Bounding K_{4}-minor-free graphs in the homomorphism order

Florent Foucaud (LaBRI, Bordeaux) Reza Naserasr (LRI-CNRS, Orsay)

November 24th, 2012

$$
\text { BGW } 2012
$$

Graph homomorphisms

Definition - Graph homomorphism from G to H
Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

Target graph: $H=C_{5}$

Graph homomorphisms

Definition - Graph homomorphism from G to H

Mapping from $V(G)$ to $V(H)$ which preserves adjacency. If it exists, we note $G \rightarrow H$.

$$
\text { Target graph: } H=C_{5}
$$

The homomorphism order

Definition - Homomorphism quasi-order

Defined by $G \preceq H$ iff $G \rightarrow H$ (if restricted to cores: partial order).

Bounds in the homomorphism order

Definition - Bound in the order

$B_{\mathcal{C}}$ is a bound for some graph class \mathcal{C} if for each $G \in \mathcal{C}, G \rightarrow B_{\mathcal{C}}$.

Bounds in the homomorphism order

Definition - Bound in the order

$B_{\mathcal{C}}$ is a bound for some graph class \mathcal{C} if for each $G \in \mathcal{C}, G \rightarrow B_{\mathcal{C}}$.

K_{4} is a bound for all planar graphs (4CT)

Bounds in the homomorphism order

Definition - Bound in the order

$B_{\mathcal{C}}$ is a bound for some graph class \mathcal{C} if for each $G \in \mathcal{C}, G \rightarrow B_{\mathcal{C}}$.

K_{3} is a bound for all planar triangle-free graphs (Grötzsch's theorem)

Bounds in the homomorphism order

Definition - Bound in the order

$B_{\mathcal{C}}$ is a bound for some graph class \mathcal{C} if for each $G \in \mathcal{C}, G \rightarrow B_{\mathcal{C}}$.

Question

Given graph class \mathcal{C}, is there a bound for \mathcal{C} having specific properties?

Nešetřil-Ossona de Mendez theorem

Definition

\mathcal{F} : finite set of graphs.
$\operatorname{Forb}(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}, F \nrightarrow G$.

Examples:

- Forb $\left(K_{\ell}\right)$: graphs with clique number at most $\ell-1$
- Forb $\left(C_{2 k-1}\right)$: graphs of odd girth at least $2 k+1$ (odd girth: length of a smallest odd cycle)

Nešěřil-Ossona de Mendez theorem

Definition

\mathcal{F} : finite set of graphs.
$\operatorname{Forb}(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}, F \nrightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)
For any minor-closed class \mathcal{C} of graphs, $\mathcal{C} \cap \operatorname{Forb}(\mathcal{F})$ is bounded by a finite graph $\mathcal{B}(\mathcal{C}, \mathcal{F})$ from $\operatorname{Forb}(\mathcal{F})$.

Nešetřil-Ossona de Mendez theorem

Definition

\mathcal{F} : finite set of graphs.
$\operatorname{Forb}(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}, F \nrightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class \mathcal{C} of graphs, $\mathcal{C} \cap \operatorname{Forb}(\mathcal{F})$ is bounded by a finite graph $\mathcal{B}(\mathcal{C}, \mathcal{F})$ from $\operatorname{Forb}(\mathcal{F})$.

Example: $\mathcal{C}=\{$ planar graphs $\}$

$$
\mathcal{F}=\left\{C_{2 k-1}\right\}
$$

\longrightarrow all planar graphs of odd girth at least $2 k+1$ map to some graph $B_{n, k}$ of odd girth $2 k+1$.

Nešetřil-Ossona de Mendez theorem

Definition

\mathcal{F} : finite set of graphs.
$\operatorname{Forb}(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}, F \nrightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class \mathcal{C} of graphs, $\mathcal{C} \cap \operatorname{Forb}(\mathcal{F})$ is bounded by a finite graph from $\operatorname{Forb}(\mathcal{F})$.

Example: $\mathcal{C}=\left\{K_{n}\right.$-minor-free graphs $\}, \mathcal{F}=\left\{K_{n}\right\}$
\longrightarrow all K_{n}-minor-free graphs admit a homomorphism to some graph B_{n} of clique number at most $n-1$

Nešetřil-Ossona de Mendez theorem

Definition

\mathcal{F} : finite set of graphs.
$\operatorname{Forb}(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}, F \nrightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class \mathcal{C} of graphs, $\mathcal{C} \cap \operatorname{Forb}(\mathcal{F})$ is bounded by a finite graph from $\operatorname{Forb}(\mathcal{F})$.

Example: $\mathcal{C}=\left\{K_{n}\right.$-minor-free graphs $\}, \mathcal{F}=\left\{K_{n}\right\}$
\longrightarrow all K_{n}-minor-free graphs admit a homomorphism to some graph B_{n} of clique number at most $n-1$

Question

When a bound exists, which is a bound of smallest order?

Example: Hadwiger's conjecture: smallest B_{n} is K_{n-1}.

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

H(3)

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

$P C(3)$

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

Naserasr's conjecture and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

$P C(3)=K_{4,4}$

$P C(4):$ Clebsch graph

Projective cubes

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

$P C(3)=K_{4,4}$

$P C(4)$: Clebsch graph

Remark

$P C(d)$ is distance-transitive: for any two pairs $\{x, y\},\{u, v\}$ with $d(x, y)=d(u, v)$, there is an automorphism with $x \rightarrow u$ and $y \rightarrow v$

Projective cubes

Definition - Projective cube of dimension $d, P C(d)$

Obtained from hypercube $H(d)$ by adding edges between all antipodal pairs.

$P C(3)=K_{4,4}$

$P C(4):$ Clebsch graph

Remark

$d=2 k+1$ odd: $P C(2 k+1)$ bipartite
$d=2 k$ even: $P C(2 k)$ has odd girth $2 k+1$

Naserasr's conjecture

Conjecture (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Naserasr's conjecture

Conjecture (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Conjecture (Seymour, 1981)
Every planar r-graph is r-edge-colourable.
(r-graph: r-regular multigraph without odd $(<r)$-cut)

Theorem (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by $P C(2 k)$ if and only if every planar $(2 k+1)$-graph is $(2 k+1)$-edgecolourable.

Naserasr's conjecture

Conjecture (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Naserasr's conjecture

Conjecture (Naserasr, 2007)
The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs

Question

What is a (good) bound of odd girth $2 k+1$ for K_{4}-minor-free graphs of odd girth at least $2 k+1$?

Proposition

A graph is K_{4}-minor free if and only if it is a partial 2-tree.

K_{4}-minor-free graphs and projective cubes

Conjecture (Naserasr, 2007)

The class of planar graphs of odd girth at least $2 k+1$ is bounded by the projective cube $P C(2 k)$, and this bound is optimal.

Theorem

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$.
$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.

$\{p, q, r\}$ allowed triple if it does not create a short odd cycle.
$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.

$\{p, q, r\}$ allowed triple if it does not create a short odd cycle.
$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.

$\{p, q, r\}$ allowed triple if it does not create a short odd cycle.
$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.

$\{p, q, r\}$ allowed triple if it does not create a short odd cycle.

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.
2. Lemma: for each pair u, v of vertices of $P C(2 k)$ at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.
2. Lemma: for each pair u, v of vertices of $P C(2 k)$ at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.
3. Let G be a minimum counterexample.

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.
2. Lemma: for each pair u, v of vertices of $P C(2 k)$ at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.
3. Let G be a minimum counterexample.

Make it K_{4}-minor-free edge-maximal with distance labels

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.
2. Lemma: for each pair u, v of vertices of $P C(2 k)$ at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.
3. Let G be a minimum counterexample.

Make it K_{4}-minor-free edge-maximal with distance labels

4. Lemma (Nešetřil-Nigussie, 2007): all "triangles" form allowed triples.
$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$

Proof idea: use partial 2-tree structure + good properties of $P C(2 k)$.

1. Define "allowed distance triples" $\{p, q, r\}(1 \leq p, q, r \leq 2 k)$.
2. Lemma: for each pair u, v of vertices of $P C(2 k)$ at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.
3. Let G be a minimum counterexample.

Make it K_{4}-minor-free edge-maximal with distance labels

4. Lemma (Nešetřil-Nigussie, 2007): all "triangles" form allowed triples.
5. Use the 2-tree structure in a greedy way to map it: contradiction.

K_{4}-minor-free graphs, corollary

Theorem

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$.

K_{4}-minor-free graphs, corollary

Theorem

$P C(2 k)$ is a bound for K_{4}-minor-free graphs of odd girth at least $2 k+1$.

Corollary

Every K_{4}-minor-free $(2 k+1)$-graph is $(2 k+1)$-edge-colourable.
(result already known)

K_{4}-minor-free graphs, finding better bounds

Theorem

- K_{3} is the smallest bound for K_{4}-minor-free graphs (well-known).

odd girth 3: K_{3}

K_{4}-minor-free graphs, finding better bounds

Theorem

- K_{3} is the smallest bound for K_{4}-minor-free graphs (well-known).
- The Wagner graph is the smallest bound of odd girth 5 for K_{4}-minor-free graphs of odd girth at least 5.

odd girth 3: K_{3}

odd girth 5:
Wagner graph

K_{4}-minor-free graphs, finding better bounds

Theorem

- K_{3} is the smallest bound for K_{4}-minor-free graphs (well-known).
- The Wagner graph is the smallest bound of odd girth 5 for K_{4}-minor-free graphs of odd girth at least 5.
- G_{16} is a bound of odd girth 7 for K_{4}-minor-free graphs of odd girth at least 7 .

odd girth 3: K_{3}

odd girth 5: Wagner graph

odd girth 7: G_{16}

K_{4}-minor-free graphs, finding better bounds

odd girth 3: K_{3}

odd girth 5:
Wagner graph

odd girth 7 : G_{16}

odd girth 9: ???

K_{4}-minor-free graphs, finding better bounds

odd girth 3: K_{3}

odd girth 5:
Wagner graph

odd girth 7: G_{16}

odd girth 9:
???

K_{4}-minor-free graphs, finding better bounds

odd girth 3: K_{3}

odd girth 5:
Wagner graph

odd girth 7: G_{16}

odd girth 9: ???

Remark

$$
K_{3} \subseteq K_{4}=P C(2)
$$

$$
\text { Wagner graph } \subseteq P C(4)
$$

$$
G_{16} \subseteq P C(6)
$$

