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Locating a �re in a building

simple, undirected graph : models a building
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Locating a �re in a building

simple detectors : able to detect a �re in a neighbouring room
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Identifying codes : de�nition

Let N[u] be the set of vertices v s.t. d(u, v) ≤ 1

De�nition : identifying code of a graph G (Karpovsky et al. 1998)

subset C of V such that :

C is a dominating set in G : for all u ∈ V , N[u] ∩ C 6= ∅, and
C is a separating code in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C

Notation

γID(G ) : minimum cardinality of an identifying code of G
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Identi�able graphs

Remark : not all graphs have an identifying code

u and v are twins if N[u] = N[v ].
A graph is identi�able i� it is twin-free (i.e. it has no twin vertices).

Non-identi�able graphs

F. Foucaud (LaBRI, Bordeaux) Extremal problems on id. codes 09.11.2010 8 / 43



Identi�able graphs

Remark : not all graphs have an identifying code

u and v are twins if N[u] = N[v ].
A graph is identi�able i� it is twin-free (i.e. it has no twin vertices).

Non-identi�able graphs

F. Foucaud (LaBRI, Bordeaux) Extremal problems on id. codes 09.11.2010 8 / 43



Identi�able graphs

Remark : not all graphs have an identifying code

u and v are twins if N[u] = N[v ].
A graph is identi�able i� it is twin-free (i.e. it has no twin vertices).

Non-identi�able graphs

F. Foucaud (LaBRI, Bordeaux) Extremal problems on id. codes 09.11.2010 8 / 43



Two lower bounds

Thm (Karpovsky et al. 98)

Let G be an identi�able graph with n vertices. Then γID(G ) ≥ dlog2(n + 1)e.

Thm (Karpovsky et al. 98)

Let G be an identi�able graph with n vertices and maximum degree ∆. Then

γID(G ) ≥ 2n

∆ + 2
.
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An upper bound

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with n ≥ 3 vertices and at least one edge. Then
γID(G ) ≤ n − 1.

Thm (Charon, Hudry, Lobstein, 2007 + Skaggs, 2007)

For all n ≥ 3, there exist twin-free graphs with n vertices and γID(G ) = n − 1.
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Upper bound - small examples

Recall the de�nition

C is a dominating set in G : for all u ∈ V , N[u] ∩ C 6= ∅, and
C is a separating set in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C
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Upper bound - stars

Recall the de�nition

C is a dominating set in G : for all u ∈ V , N[u] ∩ C 6= ∅, and
C is a separating set in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C
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Upper bound - complete graph minus max. matching

Recall the de�nition

C is a dominating set in G : for all u ∈ V , N[u] ∩ C 6= ∅, and
C is a separating set in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C
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A conjecture

Conjecture (Charon, Hudry, Lobstein, 2008)

γID(G ) = n − 1 i� G ∈ {P4,Kn \M,K1,n−1}.
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A class of graphs called A

De�nition : graph Ak

V (Ak) = {x1, ..., x2k}.
xi connected to xj i� |j − i | ≤ k − 1

xk+1 xk+2 xk+3
...

x2k−1 x2k

x1 x2 x3

...
xk−1 xk

Clique on {xk+1, ..., x2k}

Clique on {x1, ..., xk}
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A class of graphs called A - examples

A1 = K2 A2 = P4

A3 = P2
6 A4 = P3

8
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Properties

Proposition

Let k ≥ 2, n = 2k. γID(Ak) = n − 1.

Remark

In every minimum code C of Ak , there exists a vertex x such that C = N[x ].
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(A, ./)

Join operation

G1 ./ G2 : disjoint copies of G1 and G2 + all possible edges between G1 and G2

De�nition

Let (A, ./) be the closure of graphs of A with respect to ./.

Proposition

Let G be a graph of (A, ./) \ {K2} with n vertices. γID(G ) = n − 1.
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(A, ./) ./ K1

Proposition

Let G be a graph of (A, ./) with n − 1 vertices. γID(G ./ K1) = n − 1.
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A characterization

Thm (F., Guerrini, Kov²e, Naserasr, Parreau, Valicov, 2010)

Let G be a twin-free graph on n vertices. γID(G ) = n − 1 i�
G ∈ S ∪ (A, ./) ∪ (A, ./) ./ K1 and G 6= K2.
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A useful Proposition

Proposition

Let G be a twin-free graph and S ⊆ V such that G − S is twin-free. Then
γID(G ) ≤ γID(G − S) + |S |.

Corollary

Let G be a graph with γID(G ) = |V (G )| − 1, then there is a vertex x of G such
that γID(G − x) = |V (G − x)| − 1
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Proof ideas

Proof

By contradiction : take a minimum counterexample, G

By the proposition, there is a vertex x such that γID(G − x) = |V (G − x)|−1.
Hence G − x ∈ S ∪ (A, ./) ∪ (A, ./) ./ K1 and G 6= K2.

For the three cases, show that by adding a vertex to G − x , we either stay in
the family or decrease γID.
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Upper bound and ∆ : a corollary and a question

Corollary

Let G be an identi�able graph on n vertices and maximum degree ∆ ≤ n − 3.
Then γID(G ) ≤ n − 2.

Question

What is the best bound for γID using n and ∆ ?

F. Foucaud (LaBRI, Bordeaux) Extremal problems on id. codes 09.11.2010 23 / 43



Upper bound and ∆ : a corollary and a question

Corollary

Let G be an identi�able graph on n vertices and maximum degree ∆ ≤ n − 3.
Then γID(G ) ≤ n − 2.

Question

What is the best bound for γID using n and ∆ ?

F. Foucaud (LaBRI, Bordeaux) Extremal problems on id. codes 09.11.2010 23 / 43



Upper bound and ∆ - two propositions

Proposition 1

Let G be an identi�able graph, and x a vertex of G . There exists a vertex y ,
d(x , y) ≤ 1, and V − y is an identifying code of G .

Proposition 2

Let G be an identi�able graph, and I a 4-independent set of G (all distances ≥ 4).
If for all x ∈ I , V − x is an identifying code of G , V − I is also one.
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A �rst bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identi�able graph of maximum degree ∆. γID(G ) ≤ n− n
Θ(∆5) . If G is

∆-regular, γID(G ) ≤ n − n
Θ(∆3) .

Proof

Consider a maximal 6-independant set I : distance between two vertices is at
least 6 and |I | ≥ n

Θ(∆5)

For every x ∈ I , let f (x) be the vertex found in Prop. 1.

V − f (I ) is an identifying code of size at most n − |I | by Prop. 2.

Question

Is this bound sharp ?
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∆ = 2

Thm (Gravier, Moncel 2006)

Let G be a path or a cycle on n vertices. Then γID(G ) ≤ n
2

+ 3
2
.
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Connected cliques

Take any ∆-regular graph H with m vertices

replace any vertex of H by a clique of ∆ vertices

Example : H = K4
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Connected cliques

Take any ∆-regular graph H with m vertices

replace any vertex of H by a clique of ∆ vertices

Example : H = K4

For every clique, at least ∆− 1 vertices in the code
⇒ γID(G ) = m · (∆− 1) = n − n

∆
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Triangle-free graphs

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identi�able triangle-free graph G with n ≥ 3 vertices, no isolated
vertices, and maximum degree ∆ ≥ 2. Then γID(G ) ≤ n − n

3∆+3
. If G has

minimum degree 3, γID(G ) ≤ n − n
2∆+2

.

Proof

Consider a maximal independent set I : |S | ≥ n
∆+1

C = V \I
Some vertices may not be identi�ed correctly

→ modify C locally. It is possible to add not too much vertices to C .
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Is this bound sharp ?

Proposition

Let Km,m be the complete bipartite graph with n = 2m vertices.
γID(Km,m) = 2m − 2 = n − n

∆ .

Thm (Bertrand et al. 05)

Let T h
k be the k-ary tree with h levels and n

vertices.γID(T h
k ) =

⌈
k2n

k2 + k + 1

⌉
= n − n

∆− 1 + 1
∆

.
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A conjecture

Conjecture (2009)

Let G be an identi�able connected graph of maximum degree ∆ ≥ 2. Then
γID(G ) ≤ n − n

∆ + O(1).
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Idcodes in digraphs

Let N−[u] be the set of incoming neighbours of u, plus u

De�nition : identifying code of a digraph D = (V ,A)

subset C of V such that :

C is a dominating set in D : for all u ∈ V , N−[u] ∩ C 6= ∅, and
C is a separating code in D : for all u 6= v , N−[u] ∩ C 6= N−[v ] ∩ C

a

b

c d

e f

{b}

{b, c, e}

{c, f } {c}

{e} {b, c, f }

De�nition
−→
γID(D) : minimum size of an identifying code of D
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Which graphs need n vertices ?

Two operations

D1 ⊕ D2 : disjoint union of D1 and D2

−→/ (D) : D joined to K1 by incoming arcs only

D1 D2

D1 ⊕ D2

D

−→/ (D)
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Let (K1,⊕,−→/ ) be the digraphs which can be built from K1 by successive
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A characterization

Proposition

Let D be a digraph of (K1,⊕,−→/ ) on n vertices.
−→
γID(D) = n.

D1 D2

D1 ⊕ D2

D

−→/ (D)
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A characterization

Theorem (F., Naserasr, Parreau, 2010)

Let D be an identi�able digraph on n vertices.
−→
γID(G ) = n i� D ∈ (K1,⊕,−→/ ).

A useful proposition

Let D be a digraph with
−→
γID(G ) = n − 1, then there is a vertex x of D such that

−→
γID(D − x) = n − 1

Proof of the Theorem

By contradiction : take a minimum counterexample, D

By the proposition, there is a vertex x such that−→
γID(D − x) = |V (D − x)| − 1. Hence D − x ∈ (K1,⊕,−→/ ).

Show that by adding a vertex to D − x , we either stay in the family or

decrease
−→
γID.
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A theorem of Bondy

Theorem on �induced subsets� (Bondy, 1972)

Let S = {S1,S2, · · · Sn} be a collection of distinct (possibly empty) subsets of an
(n + k)-set X (k ≥ 0). Then there is a (k + 1)-subset X ′ of X such that
S1 − X ′, S2 − X ′, · · · Sn − X ′ are all distinct.

Example with k = 0

X = {1,2,3,4} and S = {{1,4}, {3}, {2,4}, {1,2,4}}

Example with k = 1

X = {1,2,3,4,5} and S = {{1,4,5}, {3}, {2,4,5}, {1,2,4,5}}

The result is best possible

X = {1, 2, 3, 4} and S = {∅, {1}, {2}, {3}, {4}}
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A theorem of Bondy - proof

Proof

Note : if S1,S2 ⊆ X and S1 − x = S2 − x , then S1∆S2 = {x}.
By contradiction :
Construct a graph H = (S,E ) where for each x ∈ X , choose one unique (i , j) s.t.
Si∆Sj = {x}, and connect Si to Sj .
Claim : H has no cycle - a contradiction !
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Bipartite representation

Bipartite representation

We can build a bipartite graph B = (S +X ,E ) where Si connected to x i� x ∈ Si .
Bondy's theorem states that there exists a code C ⊆ X which separates S of size
at most |X | − 1 in B.

Example

X = {1, 2, 3, 4} and S = {{1}, {1, 3}, {2, 3}, {1, 3, 4}}

S

{1}

{1, 3}

{2, 3}

{1, 3, 4}

X

1

2

3

4
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Bipartite separating codes and identifying codes

Remark

Let B be the bipartite graph representing (S,X ). If B has a matching from S to
X , B is the neighbourhood graph of a digraph D.
⇒ A code separating S with X in B is a separating code of D.

Example

X = {1, 2, 3, 4} and S = {{1}, {1, 3}, {2, 3}, {1, 3, 4}}

S

{1}

{1, 3}

{2, 3}

{1, 3, 4}

X

1

2

3

4

{1}/1 {2, 3}/2

{1, 3}/3 {1, 3, 4}/4
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2
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Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem (with |X | = |S| and non-empty sets), if for any good choice
of x we have Si − x = ∅ for some Si ,
then B is the neighbourhood graph of a digraph in (K1,⊕,−→/ ).

Proof

If B has a perfect matching : use our theorem.

Otherwise, by Hall's theorem, there is a subset X1 of X s.t. |X1| > |N(X1)|.
S X

X0

N(X0)

X1
N(X1)
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