On identifying codes and Bondy's theorem on "induced subsets"

F. Foucaud ${ }^{1}$, E. Guerrini ${ }^{2}$, M. Kovše ${ }^{1}$, R. Naserasr ${ }^{1}$, A. Parreau ${ }^{2}$, P. Valicov ${ }^{1}$

1: LaBRI, Université de Bordeaux, France
2: Institut Fourier, Université de Grenoble, France
ANR IDEA (ANR-08-EMER-007, 2009-2011)

8FCC (LRI, Orsay) - July 02, 2010

Outline

(1) Introduction, definitions, examples
(c) Finite and infinite undirected graphs
(3) Finite digraphs
(An application to Bondy's theorem

Locating a fire in a building

simple, undirected graph: models a building

Locating a fire in a building

simple, undirected graph: models a building

Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room

Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room

Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition: identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition: identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Notation

$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Remark: not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Identifiable graphs

Remark: not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Non-identifiable graphs

Identifiable graphs

Remark: not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Non-identifiable graphs

An upper bound

Theorem (Gravier, Moncel, 2007)

Let G be a finite identifiable graph with n vertices and at least one edge. Then $\gamma^{\text {ID }}(G) \leq n-1$.

An upper bound

Theorem (Gravier, Moncel, 2007)

Let G be a finite identifiable graph with n vertices and at least one edge. Then $\gamma^{\text {ID }}(G) \leq n-1$.

Corollary

The only finite graphs having their whole vertex set as a minimum identifying code are the stable sets $\overline{K_{n}}$.

The graph A_{∞}

Infinite clique on \mathbb{Z}

Infinite clique on \mathbb{Z}

The graph A_{∞}

Infinite clique on \mathbb{Z}

Infinite clique on \mathbb{Z}

Proposition (Charon, Hudry, Lobstein, 2007)

A_{∞} needs all its vertices in any identifying code.

The graph A_{∞}

Infinite clique on \mathbb{Z}

Infinite clique on \mathbb{Z}

Proposition (Charon, Hudry, Lobstein, 2007)

A_{∞} needs all its vertices in any identifying code.

The graph A_{∞}

Infinite clique on \mathbb{Z}

Infinite clique on \mathbb{Z}

Proposition (Charon, Hudry, Lobstein, 2007)

A_{∞} needs all its vertices in any identifying code.

Constructing infinite graphs

Construction of $\Psi(H, \rho)$

H : finite or infinite simple graph with perfect matching ρ : perfect matching of H

- Replace every edge $\{u, v\}$ of ρ by a copy of A_{∞}
- complete join along the other edges of H

Constructing infinite graphs

Construction of $\Psi(H, \rho)$

H : finite or infinite simple graph with perfect matching
ρ : perfect matching of H

- Replace every edge $\{u, v\}$ of ρ by a copy of A_{∞}
- complete join along the other edges of H

Constructing infinite graphs

Construction of $\Psi(H, \rho)$

H : finite or infinite simple graph with perfect matching
ρ : perfect matching of H

- Replace every edge $\{u, v\}$ of ρ by a copy of A_{∞}
- complete join along the other edges of H

Constructing infinite graphs

Construction of $\Psi(H, \rho)$

H : finite or infinite simple graph with perfect matching
ρ : perfect matching of H

- Replace every edge $\{u, v\}$ of ρ by a copy of A_{∞}
- complete join along the other edges of H

Constructing infinite graphs

Construction of $\Psi(H, \rho)$

H : finite or infinite simple graph with perfect matching
ρ : perfect matching of H

- Replace every edge $\{u, v\}$ of ρ by a copy of A_{∞}
- complete join along the other edges of H

The classification

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010)

Let G be a connected infinite identifiable undirected graph. The only identifying code of G is $V(G)$ if and only if $G=\Psi(H, \rho)$ for some graph H with a perfect matching ρ.

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u
Definition: identifying code of a digraph $D=(V, A)$
subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u

Definition: identifying code of a digraph $D=(V, A)$

subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Definition

$\overrightarrow{\gamma^{10}}(D)$: minimum size of an identifying code of D

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\checkmark}(D)$: D joined to K_{1} by incoming arcs only

$D_{1} \oplus D_{2}$

$$
\vec{\triangleleft}(D)
$$

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\nabla}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\nabla}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\checkmark}$, starting with K_{1}.

A characterization

Proposition

Let D be a digraph of $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ on n vertices. $\overrightarrow{\gamma^{1 \mathrm{O}}}(D)=n$.

$D_{1} \oplus D_{2}$

$\vec{\triangleleft}(D)$

A characterization

Theorem (F., Naserasr, Parreau, 2010)
Let D be an identifiable digraph on n vertices. $\overrightarrow{\gamma^{\mathrm{D}}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

A characterization

Theorem (F., Naserasr, Parreau, 2010)
Let D be an identifiable digraph on n vertices. $\overrightarrow{\gamma^{10}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

A useful proposition

Let D be a digraph with $\overrightarrow{\gamma^{\mathrm{DD}}}(G)=n-1$, then there is a vertex x of D such that $\overrightarrow{\gamma^{10}}(D-x)=n-1$

Proof of the Theorem

- By contradiction: take a minimum counterexample, D
- By the proposition, there is a vertex x such that $\overrightarrow{\gamma^{\mathrm{D}}}(D-x)=|V(D-x)|-1$. Hence $D-x \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.
- Show that by adding a vertex to $D-x$, we either stay in the family or decrease $\overrightarrow{\gamma^{\mathrm{DD}}}$.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$
Example with $k=1$
$X=\{1,2, \mathbf{3}, \mathbf{4}, 5\}$ and $\mathcal{S}=\{\{1,4,5\},\{\mathbf{3}\},\{2,4,5\},\{1,2,4,5\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $k=1$
$X=\{1,2, \mathbf{3}, \mathbf{4}, 5\}$ and $\mathcal{S}=\{\{1,4,5\},\{\mathbf{3}\},\{2,4,5\},\{1,2,4,5\}\}$

The result is best possible
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\emptyset,\{1\},\{2\},\{3\},\{4\}\}$

Bipartite representation

Bipartite representation

We can build a bipartite graph $B=(\mathcal{S}+X, E)$ where S_{i} connected to x iff $x \in S_{i}$. Bondy's theorem states that there exists a code $C \subseteq X$ which separates \mathcal{S} of size at most $|X|-1$ in B.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Bipartite separating codes and identifying codes

Remark

Let B be the bipartite graph representing (\mathcal{S}, X). If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D.
\Rightarrow A code separating \mathcal{S} with X in B is a separating code of D.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Bipartite separating codes and identifying codes

Remark

Let B be the bipartite graph representing (\mathcal{S}, X). If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D.
\Rightarrow A code separating \mathcal{S} with X in B is a separating code of D.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem, if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \vec{\checkmark}\right)$.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem, if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

Proof (1)

If $|X|>|\mathcal{S}|(|X|=n+k, k>0)$:
by Bondy's theorem we can remove $k+1 \geq 2$ elements of X.
At most one of them can create \emptyset, so we choose another one!

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem, if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

Proof (2)

$\underline{\text { If }|X|=|\mathcal{S}|}$

- If B has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_{1} of X s.t. $\left|X_{1}\right|>\left|N\left(X_{1}\right)\right|$.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem, if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

Proof (2)

$\underline{\text { If }|X|=|\mathcal{S}|}$

- If B has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_{1} of X s.t. $\left|X_{1}\right|>\left|N\left(X_{1}\right)\right|$.

Conclusion

Future work

- Classify infinite digraphs D with $V(D)$ as their only identifying code
- What about graphs having $V(D)-x$ as an only identifying code?

