Identifying codes in regular graphs

(a probabilistic approach)

Florent Foucaud (LaBRI, Bordeaux, France)

CID'11 - September 20th, 2011
joint work with Guillem Perarnau (UPC, Barcelona, Spain)

ANR IDEA

Locating a burglar in a museum

Locating a burglar in a museum

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Locating a burglar in a museum

How many detectors do we need?

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in $G: \forall u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number
$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Identifiable graphs

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$

Remark

Not all graphs have an identifying code!
Twins $=$ pair u, v such that $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Forced vertices

u, v such that $N[v] \Delta N[u]=\{x\}$

Then $x \in C$, forced by $u v$.

Notation

Let $N F(G)$ be the proportion of non forced vertices of G

$$
N F(G)=\frac{\# \text { non-forced vertices in G }}{\# \text { vertices in G }}
$$

Note: if G regular, $N F(G)=1$.

Previous results $(1 / 2)$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G) \leq n-1
$$

Previous results (1/2)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{ID}}(G) \leq n-1
$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph with maximum degree d, then

$$
\frac{2 n}{d+2} \leq \gamma^{\mathrm{ID}}(G)
$$

Previous results $(1 / 2)$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)
Let G be an identifiable graph with at least one edge, then

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq \gamma^{\mathrm{D}}(G) \leq n-1
$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph with maximum degree d, then

$$
\frac{2 n}{d+2} \leq \gamma^{\mathrm{ID}}(G)
$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)
Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{d}+O(1)
$$

True for $d=2$ and $d=n-1$.

Bounds depending on the max. degree

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)
Let G be an identifiable graph with maximum degree d, then

$$
\frac{2 n}{d+2} \leq \gamma^{\mathrm{ID}}(G)
$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{d}+O(1)
$$

Bounds depending on the max. degree

Previous results (2/2)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then

$$
\gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{d}+O(1)
$$

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)
Let G be a connected identifiable graph of maximum degree d. Then

$$
\gamma^{10}(G) \leq n-\frac{n}{\Theta\left(d^{5}\right)}
$$

If G is d-regular, $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Theta\left(d^{3}\right)}$

Upper bounds for $\gamma^{\text {ID }}(G)$

Notation

Let $N F(G)$ be the proportion of non forced vertices of G

$$
N F(G)=\frac{\# \text { non-forced vertices in G }}{\# \text { vertices in G }}
$$

Theorem (F., Perarnau, 2011+)

There exists an integer d_{0} such that for each identifiable graph G on n vertices having maximum degree $d \geq d_{0}$ and no isolated vertices,

$$
\gamma^{\mathrm{ID}}(G) \leq n-\frac{n \cdot N F(G)^{2}}{85 d}
$$

Proof - select a set at random...

Proof - select a set at random...

- F : forced vertices

Proof - select a set at random...

- F : forced vertices
- Select a random set S from $V^{\prime}=V \backslash F$: each vertex $v \in S$ with prob. p.

Proof - select a set at random...

- F : forced vertices
- Select a random set S from $V^{\prime}=V \backslash F$: each vertex $v \in S$ with prob. p.
- $\mathcal{C}=V \backslash S$

Proof - select a set at random...

- F : forced vertices
- Select a random set S from $V^{\prime}=V \backslash F$: each vertex $v \in S$ with prob. p.
- $\mathcal{C}=V \backslash S$

Proof - Using the Lovász Local Lemma

$\mathcal{E}=\left\{E_{1}, \ldots, E_{M}\right\}$: set of "bad" events, dependencies are "rare".
Then: with non-zero probability none of the bad events occur.
Moreover, this probability can be lower-bounded.

Set the bad events...

Event A_{u}

Set the bad events...

Event A_{u}

Event $B_{u, v}$

$$
p^{2 d-2} \leq \operatorname{Pr}\left(B_{u, v}\right) \leq p^{2}
$$

Set the bad events...

Event A_{u}

Event $B_{u, v}$

$$
p^{2 d-2} \leq \operatorname{Pr}\left(B_{u, v}\right) \leq p^{2}
$$

Set the bad events...

Event A_{u}

Event $B_{u, v}$

$$
p^{2 d-2} \leq \operatorname{Pr}\left(B_{u, v}\right) \leq p^{2}
$$

Set the bad events...

Event A_{u}

Event $B_{u, v}$

$$
\operatorname{Pr}\left(C_{u, v}\right)=p^{2}
$$

Event $D_{u, v}$

$$
p^{2 d} \leq \operatorname{Pr}\left(D_{u, v}\right) \leq p^{4}
$$

$$
p^{2 d-2} \leq \operatorname{Pr}\left(B_{u, v}\right) \leq p^{2}
$$

Taking $p=\frac{1}{k d} \Longrightarrow$ LLL can be applied

Proof - the set can be small...

By the LLL we know that
There exists some set S with $\mathbb{E}(|S|)=\frac{n \cdot N F(G)}{k \cdot d}$ such that no bad event occurs

Proof - the set can be small...

By the LLL we know that
There exists some set S with $\mathbb{E}(|S|)=\frac{n \cdot N F(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S=\emptyset, \mathcal{C}=V \backslash S=V$ is a trivial code!

Proof - the set can be small...

By the LLL we know that
There exists some set S with $\mathbb{E}(|S|)=\frac{n \cdot N F(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S=\emptyset, \mathcal{C}=V \backslash S=V$ is a trivial code!

But by the LLL we know more:

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{m} \overline{E_{i}}\right)>\exp \left\{-\frac{9}{k^{2} d} n\right\}
$$

Proof - the set can be small...

By the LLL we know that
There exists some set S with $\mathbb{E}(|S|)=\frac{n \cdot N F(G)}{k \cdot d}$ such that no bad event occurs

And we also know: if $S=\emptyset, \mathcal{C}=V \backslash S=V$ is a trivial code!

But by the LLL we know more:

$$
\operatorname{Pr}\left(\bigcap_{i=1}^{m} \overline{E_{i}}\right)>\exp \left\{-\frac{9}{k^{2} d} n\right\}
$$

The probability to have a good set S is at least $\exp \left\{-\frac{9}{k^{2} d} n\right\}$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)
Let X_{1}, \ldots, X_{m} a set of i.i.d random variables s.t. $\operatorname{Pr}\left(X_{i}=1\right)=p$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p$ and $X=\sum X_{i}$. Then

$$
\operatorname{Pr}(\mathbb{E}(X)-X>\alpha) \leq \exp \left\{-\frac{\alpha^{2}}{2 m p}\right\}
$$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)

Let X_{1}, \ldots, X_{m} a set of i.i.d random variables s.t. $\operatorname{Pr}\left(X_{i}=1\right)=p$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p$ and $X=\sum X_{i}$. Then

$$
\operatorname{Pr}(\mathbb{E}(X)-X>\alpha) \leq \exp \left\{-\frac{\alpha^{2}}{2 m p}\right\}
$$

For each $v_{i} \in V \backslash F$ define the random variable:

$$
X_{i}= \begin{cases}1 & \text { if } v_{i} \in C \\ 0 & \text { otherwise }\end{cases}
$$

Then, we set $\alpha=\frac{n \cdot N F(G)}{c d}$. Using $m p=\frac{n \cdot N F(G)}{k d}$:

$$
\operatorname{Pr}\left(\mathbb{E}(X)-X>\frac{n \cdot N F(G)}{c d}\right) \leq \exp \left\{\frac{k N F(G)}{2 c^{2} d} n\right\}
$$

Proof (regular case) - concentration inequality

Theorem (Chernoff bound)

Let X_{1}, \ldots, X_{m} a set of i.i.d random variables s.t. $\operatorname{Pr}\left(X_{i}=1\right)=p$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p$ and $X=\sum X_{i}$. Then

$$
\operatorname{Pr}(\mathbb{E}(X)-X>\alpha) \leq \exp \left\{-\frac{\alpha^{2}}{2 m p}\right\}
$$

For each $v_{i} \in V \backslash F$ define the random variable:

$$
X_{i}= \begin{cases}1 & \text { if } v_{i} \in C \\ 0 & \text { otherwise }\end{cases}
$$

Then, we set $\alpha=\frac{n \cdot N F(G)}{c d}$. Using $m p=\frac{n \cdot N F(G)}{k d}$:

$$
\operatorname{Pr}\left(\mathbb{E}(X)-X>\frac{n \cdot N F(G)}{c d}\right) \leq \exp \left\{\frac{k N F(G)}{2 c^{2} d} n\right\}
$$

Probability that S is too small: at most $\exp \left\{-\frac{k N F(G)}{2 c^{2} d} n\right\}$

Proof (regular case) - size of the code

$$
\operatorname{Pr}(S \text { good })-\operatorname{Pr}(S \text { too small })>0
$$

Proof (regular case) - size of the code

$$
\operatorname{Pr}(S \text { good })-\operatorname{Pr}(S \text { too small })>0
$$

There exist S such that $V \backslash S$ is an identifying code

$$
|S|=X \geq \mathbb{E}(X)-\frac{n \cdot N F(G)}{c d}=\frac{n \cdot N F(G)}{k d}-\frac{n \cdot N F(G)}{c d} \geq \ldots \geq \frac{n \cdot N F(G)^{2}}{85 d}
$$

Proof (regular case) - size of the code

$$
\operatorname{Pr}(S \text { good })-\operatorname{Pr}(S \text { too small })>0
$$

There exist S such that $V \backslash S$ is an identifying code

$$
\begin{gathered}
|S|=X \geq \mathbb{E}(X)-\frac{n \cdot N F(G)}{c d}=\frac{n \cdot N F(G)}{k d}-\frac{n \cdot N F(G)}{c d} \geq \ldots \geq \frac{n \cdot N F(G)^{2}}{85 d} \\
|\mathcal{C}|=|V \backslash S| \leq n-\frac{n \cdot N F(G)^{2}}{85 d}
\end{gathered}
$$

Corollaries

Theorem (F., Perarnau, 2011+)

There exists an integer d_{0} such that for each identifiable graph G on n vertices having maximum degree $d \geq d_{0}$ and no isolated vertices,

$$
\gamma^{\text {ID }}(G) \leq n-\frac{n \cdot N F(G)^{2}}{85 d}
$$

Proposition

Let $N F(G)$ be the proportion of non forced vertices of G. Then

$$
\frac{1}{d+1} \leq N F(G) \leq 1
$$

Corollary

- In general, $N F(G) \geq \frac{1}{d+1}$ and $\gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Theta\left(d^{3}\right)}$
- If G is d-regular, $N F(G)=1$ and $\gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{85 d}$.

Where are most of the d-regular graphs?

Let G be a d-regular graph.

$$
\begin{aligned}
\gamma^{\mathrm{ID}}(G) & \geq \frac{2 n}{d+2} \quad \text { Karpovsky et al. (1998) } \\
\gamma^{\mathrm{ID}}(G) & \leq n-\frac{n}{d}+O(1) \quad \text { Conjecture (2009) }
\end{aligned}
$$

Where are most of the d-regular graphs?

Let G be a d-regular graph.

$$
\left.\begin{array}{rl}
\gamma^{\mathrm{ID}}(G) & \geq \frac{2 n}{d+2} \\
\gamma^{\mathrm{ID}}(G) & \leq n-\frac{n}{\Theta(d)}
\end{array} \quad \text { Karpovsky et al. (1998) }\right) \text { Perarnau (2011+) }
$$

Where are most of the d-regular graphs?

Let G be a d-regular graph.

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\left(1+o_{d}(1)\right) \frac{\log d}{d} n \leq \gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

But : possible loops or multiple edges!

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

But : possible loops or multiple edges! Start over...

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

But : possible loops or multiple edges! Start over...

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

- Take nd vertices grouped in n buckets of size d
- Choose a random perfect matching of this graph
- Contract buckets

But : possible loops or multiple edges! Start over...

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)
Let $G \in \mathcal{G}_{n, d}^{*}$. Then $\operatorname{Pr}(G$ is simple $) \longrightarrow e^{\frac{1-d^{2}}{4}}>0$ (depends only on d, not on n)

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)
Let $G \in \mathcal{G}_{n, d}^{*}$. Then $\operatorname{Pr}(G$ is simple $) \longrightarrow e^{\frac{1-d^{2}}{4}}>0$ (depends only on d, not on n)

Notation - Simple random regular graphs
Let $\mathcal{G}_{n, d}=\mathcal{G}_{n, d}^{*} \mid$ the graph is simple.

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)
Let $G \in \mathcal{G}_{n, d}^{*}$. Then $\operatorname{Pr}(G$ is simple $) \longrightarrow e^{\frac{1-d^{2}}{4}}>0$ (depends only on d, not on n)

Notation - Simple random regular graphs
Let $\mathcal{G}_{n, d}=\mathcal{G}_{n, d}^{*} \mid$ the graph is simple.

Any property which holds a.a.s. for $\mathcal{G}_{n, d}^{*}$, also does for $\mathcal{G}_{n, d}$.

The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space $\mathcal{G}_{n, d}^{*}$ of d-regular multigraphs on n vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)
Let $G \in \mathcal{G}_{n, d}^{*}$. Then $\operatorname{Pr}(G$ is simple $) \longrightarrow e^{\frac{1-d^{2}}{4}}>0$ (depends only on d, not on n)

Notation - Simple random regular graphs
Let $\mathcal{G}_{n, d}=\mathcal{G}_{n, d}^{*} \mid$ the graph is simple.

Any property which holds a.a.s. for $\mathcal{G}_{n, d}^{*}$, also does for $\mathcal{G}_{n, d}$.

```
Proposition (Bollobás, 1980-Wormald, 1981)
```

\mathbb{E} (number of k-cycles in $\left.\mathcal{G}_{n, d}^{*}\right) \longrightarrow \frac{(d-1)^{k}}{2 k}$. (depends only on d, not on n)

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)
Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

Graphs with girth at least 5

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5 . Then

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

2-dominating is "almost sufficient" to identify.

$g(G) \geq 5$ makes identifying easier.

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.
$-$

$$
\begin{gathered}
X_{v}= \begin{cases}0 & \text { if }|N[v] \cap S| \geq 2 \\
1 & \text { otherwise }\end{cases} \\
\operatorname{Pr}\left(X_{v}=1\right)=(1-p)^{d+1}+(d+1) p(1-p)^{d}
\end{gathered}
$$

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.
-

$$
X_{v}= \begin{cases}0 & \text { if }|N[v] \cap S| \geq 2 \\ 1 & \text { otherwise }\end{cases}
$$

$$
\operatorname{Pr}\left(X_{v}=1\right)=(1-p)^{d+1}+(d+1) p(1-p)^{d}
$$

- $X(S)=\sum X_{v}(\#$ non 2-dominated).

Sketch of the proof: construct 2-dominating set D

- $S \subseteq V$ at random, each element with probability p.
-

$$
X_{v}= \begin{cases}0 & \text { if }|N[v] \cap S| \geq 2 \\ 1 & \text { otherwise }\end{cases}
$$

$$
\operatorname{Pr}\left(X_{v}=1\right)=(1-p)^{d+1}+(d+1) p(1-p)^{d}
$$

- $X(S)=\sum X_{v}(\#$ non 2-dominated).

- $\mathcal{C}=\mathbf{S} \cup\left\{v: X_{v}=1\right\}, p=\frac{\log d}{d}$

$$
\mathbb{E}(|D|)=\mathbb{E}(|S|)+X(S) \leq \frac{2 \log d}{d} n
$$

Sketch of the proof: identifying code

$$
\begin{aligned}
Y_{u v} & = \begin{cases}1 & \text { if }>< \\
0 & \text { otherwise }\end{cases} \\
\operatorname{Pr}\left(Y_{u v}=1\right) & =p^{2}(1-p)^{2 d-2}
\end{aligned}
$$

SMALL

$$
\begin{gathered}
\mathcal{C}=\mathbf{S} \cup\left\{v: X_{v}=1\right\} \cup\left\{w: w \in N(u), Y_{u v}=1\right\}, p=\frac{\log d}{d} \\
\mathbb{E}(|\mathcal{C}|)=\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
\end{gathered}
$$

Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$
\operatorname{Pr}(G \text { identifiable }) \xrightarrow{n} 1
$$

Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right)^{2 \log d} d
$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$
\operatorname{Pr}(G \text { identifiable }) \xrightarrow{n} 1
$$

$\mathbb{E}\left(C_{3}{ }^{\prime} s\right)=e^{\frac{(d-1)^{3}}{6}}$

$$
\mathbb{E}\left(C_{4}^{\prime} \mathrm{s}\right)=e^{\frac{(d-1)^{4}}{8}}
$$

Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$
\operatorname{Pr}(G \text { identifiable }) \xrightarrow{n} 1
$$

$$
\begin{array}{r}
\mathbb{E}\left(C_{3}^{\prime} \mathrm{s}\right)=e^{\frac{(d-1)^{3}}{6}} \quad \mathbb{E}\left(C_{4}^{\prime} \mathrm{s}\right)= \\
\operatorname{Pr}\left(\# C_{3}>\log \log n\right) \longrightarrow 0 \\
\\
P r\left(\# C_{4}>\log \log n\right) \longrightarrow 0
\end{array}
$$

$$
\mathbb{E}\left(C_{4}^{\prime} s\right)=e^{\frac{(d-1)^{4}}{8}}
$$

Back to random regular graphs - upper bound

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s.

$$
\gamma^{\mathrm{ID}}(G) \leq\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n
$$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

$$
\operatorname{Pr}(G \text { identifiable }) \xrightarrow{n} 1
$$

$$
\begin{array}{r}
\mathbb{E}\left(C_{3}^{\prime} s\right)=e^{\frac{(d-1)^{3}}{6}} \quad \mathbb{E}\left(C_{4}^{\prime} s\right)= \\
\\
\operatorname{Pr}\left(\# C_{3}>\log \log n\right) \longrightarrow 0 \\
\\
P r\left(\# C_{4}>\log \log n\right) \longrightarrow 0
\end{array}
$$

$$
\mathbb{E}\left(C_{4}^{\prime} s\right)=e^{\frac{(d-1)^{4}}{8}}
$$

$$
\gamma^{\mathrm{ID}}(G) \leq|\mathcal{C}|=\left(1+o_{d}(1)\right) \frac{2 \log d}{d} n \text { a.a.s. }
$$

Thank you!

