On some extremal problems on identifying codes in (di)graphs

<u>F. Foucaud¹</u> Joint works with: E. Guerrini^{1,2}, R. Klasing¹, A. Kosowski^{1,3}, M. Kovše^{1,2}, R. Naserasr¹, A. Parreau², A. Raspaud¹, P. Valicov¹

> 1: LaBRI, Bordeaux University, France 2: Institut Fourier, Grenoble University, France 3: Gdańsk University of Technology, Poland

> > AGH Kraków

November 09, 2010

simple, undirected graph : models a building

simple, undirected graph : models a building

simple detectors : able to detect a fire in a neighbouring room

simple detectors : able to detect a fire in a neighbouring room

simple detectors : able to detect a fire in a neighbouring room

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

Definition : identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that :

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G : \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$

Definition : identifying code of a graph G (Karpovsky et al. 1998)

subset C of V such that :

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G : \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation

 $\gamma^{{\scriptscriptstyle {\rm ID}}}({\it G})$: minimum cardinality of an identifying code of ${\it G}$

Remark : not all graphs have an identifying code u and v are *twins* if N[u] = N[v]. A graph is *identifiable* iff it is *twin-free* (i.e. it has no twin vertices).

Remark : not all graphs have an identifying code

```
u and v are twins if N[u] = N[v].
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).
```


Remark : not all graphs have an identifying code

u and *v* are *twins* if N[u] = N[v]. A graph is *identifiable* iff it is *twin-free* (i.e. it has no twin vertices).

Thm (Karpovsky et al. 98)

Let G be an identifiable graph with n vertices. Then $\gamma^{D}(G) \geq \lceil \log_2(n+1) \rceil$.

Thm (Karpovsky et al. 98)

Let G be an identifiable graph with n vertices. Then $\gamma^{D}(G) \geq \lceil \log_2(n+1) \rceil$.

Thm (Karpovsky et al. 98)

Let G be an identifiable graph with n vertices and maximum degree Δ . Then $\gamma^{\text{ID}}(G) \geq \frac{2n}{\Delta + 2}$.

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \ge 3$ vertices and at least one edge. Then $\gamma^{ID}(G) \le n-1$.

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \ge 3$ vertices and at least one edge. Then $\gamma^{\text{IP}}(G) \le n-1$.

Thm (Charon, Hudry, Lobstein, 2007 + Skaggs, 2007)

For all $n \geq 3$, there exist twin-free graphs with n vertices and $\gamma^{{}_{1\!\!D}}(G) = n-1$.

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

- C is a dominating set in G : for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G : \forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Conjecture (Charon, Hudry, Lobstein, 2008) $\gamma^{ID}(G) = n - 1 \text{ iff } G \in \{P_4, K_n \setminus M, K_{1,n-1}\}.$

Definition : graph A_k

$$V(A_k) = \{x_1, ..., x_{2k}\}.$$

 x_i connected to x_j iff $|j - i| \le k - 1$

A class of graphs called \mathcal{A} - examples

 $A_1 = \overline{K_2}$ $A_2 = P_4$

Proposition

Let $k \ge 2$, $n = 2k \cdot \gamma^{iD}(A_k) = n - 1$.

Remark

In every minimum code C of A_k , there exists a vertex x such that C = N[x].

Join operation

 ${\it G}_1 \Join {\it G}_2$: disjoint copies of ${\it G}_1$ and ${\it G}_2$ + all possible edges between ${\it G}_1$ and ${\it G}_2$

Definition

Let (\mathcal{A},\bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie .

Join operation

 ${\it G}_1 \Join {\it G}_2$: disjoint copies of ${\it G}_1$ and ${\it G}_2$ + all possible edges between ${\it G}_1$ and ${\it G}_2$

Definition

Let (\mathcal{A},\bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie .

Proposition

Let G be a graph of $(\mathcal{A}, \bowtie) \setminus \{\overline{K_2}\}$ with n vertices. $\gamma^{\mathsf{ID}}(G) = n - 1$.

Proposition

Let G be a graph of (\mathcal{A}, \bowtie) with n-1 vertices. $\gamma^{\cup}(G \bowtie K_1) = n-1$.

Thm (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010) Let G be a twin-free graph on n vertices. $\gamma^{in}(G) = n - 1$ iff $G \in S \cup (A, \bowtie) \cup (A, \bowtie) \bowtie K_1$ and $G \neq \overline{K_2}$.

Proposition

Let G be a twin-free graph and $S \subseteq V$ such that G - S is twin-free. Then $\gamma^{\text{ID}}(G) \leq \gamma^{\text{ID}}(G - S) + |S|$.

Corollary

Let G be a graph with $\gamma^{i\mathbf{D}}(G) = |V(G)| - 1$, then there is a vertex x of G such that $\gamma^{i\mathbf{D}}(G - x) = |V(G - x)| - 1$

Proof

- By contradiction : take a minimum counterexample, G
- By the proposition, there is a vertex x such that $\gamma^{\text{ID}}(G-x) = |V(G-x)| 1$. Hence $G - x \in S \cup (A, \bowtie) \cup (A, \bowtie) \bowtie K_1$ and $G \neq \overline{K_2}$.
- For the three cases, show that by adding a vertex to G x, we either stay in the family or decrease γ^{ID} .

Corollary

Let G be an identifiable graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text{ID}}(G) \leq n-2$.

Corollary

Let G be an identifiable graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text{ID}}(G) \leq n-2$.

Question

What is the best bound for γ^{D} using *n* and Δ ?

Proposition 1

Let G be an identifiable graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and V - y is an identifying code of G.

Proposition 1

Let G be an identifiable graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and V - y is an identifying code of G.

Proposition 2

Let G be an identifiable graph, and I a 4-independent set of G (all distances \geq 4). If for all $x \in I$, V - x is an identifying code of G, V - I is also one.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$. If G is Δ -regular, $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^3)}$.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$. If G is Δ -regular, $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^3)}$.

Proof

- Consider a maximal 6-independant set *I* : distance between two vertices is at least 6 and |*I*| ≥ n/Θ(Δ⁵)
- For every $x \in I$, let f(x) be the vertex found in Prop. 1.
- V f(I) is an identifying code of size at most n |I| by Prop. 2.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$. If G is Δ -regular, $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^3)}$.

Proof

- Consider a maximal 6-independant set I : distance between two vertices is at least 6 and $|I| \ge \frac{n}{\Theta(\Delta^5)}$
- For every $x \in I$, let f(x) be the vertex found in Prop. 1.
- V f(I) is an identifying code of size at most n |I| by Prop. 2.

Question

Is this bound sharp?

Thm (Gravier, Moncel 2006)

Let G be a path or a cycle on n vertices. Then $\gamma^{\text{ID}}(G) \leq \frac{n}{2} + \frac{3}{2}$.

- Take any Δ -regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

- Take any Δ -regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices

Connected cliques

• Take any Δ -regular graph H with m vertices

• replace any vertex of H by a clique of Δ vertices

For every clique, at least $\Delta - 1$ vertices in the code $\Rightarrow \gamma^{ID}(G) = m \cdot (\Delta - 1) = n - \frac{n}{\Delta}$

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable triangle-free graph G with $n \ge 3$ vertices, no isolated vertices, and maximum degree $\Delta \ge 2$. Then $\gamma^{\text{ID}}(G) \le n - \frac{n}{3\Delta + 3}$. If G has minimum degree 3, $\gamma^{\text{ID}}(G) \le n - \frac{n}{2\Delta + 2}$.

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable triangle-free graph G with $n \ge 3$ vertices, no isolated vertices, and maximum degree $\Delta \ge 2$. Then $\gamma^{\text{ID}}(G) \le n - \frac{n}{3\Delta + 3}$. If G has minimum degree 3, $\gamma^{\text{ID}}(G) \le n - \frac{n}{2\Delta + 2}$.

Proof

- Consider a maximal independent set $I : |S| \ge \frac{n}{\Delta+1}$
- $C = V \setminus I$
- Some vertices may not be identified correctly
- ullet ightarrow modify C locally. It is possible to add not too much vertices to C.

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n = 2m vertices. $\gamma^{ID}(K_{m,m}) = 2m - 2 = n - \frac{n}{\Lambda}$.

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n = 2m vertices. $\gamma^{\text{ID}}(K_{m,m}) = 2m - 2 = n - \frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Let T_k^h be the k-ary tree with h levels and nvertices $\gamma^{\text{ID}}(T_k^h) = \left\lceil \frac{k^2 n}{k^2 + k + 1} \right\rceil = n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}$.

Conjecture (2009)

Let G be an identifiable connected graph of maximum degree $\Delta \ge 2$. Then $\gamma^{\text{ID}}(G) \le n - \frac{n}{\Delta} + O(1)$.

Idcodes in digraphs

Let $N^{-}[u]$ be the set of *incoming neighbours* of u, plus u

Definition : identifying code of a digraph D = (V, A)

subset C of V such that :

- C is a dominating set in D : for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v$, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$

ldcodes in digraphs

Let $N^{-}[u]$ be the set of *incoming neighbours* of u, plus u

Definition : identifying code of a digraph D = (V, A)

subset C of V such that :

- C is a dominating set in D : for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v$, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Which graphs need *n* vertices?

Two operations

- ullet $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

 $D_1 \oplus D_2$

चे(D)

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

Definition

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

Definition

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

Definition

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D):D$ joined to K_1 by incoming arcs only

Definition

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

Definition

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D): D$ joined to K_1 by incoming arcs only

Definition

Proposition

Let D be a digraph of
$$(K_1, \oplus, \overrightarrow{\triangleleft})$$
 on n vertices. $\overrightarrow{\gamma^{\text{ib}}}(D) = n$.

Theorem (F., Naserasr, Parreau, 2010)

Let *D* be an identifiable digraph on *n* vertices. $\overrightarrow{\gamma^{\text{ib}}}(G) = n$ iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

Theorem (F., Naserasr, Parreau, 2010)

Let *D* be an identifiable digraph on *n* vertices. $\overrightarrow{\gamma^{\text{ib}}}(G) = n$ iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

A useful proposition

Let *D* be a digraph with $\overline{\gamma^{\text{ib}}}(G) = n - 1$, then there is a vertex *x* of *D* such that $\overline{\gamma^{\text{ib}}}(D - x) = n - 1$

Proof of the Theorem

- By contradiction : take a minimum counterexample, D
- By the proposition, there is a vertex x such that $\overline{\gamma^{\text{ib}}}(D-x) = |V(D-x)| 1$. Hence $D x \in (K_1, \oplus, \overrightarrow{\triangleleft})$.
- Show that by adding a vertex to D x, we either stay in the family or decrease $\overrightarrow{\gamma^{\text{ib}}}$.

Let $S = \{S_1, S_2, \dots S_n\}$ be a collection of distinct (possibly empty) subsets of an (n + k)-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots S_n - X'$ are all distinct.

Let $S = \{S_1, S_2, \dots S_n\}$ be a collection of distinct (possibly empty) subsets of an (n + k)-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots S_n - X'$ are all distinct.

Example with k = 0 $X = \{1,2,3,4\}$ and $S = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Let $S = \{S_1, S_2, \dots S_n\}$ be a collection of distinct (possibly empty) subsets of an (n + k)-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots S_n - X'$ are all distinct.

Example with k = 0 $X = \{1,2,3,4\}$ and $S = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with k = 1

 $X = \{1,\!2,\!3,\!4,\!5\} \text{ and } \mathcal{S} = \{\{1,\!4,\!5\},\{3\},\{2,\!4,\!5\},\{1,\!2,\!4,\!5\}\}$

Let $S = \{S_1, S_2, \dots S_n\}$ be a collection of distinct (possibly empty) subsets of an (n + k)-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots S_n - X'$ are all distinct.

Example with k = 0

 $X = \{1,2,3,4\}$ and $S = \{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with k = 1

 $X = \{1,2,3,4,5\}$ and $S = \{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

The result is best possible

 $X = \{1, 2, 3, 4\}$ and $\mathcal{S} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}\}$

Proof

Note : if $S_1, S_2 \subseteq X$ and $S_1 - x = S_2 - x$, then $S_1 \Delta S_2 = \{x\}$. By contradiction : Construct a graph H = (S, E) where for each $x \in X$, choose one unique (i, j) s.t. $S_i \Delta S_j = \{x\}$, and connect S_i to S_j . Claim : H has no cycle - a contradiction !

Bipartite representation

We can build a bipartite graph B = (S + X, E) where S_i connected to x iff $x \in S_i$. Bondy's theorem states that there exists a code $C \subseteq X$ which separates S of size at most |X| - 1 in B.

Example

 $X = \{1,2,3,4\} \text{ and } \mathcal{S} = \{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

S

Х

Remark

Let B be the bipartite graph representing (S, X). If B has a matching from S to X, B is the neighbourhood graph of a digraph D. \Rightarrow A code separating S with X in B is a separating code of D.

Example

$$X = \{1, 2, 3, 4\}$$
 and $\mathcal{S} = \{\{1\}, \{1, 3\}, \{2, 3\}, \{1, 3, 4\}\}$

Х

S

Remark

Let B be the bipartite graph representing (S, X). If B has a matching from S to X, B is the neighbourhood graph of a digraph D. \Rightarrow A code separating S with X in B is a separating code of D.

Example

$$X = \{1, 2, 3, 4\}$$
 and $\mathcal{S} = \{\{1\}, \{1, 3\}, \{2, 3\}, \{1, 3, 4\}\}$

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem (with |X| = |S| and non-empty sets), if for any good choice of x we have $S_i - x = \emptyset$ for some S_i , then B is the neighbourhood graph of a digraph in $(K_1, \oplus, \overrightarrow{d})$.

Proof

- If B has a perfect matching : use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_1 of X s.t. $|X_1| > |N(X_1)|$.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem (with |X| = |S| and non-empty sets), if for any good choice of x we have $S_i - x = \emptyset$ for some S_i , then B is the neighbourhood graph of a digraph in $(K_1, \oplus, \overrightarrow{\triangleleft})$.

Proof

- If B has a perfect matching : use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_1 of X s.t. $|X_1| > |N(X_1)|$.

