Bounding K_4 -minor-free graphs in the homomorphism order

<u>Florent Foucaud</u> (LaBRI, Bordeaux) Reza Naserasr (LRI-CNRS, Orsay)

November 24th, 2012

BGW 2012

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

Definition - Graph homomorphism from G to H

Mapping from V(G) to V(H) which **preserves adjacency**. If it exists, we note $G \rightarrow H$.

The homomorphism order

Definition - Homomorphism quasi-order

Defined by $G \leq H$ iff $G \rightarrow H$ (if restricted to cores: partial order).

Definition - Bound in the order

 $B_{\mathcal{C}}$ is a **bound** for some graph class \mathcal{C} if for each $G \in \mathcal{C}$, $G \rightarrow B_{\mathcal{C}}$.

Definition - Bound in the order

 $B_{\mathcal{C}}$ is a **bound** for some graph class \mathcal{C} if for each $G \in \mathcal{C}$, $G \rightarrow B_{\mathcal{C}}$.

Definition - Bound in the order

 $B_{\mathcal{C}}$ is a **bound** for some graph class \mathcal{C} if for each $G \in \mathcal{C}$, $G \rightarrow B_{\mathcal{C}}$.

 K_3 is a bound for all planar triangle-free graphs (Grötzsch's theorem)

Definition - Bound in the order

 $B_{\mathcal{C}}$ is a **bound** for some graph class \mathcal{C} if for each $G \in \mathcal{C}$, $G \rightarrow B_{\mathcal{C}}$.

Question

Given graph class C, is there a bound for C having **specific properties**?

Florent Foucaud

Definition

 $\begin{array}{l} \mathcal{F} \text{: finite set of graphs.} \\ \textit{Forb}(\mathcal{F}) \text{: set of graphs } \textit{G} \text{ s.t. for any } \textit{F} \in \mathcal{F}, \textit{F} \not \rightarrow \textit{G}. \end{array}$

Examples:

- Forb(K_{ℓ}): graphs with clique number at most $\ell 1$
- Forb(C_{2k-1}): graphs of odd girth at least 2k + 1 (odd girth: length of a smallest odd cycle)

Definition

 \mathcal{F} : finite set of graphs. $Forb(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}$, $F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any **minor-closed** class C of graphs, $C \cap Forb(\mathcal{F})$ is **bounded** by a finite graph $\mathcal{B}(C, \mathcal{F})$ from $Forb(\mathcal{F})$.

Definition

 \mathcal{F} : finite set of graphs. $Forb(\mathcal{F})$: set of graphs G s.t. for any $F \in \mathcal{F}$, $F \not\rightarrow G$.

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any **minor-closed** class C of graphs, $C \cap Forb(\mathcal{F})$ is **bounded** by a finite graph $\mathcal{B}(C, \mathcal{F})$ from $Forb(\mathcal{F})$.

Example: $C = \{ planar graphs \}$ $\mathcal{F} = \{ C_{2k-1} \}$

 \longrightarrow all planar graphs of odd girth at least 2k + 1 map to some graph $B_{n,k}$ of odd girth 2k + 1.

Definition

 $\begin{array}{l} \mathcal{F} \text{: finite set of graphs.} \\ \textit{Forb}(\mathcal{F}) \text{: set of graphs } \textit{G} \text{ s.t. for any } \textit{F} \in \mathcal{F}, \textit{F} \not \rightarrow \textit{G}. \end{array}$

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class C of graphs, $C \cap Forb(\mathcal{F})$ is bounded by a finite graph from $Forb(\mathcal{F})$.

Example: $C = \{K_n \text{-minor-free graphs}\}, F = \{K_n\}$ \longrightarrow all $K_n \text{-minor-free graphs admit a homomorphism to some graph <math>B_n$ of clique number at most n - 1

Definition

 $\begin{array}{l} \mathcal{F}: \mbox{ finite set of graphs.} \\ Forb(\mathcal{F}): \mbox{ set of graphs } G \mbox{ s.t. for any } F \in \mathcal{F}, \ F \not\to G. \end{array}$

Theorem (Nešetřil and Ossona de Mendez, 2008)

For any minor-closed class C of graphs, $C \cap Forb(\mathcal{F})$ is bounded by a finite graph from $Forb(\mathcal{F})$.

Example: $C = \{K_n \text{-minor-free graphs}\}, F = \{K_n\}$

 \longrightarrow all K_n -minor-free graphs admit a homomorphism to some graph B_n of clique number at most n-1

Question

When a bound exists, which is a bound of smallest order?

Example: Hadwiger's conjecture: smallest B_n is K_{n-1} .

Florent Foucaud

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

$$PC(2) = K_4$$

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

$$PC(2) = K_4$$

PC(4): Clebsch graph

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

PC(d) is **distance-transitive**: for any two pairs $\{x, y\}$, $\{u, v\}$ with d(x, y) = d(u, v), there is an automorphism with $x \to u$ and $y \to v$

Projective cubes

Definition - Projective cube of dimension d, PC(d)

Obtained from hypercube H(d) by adding edges between all antipodal pairs.

d = 2k even: PC(2k) has odd girth 2k + 1

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Conjecture (Seymour, 1981)

Every planar *r*-graph is *r*-edge-colourable.

(*r*-graph: *r*-regular multigraph without odd (< r)-cut)

Theorem (Naserasr, 2007)

The class of planar graphs of odd girth at least 2k + 1 is bounded by PC(2k) if and only if every planar (2k + 1)-graph is (2k + 1)-edge-colourable.

Florent Foucaud

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Naserasr's conjecture

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Question

What is a (good) bound of odd girth 2k + 1 for K_4 -minor-free graphs of odd girth at least 2k + 1?

Proposition

Conjecture (Naserasr, 2007)

The class of **planar** graphs of odd girth at least 2k + 1 is bounded by the **projective cube** PC(2k), and this bound is **optimal**.

Theorem

PC(2k) is a bound for K_4 -minor-free graphs of odd girth at least 2k+1.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

2. Lemma: for each pair u, v of vertices of PC(2k) at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

2. Lemma: for each pair u, v of vertices of PC(2k) at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

3. Let G be a minimum counterexample.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

2. Lemma: for each pair u, v of vertices of PC(2k) at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

3. Let G be a minimum counterexample. Make it K_4 -minor-free edge-maximal with distance labels

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

2. Lemma: for each pair u, v of vertices of PC(2k) at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

3. Let G be a minimum counterexample. Make it K_4 -minor-free edge-maximal with distance labels

4. Lemma (Nešetřil-Nigussie, 2007): all "triangles" form allowed triples.

Proof idea: use partial 2-tree structure + good properties of PC(2k).

1. Define "allowed distance triples" $\{p, q, r\}$ $(1 \le p, q, r \le 2k)$.

2. Lemma: for each pair u, v of vertices of PC(2k) at distance d, all allowed triples $\{d, x, y\}$ are realized on u, v.

3. Let G be a minimum counterexample. Make it K_4 -minor-free edge-maximal with distance labels

- 4. Lemma (Nešetřil-Nigussie, 2007): all "triangles" form allowed triples.
- 5. Use the 2-tree structure in a greedy way to map it: contradiction.

K₄-minor-free graphs, corollary

Theorem

PC(2k) is a bound for K_4 -minor-free graphs of odd girth at least 2k+1.

K₄-minor-free graphs, corollary

Theorem

PC(2k) is a bound for K_4 -minor-free graphs of odd girth at least 2k+1.

(result already known)

Florent Foucaud

Theorem

• K_3 is the smallest bound for K_4 -minor-free graphs (well-known).

Theorem

- K_3 is the smallest bound for K_4 -minor-free graphs (well-known).
- The Wagner graph is the smallest bound of odd girth 5 for *K*₄-minor-free graphs of odd girth at least 5.

odd girth 5: Wagner graph

Theorem

- K_3 is the smallest bound for K_4 -minor-free graphs (well-known).
- The Wagner graph is the smallest bound of odd girth 5 for *K*₄-minor-free graphs of odd girth at least 5.
- G_{16} is a bound of odd girth 7 for K_4 -minor-free graphs of odd girth at least 7.

odd girth 3: *K*₃

odd girth 5:

Wagner graph

odd girth 7: *G*16

odd girth 9: ???

odd girth 3: *K*₃

odd girth 5: Wagner graph

odd girth 7: G_{16}

odd girth 9: ???

