On some extremal problems on identifying codes in (di)graphs

F. Foucaud ${ }^{1}$

Joint works with: E. Guerrini ${ }^{1,2}$, R. Klasing ${ }^{1}$, A. Kosowski ${ }^{1,3}$, M. Kovše ${ }^{1,2}$, R. Naserasr ${ }^{1}$, A. Parreau ${ }^{2}$, A. Raspaud ${ }^{1}$, P. Valicov ${ }^{1}$

1: LaBRI, Bordeaux University, France
2: Institut Fourier, Grenoble University, France
3: Gdańsk University of Technology, Poland

AGH Kraków

November 09, 2010

Locating a fire in a building

simple, undirected graph : models a building

Locating a fire in a building

simple, undirected graph : models a building

Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room

Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room

Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room

Identifying codes : definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition : identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that :

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes : definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$
Definition : identifying code of a graph G (Karpovsky et al. 1998) subset C of V such that :

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Notation

$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Remark : not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Identifiable graphs

Remark : not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).
Non-identifiable graphs

Identifiable graphs

Remark : not all graphs have an identifying code u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).
Non-identifiable graphs

Two lower bounds

Thm (Karpovsky et al. 98)
Let G be an identifiable graph with n vertices. Then $\gamma^{\mathbf{I D}}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

Two lower bounds

Thm (Karpovsky et al. 98)
Let G be an identifiable graph with n vertices. Then $\gamma^{\mathbf{I D}}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.
Thm (Karpovsky et al. 98)
Let G be an identifiable graph with n vertices and maximum degree Δ. Then $\gamma^{\prime \mathrm{D}}(G) \geq \frac{2 n}{\Delta+2}$.

An upper bound

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \geq 3$ vertices and at least one edge. Then $\gamma^{\mathrm{ID}}(G) \leq n-1$.

An upper bound

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \geq 3$ vertices and at least one edge. Then $\gamma^{\mathrm{ID}}(G) \leq n-1$.

Thm (Charon, Hudry, Lobstein, 2007 + Skaggs, 2007)
For all $n \geq 3$, there exist twin-free graphs with n vertices and $\gamma^{\prime \mathrm{D}}(G)=n-1$.

Upper bound - small examples

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Upper bound - small examples

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Upper bound - stars

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Upper bound - complete graph minus max. matching

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

A conjecture

Conjecture (Charon, Hudry, Lobstein, 2008)
$\gamma^{\prime \prime}(G)=n-1$ iff $G \in\left\{P_{4}, K_{n} \backslash M, K_{1, n-1}\right\}$.

A class of graphs called \mathcal{A}

Definition : graph A_{k} $V\left(A_{k}\right)=\left\{x_{1}, \ldots, x_{2 k}\right\}$.
 x_{i} connected to x_{j} iff $|j-i| \leq k-1$

Clique on $\left\{x_{k+1}, \ldots, x_{2 k}\right\}$

Clique on $\left\{x_{1}, \ldots, x_{k}\right\}$

A class of graphs called \mathcal{A} - examples

$$
A_{1}=\overline{K_{2}} \quad A_{2}=P_{4}
$$

$$
A_{3}=P_{6}^{2}
$$

$$
A_{4}=P_{8}^{3}
$$

Properties

Proposition

Let $k \geq 2, n=2 k . \gamma^{\text {ID }}\left(A_{k}\right)=n-1$.

Remark

In every minimum code C of A_{k}, there exists a vertex x such that $C=N[x]$.

Join operation

$G_{1} \bowtie G_{2}$: disjoint copies of G_{1} and $G_{2}+$ all possible edges between G_{1} and G_{2}

Definition

Let (\mathcal{A}, \bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie.

(\mathcal{A}, \bowtie)

Join operation

$G_{1} \bowtie G_{2}$: disjoint copies of G_{1} and $G_{2}+$ all possible edges between G_{1} and G_{2}

Definition

Let (\mathcal{A}, \bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie.

Proposition

Let G be a graph of $(\mathcal{A}, \bowtie) \backslash\left\{\overline{K_{2}}\right\}$ with n vertices. $\gamma^{\text {ID }}(G)=n-1$.

Proposition

Let G be a graph of (\mathcal{A}, \bowtie) with $n-1$ vertices. $\gamma^{\text {ID }}\left(G \bowtie K_{1}\right)=n-1$.

A characterization

Thm (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010)
Let G be a twin-free graph on n vertices. $\gamma^{\text {ID }}(G)=n-1$ iff $G \in \mathcal{S} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1}$ and $G \neq \overline{K_{2}}$.

A useful Proposition

Proposition

Let G be a twin-free graph and $S \subseteq V$ such that $G-S$ is twin-free. Then $\gamma^{\text {ID }}(G) \leq \gamma^{\text {ID }}(G-S)+|S|$.

Corollary

Let G be a graph with $\gamma^{\text {ID }}(G)=|V(G)|-1$, then there is a vertex x of G such that $\gamma^{\text {ID }}(G-x)=|V(G-x)|-1$

Proof ideas

Proof

- By contradiction : take a minimum counterexample, G
- By the proposition, there is a vertex x such that $\gamma^{\text {ID }}(G-x)=|V(G-x)|-1$. Hence $G-x \in \mathcal{S} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1}$ and $G \neq \overline{K_{2}}$.
- For the three cases, show that by adding a vertex to $G-x$, we either stay in the family or decrease $\gamma^{1 \mathrm{D}}$.

Upper bound and Δ : a corollary and a question

Corollary

Let G be an identifiable graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text {ID }}(G) \leq n-2$.

Upper bound and Δ : a corollary and a question

Corollary

Let G be an identifiable graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text {ID }}(G) \leq n-2$.

Question

What is the best bound for $\gamma^{\text {ID }}$ using n and Δ ?

Upper bound and \triangle - two propositions

Proposition 1

Let G be an identifiable graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and $V-y$ is an identifying code of G.

Upper bound and Δ - two propositions

Proposition 1

Let G be an identifiable graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and $V-y$ is an identifying code of G.

Proposition 2

Let G be an identifiable graph, and I a 4-independent set of G (all distances ≥ 4). If for all $x \in I, V-x$ is an identifying code of $G, V-I$ is also one.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ. $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$. If G is Δ-regular, $\gamma^{\mathbf{I D}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ. $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$. If G is Δ-regular, $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$.

Proof

- Consider a maximal 6-independant set I : distance between two vertices is at least 6 and $|I| \geq \frac{n}{\Theta\left(\Delta^{5}\right)}$
- For every $x \in I$, let $f(x)$ be the vertex found in Prop. 1 .
- $V-f(I)$ is an identifying code of size at most $n-|I|$ by Prop. 2.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable graph of maximum degree Δ. $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$. If G is Δ-regular, $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(\Delta^{3}\right)}$.

Proof

- Consider a maximal 6-independant set I : distance between two vertices is at least 6 and $|I| \geq \frac{n}{\Theta\left(\Delta^{5}\right)}$
- For every $x \in I$, let $f(x)$ be the vertex found in Prop. 1 .
- $V-f(I)$ is an identifying code of size at most $n-|I|$ by Prop. 2.

Question

Is this bound sharp?

$\Delta=2$

Thm (Gravier, Moncel 2006)
Let G be a path or a cycle on n vertices. Then $\gamma^{\text {ID }}(G) \leq \frac{n}{2}+\frac{3}{2}$.

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example : $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices

Example : $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example : $H=K_{4}$

For every clique, at least $\Delta-1$ vertices in the code
$\Rightarrow \gamma^{\mathrm{ID}}(G)=m \cdot(\Delta-1)=n-\frac{n}{\Delta}$

Triangle-free graphs

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable triangle-free graph G with $n \geq 3$ vertices, no isolated vertices, and maximum degree $\Delta \geq 2$. Then $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{3 \Delta+3}$. If G has minimum degree $3, \gamma^{\text {ID }}(G) \leq n-\frac{n}{2 \Delta+2}$.

Triangle-free graphs

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be an identifiable triangle-free graph G with $n \geq 3$ vertices, no isolated vertices, and maximum degree $\Delta \geq 2$. Then $\gamma^{10}(G) \leq n-\frac{n}{3 \Delta+3}$. If G has minimum degree $3, \gamma^{\text {ID }}(G) \leq n-\frac{n}{2 \Delta+2}$.

Proof

- Consider a maximal independent set $l:|S| \geq \frac{n}{\Delta+1}$
- $C=V \backslash I$
- Some vertices may not be identified correctly
- \rightarrow modify C locally. It is possible to add not too much vertices to C.

Is this bound sharp?

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $\gamma^{\text {ID }}\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Is this bound sharp?

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $\gamma^{\mathrm{ID}}\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Let T_{k}^{h} be the k-ary tree with h levels and n
vertices. $\gamma^{\mathbf{I D}}\left(T_{k}^{h}\right)=\left\lceil\frac{k^{2} n}{k^{2}+k+1}\right\rceil=n-\frac{n}{\Delta-1+\frac{1}{\Delta}}$.

A conjecture

Conjecture (2009)

Let G be an identifiable connected graph of maximum degree $\Delta \geq 2$. Then $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta}+O(1)$.

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u
Definition : identifying code of a digraph $D=(V, A)$
subset C of V such that :

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u
Definition : identifying code of a digraph $D=(V, A)$
subset C of V such that :

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Definition

$\overrightarrow{\gamma^{1 \mathrm{~B}}}(D)$: minimum size of an identifying code of D

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\triangleleft}(D): D$ joined to K_{1} by incoming arcs only

$D_{1} \oplus D_{2}$

$$
\vec{\checkmark}(D)
$$

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\checkmark}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\checkmark}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D): D$ joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \vec{\checkmark}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\triangleleft}$, starting with K_{1}.

A characterization

Proposition

Let D be a digraph of $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ on n vertices. $\vec{\gamma} \overrightarrow{\gamma^{(}}(D)=n$.

$$
D_{1} \oplus D_{2}
$$

$$
\vec{\triangleleft}(D)
$$

A characterization

Theorem (F., Naserasr, Parreau, 2010)
Let D be an identifiable digraph on n vertices. $\overrightarrow{\gamma^{10}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

A characterization

Theorem (F., Naserasr, Parreau, 2010)
Let D be an identifiable digraph on n vertices. $\overrightarrow{\gamma^{10}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

A useful proposition

Let D be a digraph with $\overrightarrow{\gamma^{10}}(G)=n-1$, then there is a vertex x of D such that $\overrightarrow{\gamma^{\prime \prime}}(D-x)=n-1$

Proof of the Theorem

- By contradiction : take a minimum counterexample, D
- By the proposition, there is a vertex x such that $\overrightarrow{\gamma^{\prime \mathrm{B}}}(D-x)=|V(D-x)|-1$. Hence $D-x \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.
- Show that by adding a vertex to $D-x$, we either stay in the family or decrease $\overrightarrow{\gamma^{\mathrm{ID}}}$.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $k=1$
$X=\{1,2,3,4,5\}$ and $\mathcal{S}=\{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $(n+k)$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $k=1$
$X=\{1,2,3,4,5\}$ and $\mathcal{S}=\{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

The result is best possible
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\emptyset,\{1\},\{2\},\{3\},\{4\}\}$

A theorem of Bondy - proof

Proof

Note : if $S_{1}, S_{2} \subseteq X$ and $S_{1}-x=S_{2}-x$, then $S_{1} \Delta S_{2}=\{x\}$. By contradiction : Construct a graph $H=(\mathcal{S}, E)$ where for each $x \in X$, choose one unique (i, j) s.t. $S_{i} \Delta S_{j}=\{x\}$, and connect S_{i} to S_{j}.
Claim : H has no cycle - a contradiction!

Bipartite representation

Bipartite representation

We can build a bipartite graph $B=(\mathcal{S}+X, E)$ where S_{i} connected to x iff $x \in S_{i}$. Bondy's theorem states that there exists a code $C \subseteq X$ which separates \mathcal{S} of size at most $|X|-1$ in B.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Bipartite separating codes and identifying codes

Remark

Let B be the bipartite graph representing (\mathcal{S}, X). If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D.
\Rightarrow A code separating \mathcal{S} with X in B is a separating code of D.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Bipartite separating codes and identifying codes

Remark

Let B be the bipartite graph representing (\mathcal{S}, X). If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D.
\Rightarrow A code separating \mathcal{S} with X in B is a separating code of D.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem (with $|X|=|\mathcal{S}|$ and non-empty sets), if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \triangleleft\right)$.

Proof

- If B has a perfect matching : use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_{1} of X s.t. $\left|X_{1}\right|>\left|N\left(X_{1}\right)\right|$.

Application to Bondy's setting

Corollary (F., Naserasr, Parreau, 2010)

In Bondy's theorem (with $|X|=|\mathcal{S}|$ and non-empty sets), if for any good choice of x we have $S_{i}-x=\emptyset$ for some S_{i}, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \triangleleft\right)$.

Proof

- If B has a perfect matching : use our theorem.
- Otherwise, by Hall's theorem, there is a subset X_{1} of X s.t. $\left|X_{1}\right|>\left|N\left(X_{1}\right)\right|$.

