Bounding K_4 -minor-free graphs in the homomorphism order

Florent Foucaud $^{\rm 1}$ and Reza Naserasr $^{\rm 2}$

¹ Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France.

EXTENDED ABSTRACT

A homomorphism of a graph G to a graph H is a mapping f from V(G) to V(H) such that if two vertices are adjacent in G, their images by f are adjacent in H. A class C of graphs is said to be bounded by some graph H if each graph of C admits a homomorphism to H; H is called a bound for C. It is of interest to ask for a bound having specific properties (e.g. having specific odd-girth) with smallest possible order. Such questions are studied e.g. in [1].

The projective cube of dimension 2k, denoted PC(2k), is the graph obtained from the hypercube of dimension 2k + 1 by identifying each pair of antipodal vertices. PC(2k) has 2^{2k} vertices and odd-girth 2k + 1 (the odd-girth of a graph is the length of one of its shortest odd cycles). For example, PC(2) is K_4 and PC(4) is the Clebsch graph.

The following question was asked by R. Naserasr in [2]:

Problem 1 Given two integers $r \geq k$, what is the smallest subgraph of PC(2k) to which every planar graph of odd-girth 2r + 1 admits a homomorphism to?

R. Naserasr [2] showed that this question is related to many important theories and captures problems such as edge-colouring, fractional colouring, and circular colouring planar graphs. Motivated by this question, we study the analogous question for the class of series-parallel graphs, i.e. K_4 -minor-free graphs. Let \mathcal{SP}_{2k+1} be the class of series-parallel graphs of odd-girth at least 2k+1. We prove:

Theorem 2 PC(2k) is a bound for SP_{2k+1} .

We use the previous theorem to give a reformulation of the question of finding a bound of odd-girth 2k+1 of smallest order for \mathcal{SP}_{2k+1} . We present partial answers for the first three cases:

Theorem 3 The triangle K_3 , the Wagner graph and the graph G_{16} of Figure 1 are bounds for SP_3 , SP_5 and SP_7 , respectively.

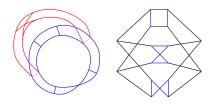


Figure 1: Two drawings of the graph G_{16} that is a bound for \mathcal{SP}_7 .

References

- [1] T. H. Marshall, R. Naserasr and J. Nešetřil. Homomorphism bounded classes of graphs. **Eur. J. Combin.** 27(4):592–600, 2006.
- [2] R. Naserasr. Mapping planar graphs into projective cubes. To appear in **J. Graph Theor.**

 $^{^2}$ Université Paris-Sud 11, LRI-CNRS, F-91405 Orsay, France.