1 vertices of I to ℬ, prioritizing vertices in unfixable paths
6 else

7 Add |I| − 1 vertices of I to ℬ, prioritizing vertices in the cycle −→C or in concerning paths, if there are any

8 return ℬ

Algorithm 3: Special cases of Algorithm 2.

1 if the cycle −→C has no sink, there is no in-arc coming from outside of C , and no vertex of C is in a set of in-twin then
2 Add c1 to ℬ
3 if the cycle −→C has no sink, there is exactly one in-arc −→uci with u ∉ −→

C , no vertex c j with j ≠ i is an in-twin or has in-arc coming from outside of −→C , and u has
an out-neighbor v with N−(v) = {u} then

4 Add ci to ℬ
5 if the cycle −→C has exactly one source ci then

6 if the one sink is either ci−1 or ci+1 , and no vertex c j with j ≠ i is an in-twin or has an in-arc coming from outside of −→C then
7 Add ci−1 to ℬ
8 else if the one sink is ci+k with k > 1, |−→C | ≥ 2k, ci+k−1 (resp. ci+k+1) has an out-neighbor v such that N−(v) = {ci+k−1} (resp. N−(v) = {ci+k+1}), no

vertex in {ci−1, ci−2, . . . , ci+k} (resp. {ci+1, ci+2, . . . , ci+k}) has an in-arc, and no vertex in {ci−2, ci−3, . . . , ci+k+1} (resp. {ci+2, ci+3, . . . , ci+k−1}) is an
in-twin then

9 Add ci−1 (resp. ci+1) to ℬ
10 else if the one sink is ci+k with k > 1, |−→C | = 2k, ci+k−1 has an out-neighbor v− such that N−(v−) = {ci+k−1}, ci+k+1 has an out-neighbor v+ such that

N−(v+) = {ci+k+1}, no vertex in −→C except ci has an in-arc, no vertex in −→C \ {ci , ci−1, ci+1} is an in-twin, and ci−1 and ci+1 are not in a set I of in-twins
verifying |I| ≥ 3 then

11 Add ci+k to ℬ

12 if the cycle −→C has exactly two sources ci and ci+2 , |−→C | = 2k with k > 2, the two sinks are ci+1 and ci+1+k , no vertex from −→C except ci and ci+2 is an in-twin
or has an in-arc coming from outside of −→C , there is at least one unfixable path, and there is no fixable path then

13 Add ci+1 to ℬ

Furthermore, if, for every vertex in
−→
P belonging to a non-empty set I of in-twins, every vertex in I belongs to a concerning

path, then, we call
−→
P an unfixable path.

A path that is a concerning path, but not an unfixable path, will be called a fixable path.
Finally, a vertex might belong both to an unfixable path and to a fixable path; in this case, the fixable path takes

precedence (i.e., we will consider that the vertex belongs to the fixable path).

Explanation of Algorithm 2. The algorithm will compute a metric basis ℬ of an orientation
−→
U of a unicyclic graph U in

linear time. The result on several cases is depicted in Figs. 4 and 5. The first thing we do is to add every source in
−→
U to ℬ

(line 1). We will also manage the sets of in-twins in
−→
U (lines 3-7), which we need to do after taking care of some special

cases that might influence the choice of in-twins. When we have the choice, we prioritize taking in-twins that are in the
cycle to guarantee reachability of vertices in the cycle. Note that those two sets (along with the right priority) are enough
in most cases, as depicted in Fig. 5.

We then have to manage six specific cases (line 2). Those special cases are handled in Algorithm 3, to which the line
numbers in the next five paragraphs will refer. The first two special cases occur when the cycle has no sink. First, if the
cycle has no sink, no in-twin, and no arc coming from outside, then, we have to add one vertex of the cycle to ℬ in order
to maintain reachability (lines 1-2, depicted in Fig. 4a). Then, if the cycle has no sink, only one in-arc −→uci is coming from
outside of it, and there is a vertex v with N−(v) = {u}, then, we add ci or v to ℬ in order to resolve them (lines 3-4,
depicted in Fig. 4b).

The next three special cases occur when the cycle has one sink. First, if there is only one sink in the cycle, it is an
out-neighbor of the source, and no vertex from the cycle apart from the source is an in-twin or has an in-arc coming from
outside of the cycle, then we need to add one of the out-neighbors of the source in the cycle to ℬ in order to resolve them
(lines 6-7), depicted in Fig. 4c).

Then, there are two specific cases when the cycle has one sink, both based on the same principle. Both happen when
the source is ci , the sink is ci+k , it has no in-arc, and the cycle contains at least 2k vertices. In the fourth special case

8

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

source

c1

(a) First special case: there is neither source,
nor in-twin or in-arc coming from outside
in −→C .

source
ci

(b) Second special case: there is no source
or in-twin in the cycle, and there is a unique
in-arc −→uci and a vertex v with N−(v) = {u}.

source

ci−1

(c) Third special case: there is one source
ci in −→

C , the sink is either ci−1 or ci+1,
and there is neither in-twin nor in-arc in −→
C \ {ci}.

sourcesource

ci+k v

(d) Fourth special case: |−→C | ≥ 2k, there
is one source ci in −→

C , the sink is ci+k ,
ci+k−1 (w.l.o.g.) has an out-neighbor
v with in-degree 1, no vertex in
{ci−1, ci−2, . . . , ci+k} has an in-arc, and
no vertex in {ci−2, ci−3, . . . , ci+k+1} is an
in-twin.

source

in-twins

ci+k

v−

v+

(e) Fifth special case: |−→C | = 2k, there is one
source ci in −→C , the sink is ci+k , ci+k−1 and
ci+k+1 both have out-neighbors v− and v+
with in-degree 1, no vertex in −→C \ {ci} has
an in-arc, no vertex in −→C \ {ci, ci−1, ci+1} is
an in-twin, and ci−1 and ci+1 are not in a set
of in-twins of size at least 3.

source

source

in-twins

ci+1

(f) Sixth special case: there are two sources
ci and ci+2 in −→

C , the sinks are ci+1 and
ci+1+ n

2
, there is neither in-twin nor in-arc in

−→
C \ {ci, ci+2}, and there is at least one un

fixable path (in bolded arcs) and no fixable
path.

Fig. 4. The special cases of Algorithm 2, managed in Algorithm 3, where we have to add to ℬ one more vertex other than the sources and the resolution of
sets of in-twins. Vertices in ℬ are filled in red, and the supplementary vertex added to ℬ is identified by a square around it.

(lines 8-9), depicted in Fig. 4d), the vertex ci+k−1 has an out-neighbor v verifying N−(v) = {ci+k−1}. We can see that, if
no vertex in the other path from ci to ci+k (the path going through ci−1, ci−2, . . . , ci+k+1) is in ℬ, then, v and ci+k will
not be resolved. Those vertices can be added to ℬ if they have an in-arc or if they are an in-twin (they will have priority).
However, note that ci−1 might be an in-twin of ci+1, in which case it should be added to ℬ, resolving the conflict. Hence, if
none of ci−1, ci−2, . . . , ci+k+1 has an in-arc or is an in-twin, then, we can add ci−1 to ℬ in order to resolve v and ci+k . Note
that, in this case, in comparison to just the sources and the resolution of sets of in-twins, we add one more vertex to ℬ if
ci−1 is the only in-twin of ci+1. The same reasoning can be made with the symmetric case.

The fifth special case (lines 10-11), depicted in Fig. 4e), occurs when the cycle contains exactly 2k vertices and both
ci+k−1 and ci+k+1 have an out-neighbor (respectively v− and v+) with in-degree 1: the pairs of vertices (v−, ci+k) and
(v+, ci+k) might not be resolved. We can see that any in-arc or in-twin along a path from ci to ci+k will resolve ci+k and
the pendent v on the other path (thus either fully resolving those two pairs, or bringing us back to the previous special
case), except if ci−1 and ci+1 are the only in-twins in the cycle and if they do not have another in-twin. Hence, if no vertex
from the cycle except ci has an in-arc, no vertex from the cycle except ci , ci−1 and ci+1 is an in-twin, and ci−1 and ci+1 do
not have another in-twin, then, we need to add at least one more vertex to ℬ in order to resolve the two pairs of vertices,
and adding ci+k does exactly that.

Finally, the sixth special case is more complex (lines 12-13, depicted in Fig. 4f, and consideration in the choice of in
twins, depicted in Fig. 5g). Assume that the cycle

−→
C is of even length n, has neither in-twin nor in-arc coming from outside

(except the sources), and that there are two sinks in
−→
C : one at distance 1 from the sources, and the other at the opposite

end of
−→
C . Now, if the first sink has spanning concerning paths, then, the second sink and the endpoints of those concerning

paths might not be resolved, since they are at the same distance (n
2 − 1) from both sources of

−→
C . Thus, we need to apply a

strategy in order to resolve those vertices while trying to not add a supplementary vertex to ℬ. This is done by considering
the two kinds of concerning paths, and having a priority in the selection of in-twins. The details will be in the proof.

All the other cases of the cycle are already resolved through the sources and in-twins steps.

Theorem 7. Algorithm 2 computes a metric basis of an orientation of a unicyclic graph in linear time.

Proof. Let
−→
U be an orientation of a unicyclic graph with cycle

−→
C . First, note that sources and |I| − 1| of each set I of

in-twins must be in the metric basis ℬ. Furthermore, when a vertex of a set I of in-twins is in
−→
C , then, it should be

prioritized for reachability reasons. However, this is not sufficient to obtain a metric basis, since either some vertices may
be unreachable or some pairs of vertices may be non-resolved, which is why we will need the six special cases. In those
cases, we will either have to give stronger priority to some in-twins, or have to add one more vertex to ℬ.

9

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

source

(a) No source in the cycle, but there is an
in-arc and we are not in the second special
case.

in-twins

(b) No source in the cycle, but there is an in
twin, which has priority.

source

source

(c) A source ci , a sink either ci−1 or ci+1, but
an in-arc coming from outside.

source

in-twins

(d) A source ci , and a sink that is neither
ci−1 nor ci+1.

source

in-twins

ci+k

v−

v+

(e) |−→C | = 2k, there is one source ci in −→C ,
the sink is ci+k , ci+k−1 and ci+k+1 both have
out-neighbors v− and v+ with in-degree 1,
no vertex in −→C \ {ci} has an in-arc, no vertex
in −→C \ {ci, ci−1, ci+1} is an in-twin, but ci−1
and ci+1 are in a set of in-twins of size at
least 3.

source

source

source
in-twins

(f) There are two sources ci and ci+2 in −→C ,
the sinks are ci+1 and ci+1+ n

2
, and there is

at least one unfixable path (in bolded arcs)
and no fixable path, but there is an in-arc
coming from outside of −→C .

source

source

in-twins

in-twins

(g) There are two sources ci and ci+2 in −→
C , the sinks are ci+1 and ci+1+ n

2
, there is

neither in-twin nor in-arc in −→C \ {ci, ci+2},
and there is at least one unfixable path (in
bolded arcs), but there is at least one fixable
path (in bolded and dashed arcs).

source

source

(h) Two sources, not in the special case con
figuration.

source

source source

(i) More than two sources.

Fig. 5. The standard cases of Algorithm 2, when a metric basis ℬ of an orientation of a unicyclic graph contains every source and resolves every set of
in-twins (with some priority, identified with a diamond). Vertices in ℬ are filled in red.

The first case is if vertices in
−→
C are not reachable from any source or in-twin. This is only possible if

−→
C contains no

sink, no in-arc is coming from outside of
−→
C , and no vertex of

−→
C is an in-twin. In this case, we need to add any vertex

from
−→
C to ℬ.

The second case is if there is exactly one in-arc −→uci with u ∉ −→
C , the cycle has no sink, no c j with j ≠ i is an in-twin

or has an in-arc coming from outside of
−→
C , and there is a vertex v verifying N−(v) = {u}. In this case, v and ci are not

resolved, and thus we need to add at least one of them to ℬ.
The third case is if there is only one source ci in

−→
C , the sink is either ci−1 or ci+1, and no vertex c j with j ≠ i is an

in-twin or has any in-arc coming from outside of
−→
C . In this case, the out-neighbors of ci are not in-twins but cannot be

resolved without taking at least one of them into ℬ.
The fourth and fifth case are linked. In both cases, the cycle

−→
C contains at least 2k vertices, one source ci , and one sink

ci+k with no in-arc. The problem will be when an in-neighbor of the sink has an out-neighbor v with in-degree 1: v and
ci+k might not be resolved. Let us see when this can happen.

In the fourth case, either ci+k−1 or ci+k+1 has one out-neighbor v with in-degree 1. Without loss of generality, we will
consider that it is ci+k−1. Assume furthermore that no vertex from {ci−1, ci−2, . . . , ci+k+1} has an in-arc, and no vertex from
{ci−2, ci−3, . . . , ci+k+1} is an in-twin (since, otherwise, v and ci+k would be resolved). Now, whether ci−1 is an in-twin of
ci+1 or not, we add ci−1 to ℬ, resolving v and ci+k . Note that ci−1 could have been added to ℬ at the in-twin step, but we
ensure that it is added in order to resolve the two conflicting vertices.

In the fifth case,
−→
C contains exactly 2k vertices, and both ci+k−1 and ci+k+1 have out-neighbors v− and v+ , respectively,

with in-degree 1. Assume furthermore that no vertex in
−→
C \ {ci} has an in-arc, and that no vertex in

−→
C \ {ci, ci−1, ci+1} is

an in-twin. Now, if ci−1 and ci+1 are in-twins and have another in-twin, then, they will both be added to ℬ, and the pairs

10

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

(v−, ci+k) and (v+, ci+k) are resolved. Otherwise, at least one of v− and v+ will remain non-resolved with ci+k , and thus
we add ci+k to ℬ in order to resolve the two pairs with the addition of just one vertex.

Finally, for the sixth case, assume that
−→
C is of even length and contains two sources ci and ci+2, that the two sinks are

at equal distance of the sources (so they are ci+1 and ci+1+ n
2

), and that there is neither in-twin nor in-arc coming from

outside of
−→
C (except the sources themselves). Now, if there are concerning paths, then, their endpoints and ci+1+ n

2
might

not be resolved, since they are all at distance n
2 − 1 from the sources. Hence, we have to pick carefully among the potential

sets of in-twins, and we may need to add another vertex to ℬ. There are three cases to cover. First, if all the concerning
paths are fixable paths, then, by prioritizing the in-twins that are in the fixable paths, the endpoints and ci+1+ n

2
will be

resolved without having to add another vertex in ℬ. Now, if all the concerning paths are unfixable paths, then, every in-twin
along the concerning paths belongs to a concerning path, and thus we will need to add a supplementary vertex to ℬ in
order to resolve the endpoints and the sink ci+1+ n

2
; here, we choose the sink ci+1. Finally, if there are both unfixable paths

and fixable paths, then, we can resolve the endpoints and the second sink by having the following priority on in-twins:
those on unfixable paths followed by those on fixable paths followed by those on non-concerning paths. Doing this will
guarantee that the endpoints and ci+1+ n

2
are resolved. This settles the sixth and last special case.

We will now prove that the vertices we added to ℬ (sources, in-twins, and the six special cases) do form a resolving set.
Since they were necessary to add, this will prove that ℬ is indeed a metric basis.

First, note that every vertex in
−→
U is reachable from some vertex in ℬ. Furthermore, recall that Algorithm 2 gives priority

to vertices in the cycle when resolving a set of in-twins, which will be important in some parts of the proof: if we know
that the cycle contains an in-twin, we know that it will be in ℬ.

Now, assume by contradiction that two vertices u and v are not resolved by ℬ. Since they are reachable, there is a vertex
b ∈ ℬ such that there are paths P b

u and P b
v from b to u and v , respectively. Let x be the last common vertex of P b

u and P b
v

(we can have x = b), and we can assume that every pair of predecessors of u and v is resolved (since, otherwise, we can
just take the first unresolved pair of vertices on both paths). There are two cases to consider:

1. u, v ∈ N+(x). Since u and v are not resolved, they cannot be in-twins (since, otherwise, one of them would be in ℬ, a
contradiction), and hence there is a vertex w such that, without loss of generality, the arc −→wu exists and the arc −→w v
does not exist. Now, w has to be reachable from a vertex in ℬ, so there are two more possibilities.
First, assume that there is a path from x to w . There are two subcases here. In the first subcase, u, w and x are in the
cycle

−→
C (of which x is the only source and u is the only sink). Then, whether v is also in the cycle or not, either there

is an in-twin or an in-arc coming from outside of
−→
C along the cycle, which would resolve u and v , a contradiction; or

we are in the third special case considered in Algorithm 2, and thus u and v are resolved, a contradiction. In the second
subcase, the path from x to w goes through u, and thus u and w are both in the cycle

−→
C (which has no sink). Then,

either there is an in-arc reaching v or a vertex in
−→
C , or there is an in-twin in

−→
C , or we are in the second special case

considered in Algorithm 2, and thus u and v are resolved, a contradiction.
Now, assume that there is no such path, and thus there exists a vertex b′ ∈ ℬ such that there is a path of length k from
b′ to w . Since u is an out-neighbor of w , this implies that there is a path of length k + 1 from b′ to v . There are two
subcases here. First, x and b′ (or a representative along the path from b′ to w) are the two sources of the cycle

−→
C , u

and v are its two sinks, and
−→
C contains at least 6 vertices. In this subcase, it is necessary that, in

−→
C , a vertex outside of

the two sources is an in-twin or has an in-arc coming from outside of
−→
C , which resolves u and v , a contradiction. The

second subcase is if the path from b′ to v goes through x (whether b = b′ or not). But then, either there is an in-twin or
an in-arc which resolves u and v , a contradiction, or we are in the fourth or fifth special case considered in Algorithm 2,
and thus u and v are resolved, a contradiction.

2. u, v ∉ N+(x), hence, u and v each have a predecessor (respectively, u′ and v ′) on P b
u and P b

v . By hypothesis, there exists
a vertex b′ ∈ ℬ that resolves u′ and v ′ but not u and v , so there is a path of length k from b′ to u′ and a path of length
k + 1 from b′ to v that does not go through v ′ . Note that b′ cannot be behind x in P b

u or P b
v since otherwise it would not

resolve u′ and v ′ , and it cannot be after in P b
u or P b

v since otherwise it would resolve u and v , a contradiction. Hence, b′

(or a representative along the path from b′ to v) and x are the two sources of the cycle
−→
C , u′ and v are its two sinks,

and
−→
C contains at least six vertices. Like in the previous case, it is necessary that, either we are in the sixth special

case considered in Algorithm 2, or, in
−→
C , a vertex outside of the two sources is an in-twin or has an in-arc coming from

outside of
−→
C , which resolves u and v , a contradiction.

Hence, Algorithm 2 resolves every pair of vertices in
−→
U , and thus it returns a metric basis of a unicyclic graph. Finally, it

is easy to see that it computes ℬ in linear time; for the concerning paths in the sixth special case, we can do a breadthfirst
search of the graph starting from the sink ci+1 to identify them, then go through the search tree again to compute, for
each set of in-twins, which are all comprised of vertices in concerning paths (giving us unfixable paths) and which are not
(giving us fixable paths), and a third loop to correctly relabel the concerning paths. □

11

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

Fig. 6. An example on how to decompose and draw a digraph using modules.

4. FPT algorithm for modular width

In a digraph G , a set X ⊆ V (G) is a module if every vertex not in X ‘sees’ all vertices of X in the same way. More
precisely, for each v ∈ V (G) \ X one of the following holds: (i) (v, x), (x, v) ∈ E(G) for all x ∈ X , (ii) (v, x), (x, v) / ∈ E(G) for
all x ∈ X , (iii) (v, x) ∈ E(G) and (x, v) / ∈ E(G) for all x ∈ X , (iv) (v, x) / ∈ E(G) and (x, v) ∈ E(G) for all x ∈ X . The singleton
sets, ∅, and V (G) are trivially modules of G . We call the singleton sets the trivial modules of G .

The graph G[X] where X is a module of G is called a factor of G . A family 𝒳 = {X1, . . . , Xs} is a factorization of G if 𝒳
is a partition of V (G), and each Xi is a module of G . If X and Y are two non-intersecting modules, then the relationship
between x ∈ X and y ∈ Y is one of (i)-(iv) and always the same no matter which vertices x and y are exactly. Thus, given a
factorization 𝒳 , we can identify each module with a vertex, and connect them to each other according to the arcs between
the modules. More formally, we define the quotient G/𝒳 with respect to the factorization 𝒳 as the graph with the vertex
set 𝒳 = {X1, . . . , Xs} and (Xi, X j) ∈ E(G/𝒳) if and only if (xi, x j) ∈ E(G) where xi ∈ Xi and x j ∈ X j . A quotient depicts the
connections of the different modules of a factorization to each other while omitting the internal structure of the factors.
Each factor itself can be factorized further (as long as it is nontrivial, i.e. not a single vertex). By factorizing the graph G
and its factors until no further factorization can be done, we obtain a modular decomposition of G . An example of a modular
decomposition of a digraph is depicted on Fig. 6. The width of a decomposition is the maximum number of sets in a
factorization (or equivalently, the maximum number of vertices in a quotient) in the decomposition. The modular width of G
is defined as the minimum width over all possible modular decompositions of G , and we denote it by mw(G). An optimal
modular decomposition of a digraph can be computed in linear time [21]. Metric Dimension for undirected graphs was
shown to be fixed parameter tractable when parameterized by modular width by Belmonte et al. [2]. We will generalize
their algorithm to directed graphs and strong and weak metric dimensions.

The following result lists several useful observations.

Proposition 8. Let 𝒳 = {X1, . . . , Xs} be a factorization of G, and let W ⊆ V (G) be a resolving set of G. Denote W i = W ∩ Xi for each
i ∈ {1, . . . , s}.

(i) For all x, y ∈ Xi and z ∈ X j , i ≠ j, we have distG(x, z) = distG(y, z) and distG(z, x) = distG(z, y).
(ii) For all x ∈ Xi and y ∈ X j , i ≠ j, we have distG(x, y) = distG/𝒳 (Xi, X j).

(iii) For all x, y ∈ V (G) we have either distG(x, y) ≤ mw(G) or distG(x, y) = ∞.
(iv) The set {Xi ∈𝒳 | W i ̸= ∅} is a resolving set of the quotient G/𝒳 .
(v) For all distinct x, y ∈ Xi , where Xi ∈𝒳 is non-trivial, we have distG(w, x) ≠ distG(w, y) for some w ∈ W i .

(vi) Let w1, w2 ∈ Xi . If distG(w1, x) ≠ distG(w2, x), then x ∈ Xi and distG(w1, x) ≠ distG(w1, y) or distG(w2, x) ≠ distG(w2, y)

for each y / ∈ Xi .

The basic idea of our algorithm (and that of [2]) is to compute metric bases that satisfy certain conditions for the
factors and combine these local solutions into a global solution. We know that non-trivial modules must contain elements
of a resolving set, as modules must be resolved locally (Proposition 8 (i)). While combining the local solutions of non
trivial modules, we need to make sure that a vertex x ∈ Xi , where Xi is non-trivial, is resolved from all y / ∈ Xi . If x and
y are resolved as described in Proposition 8 (vi), then we need to do nothing special. However, if x ∈ Xi is such that
distG(w, x) = d for all w ∈ W i and a fixed d ∈ {1, . . . ,mw(G),∞}, there might exist a vertex y / ∈ Xi such that W i does not
resolve x and y. We call such a vertex x d-constant (with respect to W i). We need to keep track of d-constant vertices and
make sure they are resolved when we combine the local solutions. There are at most mw(G)+ 1 d-constant vertices in each
factor due to Proposition 8 (iii). We need to also make sure vertices in different modules that contain no elements of the
solution set are resolved. To do this, we might need to include some vertices from the trivial modules in addition to the
vertices we have included from the non-trivial modules.

In the algorithm presented in [2], the problems described above are dealt with by computing values w(H, p,q) for every
factor H , where w(H, p,q) is the minimum cardinality of a resolving set of H (with respect to the distance in G) where
some vertex is 1-constant iff p = true and some vertex is 2-constant iff q = true (for undirected graphs these are the only
two relevant cases). The same values are then computed for the larger graph by combining different solutions of the factors
and taking their minimum. Our generalization of this algorithm is along the same lines as the original, however, we have
more boolean values to keep track of. One difference to the techniques of the original algorithm is that we do not use the
auxiliary graphs Belmonte et al. use. These auxiliary graphs were needed to simulate the distances of the vertices of a factor

12

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

in G as opposed to only within the factor. In our approach, we simply use the distances in G and not the distances in the
factors or the auxiliary graphs.

Theorem 9. The metric dimension of a digraph G with mw(G) ≤ t can be computed in time 𝒪(t52t2
n + n3 + m) where n = |V (G)|

and m = |E(G)|.

Proof. Let us consider one level of an optimal modular decomposition of G . Let H be a factor somewhere in the decompo
sition, and let 𝒳 = {X1, . . . , Xs} be the factorization of H according to the modular decomposition. For the graph H (and its
non-trivial factors H[Xi]) we denote by w(H,p) the minimum cardinality of a set W ⊆ V (H) such that

(i) W resolves V (H) in G ,
(ii) p = (p1, . . . , pmw(G), p∞) where pd = true if and only if H contains a d-constant vertex with respect to W .

If such a set does not exist, then w(H,p) = ∞. In order to compute the values w(H,p), we next introduce the auxiliary
values ω(p, I, P). The values w(H[Xi],p) are assumed to be known for all p and non-trivial modules Xi . Let the factorization
𝒳 be labeled so that the modules Xi are trivial for i ∈ {1, . . . ,h} and non-trivial for i ∈ {h + 1, . . . , s}. Let I ⊆ {1, . . . ,h} and

P =
⎛
⎜⎝

ph+1

...

ps

⎞
⎟⎠ .

We define ω(p, I, P) = |I| + ∑︁s
i=h+1 w(H[Xi],pi) if the following conditions (a)-(d) hold. In what follows, a representative

of a module Xi is denoted by xi .

(a) The set Z = {Xi ∈𝒳 | i ∈ I ∪ {h + 1, . . . , s}} resolves the quotient H/𝒳 with respect to the distances in G .
(b) For d ∈ {1, . . . ,mw(G),∞} and i ∈ {h + 1, . . . , s}, if pi

d = true, then for each trivial module X j = {x j} where j / ∈ I we
have distG(xi, x j) ≠ d or there exists Xk ∈ Z \ {Xi} such that distG(xk, xi) ≠ distG(xk, x j).

(c) For d1,d2 ∈ {1, . . . ,mw(G),∞} and distinct i, j ∈ {h + 1, . . . , s}, if pi
d1

= p j
d2

= true, then distG(xi, x j) ≠ d1, or
distG(x j, xi) ≠ d2, or there exists Xk ∈ Z \ {Xi, X j} such that distG(xk, xi) ≠ distG(xk, x j).

(d) For all d ∈ {1, . . . ,mw(G),∞}, we have pd = true (in p) if and only if for some i ∈ {1, . . . ,h}\ I we have distG(x j, xi) = d
for all X j ∈ Z , or for some i ∈ {h + 1, . . . , s} we have pi

d = true and distG(x j, xi) = d for all X j ∈ Z \ {Xi}.

If these conditions cannot be met, then we set ω(p, I, P) = ∞.
Here we give an outline of a proof for the equality w(H,p) = minI,P ω(p, I, P).
We will first show that w(H,p) ≤ minI,P ω(p, I, P). This clearly holds if minI,P ω(p, I, P) = ∞. So assume that I and

P are such that ω(p, I, P) is as small as possible. Let W ⊆ V (G) be such that each W i = Xi ∩ W is a w(H[Xi],pi)-set for
i ∈ {h + 1, . . . , s}, |W | = ω(p, I, P), and W fulfills the conditions (a)-(d). We will show that W fulfills the conditions (i) and
(ii), and thus |W | ≥ w(H,p).

(i) W resolves V (H) in G: If x, y ∈ Xi , then i ∈ {h + 1, . . . , s} and x and y are resolved by W i . Assume that x ∈ Xi and
y ∈ X j , i ≠ j. Suppose that x and y are not resolved due to Proposition 8 (vi). Then at least one of them is d-constant or
they are both in trivial modules. Now, if i, j ∈ {1, . . . ,h}, then x and y are resolved due to condition (a). If i ∈ {1, . . . ,h}
and j ∈ {h + 1, . . . , s}, then x and y are resolved due to condition (b). If i, j ∈ {h + 1, . . . , s}, then x and y are resolved
due to condition (c).

(ii) This holds due to condition (d).

Therefore, w(H,p) ≤ minI,P ω(p, I, P).
Let us then show that w(H,p) ≥ minI,P ω(p, I, P). Again, if w(H,p) = ∞, then the claim clearly holds. So assume that

W ⊆ V (G) is such that |W | = w(H,p) and W fulfills conditions (i) and (ii). Consider the sets W i for i ∈ {h + 1, . . . , s}. Each
W i resolves Xi in G due to Proposition 8 (v), and thus |W i | ≥ w(H[Xi],pi) for pi defined with respect to W i . Let P be
defined with these pi ’s, and let I = {i ∈ {1, . . . ,h} | W i ̸= ∅}. Now, |W | ≥ |I| + ∑︁s

i=h+1 w(H[Xi],pi). Moreover, the conditions
(a)-(d) hold:

(a) Holds due to condition (i).
(b) Assume to the contrary that pi

d = true and j ∈ {1, . . . ,h} \ I is such that distG(xk, xi) = distG(xk, x j) for all Xk ∈ Z \ {Xi}.
Let x ∈ Xi be d-constant. Since W resolves x and y, there exists w ∈ W i such that distG(w, x) ≠ distG(w, x j), and thus
distG(xi, x j) = distG(w, x j) ≠ d.

(c) Can be shown with the same technique as (b).
(d) Clear.

13

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

u v
du

e dv
e

ae

be

ce

fe

ge

he

y

du
uy

cuy

dy
uy

auy

buy

x

du
ux

cux

dx
ux

aux

bux

s

dv
vs

cvs

ds
vs

avs

bvs

t

dv
vt

cvt

dt
vt

avt

bvt

Fig. 7. Illustration of the reduction for an edge e = uv of G in M , and the surrounding edges ux, uy, vs and vt . Squared vertices are the original ones
from G .

Therefore, |W | ≥ ω(p, I, P) and w(H,p) ≥ minI,P ω(p, I, P).
Let us then discuss the complexity of this algorithm. As a preprocessing step, we need to compute the distances between

all pairs of vertices. This can be done using the Floyd-Warshall algorithm in 𝒪(n3) time. An optimal modular decomposition
can be computed in 𝒪(n + m) time [21]. We then need to compute the values w(H,p) for each factor H starting from the
trivial modules and working our way up in the decomposition. The values w(H,p) are computed using the auxiliary values
ω(p, I, P). There are 𝒪(2t2

) different possibilities for I and P and their combinations (note that the vector p is determined
based on I and P). For each pair I , P , we need to check the conditions (a)-(d), out of which (c) is the most costly time-wise
and can be checked in 𝒪(t5) time. Thus, computing the values w(H,p) can be done in 𝒪(t52t2

) time for each H . The
total computing time then follows from the fact that there are at most 2n factors in any modular decomposition of a graph
with n vertices. (The decomposition can be presented as a rooted tree where the vertices represent the factors and edges
represent inclusion. In this tree the leaves are exactly the trivial modules, and there are n of them. Every internal vertex has
degree at least 3, except the root has degree at least 2. Using the handshake lemma it is then straightforward to show that
this tree can have at most 2n vertices.) □

The original algorithm of Belmonte et al. has conditions (a)-(g), of which (a) is (essentially) the same as (a) above,
(b) and (c) are covered by (b), (d) and (e) by (c), and (f) and (g) by (d). Notice that our condition (c) is true whenever
distG(xi, x j) = distG(x j, xi) and d1 ≠ d2. Specifically, if G is undirected, we do not need to care about (c) for pairs where
d1 ≠ d2.

5. NP-hardness for restricted DAGs

We now complement the hardness result from [1], which was for bipartite DAGs of maximum degree 8 and maximum
distance 4.

Theorem 10. Metric Dimension is NP-complete, even on planar triangle-free DAGs of maximum degree 6 and maximum distance 4.

Proof. The problem is clearly in NP: a certificate is a set of vertices, for which we can check in polynomial time if it is of
the required size and if it resolves all vertices by computing the distance vectors and comparing them.

For completeness, we reduce from Vertex Cover on 2-connected planar cubic graphs, which is known to be NP
complete [23, Theorem 4.1].

Given a 2-connected planar cubic graph G , we construct a DAG G ′ as follows. First of all, note that by Petersen’s theorem,
G contains a perfect matching M ⊂ E(G), that can be constructed in polynomial time. A planar embedding of G can also be
constructed in polynomial time, so we fix one. We let V (G ′) = V (G)

⋃︁
e=uv∈E(G){ae,be, ce,du

e ,dv
e }⋃︁

e=uv∈M{ fe, ge,he}. For

every edge e = uv of G , we add the arcs {−−→aebe,
−−→
bece,

−−→
cedu

e ,
−−→
cedv

e ,
−→
udu

e ,
−→
vdv

e }. For every edge e = uv of the perfect matching M
of G , assuming the neighbors of u (in the clockwise cyclic order with respect to the planar embedding of G) are v, x, y and
those of v are u, s, t , we arbitrarily fix one side of the edge uv to place the vertices fe , ge and he (say, on the side that is
close to the edges ux and vt). We add the arcs {−−→fe ge,

−−→gece,
−−→
gehe,

−→
heu ,

−→
he v ,−−→cecuy,

−−→cecvs,
−−→
hecux,

−−→
hecvt}.

Using the embedding of G , G ′ can also be drawn in a planar way, it has maximum degree 6 (the vertices of type ce are
of degree 6 when e ∈ M), has no triangles, and no shortest directed path of length 5. See Fig. 7 for an illustration.

Now, we claim that G has a vertex cover of size at most k if and only if G ′ has metric dimension at most k + |E(G)| +
|M| = k + 4|E(G)|/3 = k + 2|V (G)|.

If G has a vertex cover C of size k, we construct a resolving set R(C) of G ′ as follows. Include the vertices of C in R(C),
as well as all vertices of {ae | e ∈ E(G)} ∪ { fe | e ∈ M}. The vertices in R(C) are clearly uniquely resolved. For a given edge e

14

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

of G , the vertices be and ce are uniquely at distance 1 and 2 from ae , respectively, so all vertices of these types are uniquely
resolved. Among the other vertices associated to e, du

e and dv
e are the only ones at distance 3 from ae ; moreover, du

e is at
distance 1 from u and dv

e at distance 1 from v , but not vice-versa, so C ∩{u, v} resolves du
e and dv

e . Thus, all vertices of these
types are uniquely resolved. Among the remaining vertices, ge and he are uniquely at distance 1 and 2 from fe , respectively,
so all vertices of these types are uniquely resolved. Finally, the vertices in V (G) \ R(C) are resolved by the unique vertex of
type fe from which each of them is at distance 3. Hence, all vertices are uniquely resolved and R(C) is indeed a resolving
set of G ′ .

Conversely, let R be a resolving set of G ′ of size at most k + |E(G)| + |M|. Notice that for each edge e of G , one of ae,be

belongs to R in order to resolve this pair, and similarly, for each edge e in M , one of fe, ge belongs to R (in the case of
strong metric dimension, ae and fe belong to the solution, since they are sources).

We construct a potential vertex cover C(R) by taking R ∩ V (G). Moreover, for each edge e = uv in M , we add to C(R)

any of u, v (if possible, one that is not yet in C(R)) in case the set {ae,be, ce, fe, ge,he,du
e ,dv

e } contains three vertices of R .
If it contains at least four, both u, v are put into C(R). Similarly, for each edge e = uv in E(G) \ M , we add to C(R) any of
u, v in case the set {ae,be, ce,du

e ,dv
e } contains two vertices of R (if possible, we add one that is not yet in C(R)), and we

add both u, v if it contains more than two vertices of R .
By the above paragraph, the resulting set C(R) contains at most |R|−|E(G)|−|M| ≤ k vertices. Now, consider a pair du

e ,dv
e

for some edge e. If u or v is in R , it is also in C(R), and e is covered by C(R). Assume now that none of u, v is in R . If e ∈ M ,
necessarily one of u, v,du

e ,dv
e belongs to R to resolve that pair, and so, as none of u, v are in R , |ae,be, ce, fe, ge,he,du

e ,dv
e | ≥

3 and by our construction, either u or v (or both) have been added to C(R). Thus, e is covered by C(R). If e / ∈ M , the only
vertices that can resolve du

e ,dv
e are again u, v,du

e ,dv
e , or a vertex he′ where e′ ≠ e is an edge of G in M incident with u

or v and he′ is not adjacent to ce . Again, as none of u, v is in R , if one of du
e ,dv

e belongs to R , |ae,be, ce,du
e ,dv

e | ≥ 2 and
by our construction, either u or v (or both) have been added to C(R). Otherwise, it must be that some vertex he′ is in
R , where e′ ≠ e is an edge of G in M incident with u or v (say, u and e′ = uw) and he′ is not adjacent to ce . But notice
that he′ does not resolve du

e′ and dw
e′ , as e′ ∈ M . Thus, either w ∈ R and |ae′ ,be′ , c′e, fe′ , ge′ ,he′ ,du

e′ ,dw
e′ | ≥ 3, or w / ∈ R and

|ae′ ,be′ , c′e, fe′ , ge′ ,he′ ,du
e′ ,dw

e′ | ≥ 4. In both cases, by our construction, we would have added u to C(R). Thus, in all cases,
one of u, v belongs to C(R) and e is covered. Thus, C(R) is a vertex cover of size at most k, as needed. □
6. Conclusion

Metric Dimension can be solved in polynomial time on outerplanar graphs, using an involved algorithm [7]. Can one
generalize our algorithms for trees and unicyclic graphs to solve Metric Dimension for directed (or at least, oriented)
outerplanar graphs in polynomial time? Extending our algorithm to cactus graphs already seems non-trivial.

One open question is whether Metric Dimension is NP-hard on planar bipartite subcubic DAGs?
Also, it would be interesting to see which hardness results known for Metric Dimension of undirected graphs also hold

for DAGs, or for oriented graphs.

Dedication to Rolf Niedermeier

This work may not have been performed without the influence of Rolf Niedermeier on Florent Foucaud. As a PhD student
in 2012, Florent visited Rolf’s group in TU Berlin for two weeks, and again for a month in 2013. Despite Florent not being
experienced in the field of parameterized complexity, Rolf warmly welcomed these visits and made Florent feel at ease.
Florent started a collaboration on the parameterized complexity of the Metric Dimension problem with some members of
Rolf’s group (inspired by two of them, who had just obtained an important result in the area [15]). This collaboration did
not lead to any publication, nevertheless, the discussions with Rolf, his students and visitors and the friendly atmosphere
in the group certainly influenced Florent’s later research and inspired him to work more on the parameterized complexity
of graph problems. This includes the present paper, which is also about Metric Dimension. Rolf was also a positive model
on how to have a dynamic and positive research group. We have been very saddened by Rolf’s unexpected and too early
passing, and dedicate this paper to his memory.

CRediT authorship contribution statement

Antoine Dailly: Investigation, Writing -- review & editing, Writing -- original draft. Florent Foucaud: Writing -- original
draft, Investigation, Writing -- review & editing. Anni Hakanen: Writing -- review & editing, Investigation, Writing -- original
draft.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com
peting interests: Antoine Dailly reports financial support was provided by French National Research Agency. Florent Foucaud
reports financial support was provided by French National Research Agency. Anni Hakanen reports financial support was

15

A. Dailly, F. Foucaud and A. Hakanen Journal of Computer and System Sciences 158 (2026) 103776

provided by French National Research Agency. Florent Foucaud reports financial support was provided by IDEX-ISITE CAP20
25. Anni Hakanen reports financial support was provided by Jenny and Antti Wihuri Foundation. Anni Hakanen reports
financial support was provided by Academy of Finland.

Acknowledgments

We thank the anonymous referee for their careful reading of the proofs and their helpful suggestions.

Data availability

No data was used for the research described in the article.

References

[1] J. Araujo, J. Bensmail, V. Campos, F. Havet, A.K. Maia, N. Nisse, A. Silva, On finding the best and worst orientations for the metric dimension, Algorith
mica 85 (10) (2023) 2962--3002.

[2] R. Belmonte, F.V. Fomin, P.A. Golovach, M.S. Ramanujan, Metric dimension of bounded tree-length graphs, SIAM J. Discrete Math. 31 (2) (2017)
1217--1243.

[3] L.M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, United Kingdom, 1953.
[4] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (1) (2000)

99--113.
[5] G. Chartrand, M. Raines, P. Zhang, The directed distance dimension of oriented graphs, Math. Bohem. 125 (2000) 155--168.
[6] A. Dailly, F. Foucaud, A. Hakanen, Algorithms and hardness for metric dimension on digraphs, in: International Workshop on Graph-Theoretic Concepts

in Computer Science, Springer, 2023, pp. 232--245.
[7] J. Díaz, O. Pottonen, M.J. Serna, E.J. van Leeuwen, Complexity of metric dimension on planar graphs, J. Comput. Syst. Sci. 83 (1) (2017) 132--158.
[8] D. Eppstein, Metric dimension parameterized by max leaf number, J. Graph Algorithms Appl. 19 (1) (2015) 313--323.
[9] L. Epstein, A. Levin, G.J. Woeginger, The (weighted) metric dimension of graphs: hard and easy cases, Algorithmica 72 (4) (2015) 1130--1171.

[10] H. Fernau, P. Heggernes, P. van ’t Hof, D. Meister, R. Saei, Computing the metric dimension for chain graphs, Inf. Process. Lett. 115 (9) (2015) 671--676.
[11] F. Foucaud, G.B. Mertzios, R. Naserasr, A. Parreau, P. Valicov, Identification, location-domination and metric dimension on interval and permutation

graphs. II. Algorithms and complexity, Algorithmica 78 (3) (2017) 914--944.
[12] E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, P. Tale, Metric dimension parameterized by feedback vertex set and other structural parameters, SIAM

J. Discrete Math. 37 (4) (2023) 2241--2264.
[13] T. Gima, T. Hanaka, M. Kiyomi, Y. Kobayashi, Y. Otachi, Exploring the gap between treedepth and vertex cover through vertex integrity, Theor. Comput.

Sci. 918 (2022) 60--76.
[14] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Comb. 2 (1976) 191--195.
[15] S. Hartung, A. Nichterlein, On the parameterized and approximation hardness of metric dimension, in: Proceedings of the 28th Conference on Compu

tational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, IEEE Computer Society, 2013, pp. 266--276.
[16] S. Hoffmann, A. Elterman, E. Wanke, A linear time algorithm for metric dimension of cactus block graphs, Theor. Comput. Sci. 630 (2016) 43--62.
[17] S. Hoffmann, E. Wanke, Metric dimension for Gabriel unit disk graphs is NP-complete, in: A. Bar-Noy, M.M. Halldórsson (Eds.), 8th International

Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012), Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 90--92.

[18] D. Jean, A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs: a bibliography, Published electronically at
https://dragazo.github.io/bibdom/main.pdf, 2025.

[19] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (3) (1996) 217--229.
[20] S. Li, M. Pilipczuk, Hardness of metric dimension in graphs of constant treewidth, Algorithmica 84 (11) (2022) 3110--3155.
[21] R.M. McConnell, F. de Montgolfier, Linear-time modular decomposition of directed graphs, Discrete Appl. Math. 145 (2) (2005) 198--209.
[22] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis. Graph. Image Process. 25 (1) (1984) 113--121.
[23] B. Mohar, Face covers and the genus problem for apex graphs, J. Comb. Theory, Ser. B 82 (1) (2001) 102--117.
[24] M. Moscarini, Computing a metric basis of a bipartite distance-hereditary graph, Theor. Comput. Sci. 900 (2022) 20--24.
[25] O.R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math. 155 (3) (2007) 356--364.
[26] C. Poisson, P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math. Comb. Comput. 40 (2002) 17--32.
[27] B. Rajan, I. Rajasingh, J.A. Cynthia, P. Manuel, Metric dimension of directed graphs, Int. J. Comput. Math. 91 (7) (2014) 1397--1406.
[28] J. Sedlar, R. Škrekovski, Bounds on metric dimensions of graphs with edge disjoint cycles, Appl. Math. Comput. 396 (2021) 125908.
[29] J. Sedlar, R. Škrekovski, Vertex and edge metric dimensions of unicyclic graphs, Discrete Appl. Math. 314 (2022) 81--92.
[30] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549--559.
[31] R. Steiner, S. Wiederrecht, Parameterized algorithms for directed modular width, in: Algorithms and Discrete Applied Mathematics - 6th International

Conference, CALDAM 2020, Hyderabad, India, February 13-15, 2020, Proceedings, in: Lecture Notes in Computer Science, vol. 12016, Springer, 2020,
pp. 415--426.

16

http://refhub.elsevier.com/S0022-0000(26)00022-X/bib65BE26B599E12E1989792BB4369A567Bs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib65BE26B599E12E1989792BB4369A567Bs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib6C8E663A18CBB6BC94F526303A391856s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib6C8E663A18CBB6BC94F526303A391856s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibC3118A49381BEC86DDDC132D076A57B1s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibFF1BED1C6D2906FF23DE3648F8DE934Es1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibFF1BED1C6D2906FF23DE3648F8DE934Es1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibF6D1E15841CB875539567A972C4C9F56s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib8F4A62DA83216E4C818CFED5133E5B07s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib8F4A62DA83216E4C818CFED5133E5B07s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib732C7B1C2BA86BD89C9152FD4942AE0Bs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD4D8A7B11789B71C40F69517E65F31D2s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib98B2BDCD125CDA4967BD5B8E9EAB33C9s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD283BC4D33899C52464098D0D655B4C8s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib18074FC27202A431FA75C05393885293s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib18074FC27202A431FA75C05393885293s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib51F8C3BCE698D8B8D33D32C17FBB3BBFs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib51F8C3BCE698D8B8D33D32C17FBB3BBFs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibFC089489555AEE7519548FF7F589F384s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibFC089489555AEE7519548FF7F589F384s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib4BAA7AC853D289D1E99E529B975C0583s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib43E520A2F1E0824C3E43754955F97942s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib43E520A2F1E0824C3E43754955F97942s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib42239B8342A1FE81A71703F6DE711073s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib647431B5CA55B04FDF3C2FCE31EF1915s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib647431B5CA55B04FDF3C2FCE31EF1915s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib647431B5CA55B04FDF3C2FCE31EF1915s1
https://dragazo.github.io/bibdom/main.pdf
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib893E331EB0F13564A712DE3ED4CA624Cs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib1FBF44634F969BA1BFFFE6C71F6CB5E5s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibE0AF9C5A9F4DF907B7584FE2D51BFC48s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibFBFF44C53A0B5561B229C57CB3E2E53As1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib9D442EEB170E62765EFA683C5B827BBCs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib8D1E0F3707F6CCAE6BAEA8302A6AC6ABs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib7585CF3CAA90680A121D308ADB8658D9s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib833043A54677FA1AA53F5737C4D09FEAs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib71ADC8CCD3D34846D577E8101DBAA8A1s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD7BAC03AEA39385C138D738BE538CB4Cs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib6375A48196D61F23AFDC79B19F643A6Fs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bib079AF31D51FA8F6B6BF0023E29F26BEDs1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD8D6103A910F5D6F0094A4F87A2C2D11s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD8D6103A910F5D6F0094A4F87A2C2D11s1
http://refhub.elsevier.com/S0022-0000(26)00022-X/bibD8D6103A910F5D6F0094A4F87A2C2D11s1

	Algorithms and hardness for Metric Dimension on digraphs
	1 Introduction
	2 Digraphs whose underlying graph is a tree (di-trees)
	3 Orientations of unicyclic graphs
	4 FPT algorithm for modular width
	5 NP-hardness for restricted DAGs
	6 Conclusion
	Dedication to Rolf Niedermeier
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

