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Locating a burglar in a museum

Graph G = (V ,E). V : vertices (rooms), E ⊆ V × V : edges (doors)

How many detectors do we need?
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Identifying codes: definition

Let N[u] be the set of vertices v s.t. d(u, v) ≤ 1

Subset C of V such that:
C is a dominating set in G : ∀u ∈ V , N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V , N[u] ∩ C 6= N[v ] ∩ C

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

γ ID(G): minimum cardinality of an identifying code of G

Notation - Identifying code number
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Identifiable graphs

Let N[u] be the set of vertices v s.t. d(u, v) ≤ 1

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v ].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

Remark
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Forced vertices

u, v such that N[v ]∆N[u] = {x}

Then x ∈ C , forced by uv .

x u v

...

Let NF (G) be the proportion of non forced vertices of G

NF (G) =
#non-forced vertices in G

#vertices in G

Notation

Note: if G regular, NF (G) = 1.
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Previous results (1/2)

Let G be an identifiable graph with at least one edge, then

dlog2(n + 1)e ≤ γ ID(G) ≤ n − 1

Theorem (Karpovsky, Chakrabarty, Levitin, 1998 + Gravier, Moncel, 2007)

Let G be an identifiable graph with maximum degree d , then

2n
d+2
≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be a connected nontrivial identifiable graph of max. degree d . Then

γ ID(G) ≤ n − n
d

+ O(1)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

True for d = 2 and d = n − 1.
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Bounds depending on the max. degree

Let G be an identifiable graph with maximum degree d , then

2n
d+2
≤ γ ID(G)

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be a connected nontrivial identifiable graph of max. degree d . Then

γ ID(G) ≤ n − n
d

+ O(1)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)
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Previous results (2/2)

Let G be a connected nontrivial identifiable graph of max. degree d . Then

γ ID(G) ≤ n − n
d

+ O(1)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected identifiable graph of maximum degree d . Then

γ ID(G) ≤ n − n
Θ(d5)

If G is d-regular, γ ID(G) ≤ n − n
Θ(d3)

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)
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Upper bounds for γ ID(G )

Let NF (G) be the proportion of non forced vertices of G

NF (G) =
#non-forced vertices in G

#vertices in G

Notation

There exists an integer d0 such that for each identifiable graph G on n
vertices having maximum degree d ≥ d0 and no isolated vertices,

γ ID(G) ≤ n − n · NF (G)2

85d

Theorem (F., Perarnau, 2011+)
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Proof - select a set at random...

F : forced vertices

Select a random set S from
V ′ = V \ F : each vertex v ∈ S
with prob. p.

C = V \ S
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Proof - Using the Lovász Local Lemma

E = {E1, . . . ,EM}: set of “bad” events, dependencies are “rare”.

Then: with non-zero probability none of the bad events occur.

Moreover, this probability can be lower-bounded.
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Set the bad events...

u
..

.

Event Au

u v

...

..
.

..
.

Event Bu,v

pd+1 ≤ Pr(Au) ≤ p2

p2d−2 ≤ Pr(Bu,v ) ≤ p2

u v

..
.

Event Cu,v

u v

..
.

..
.

..
.

Event Du,v

Pr(Cu,v ) = p2

p2d ≤ Pr(Du,v ) ≤ p4

Taking p = 1
kd

=⇒ LLL can be applied
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Proof - the set can be small...

By the LLL we know that

There exists some set S with E(|S |) = n·NF (G)
k·d

such that no bad event occurs

And we also know: if S = ∅, C = V \ S = V is a trivial code!

But by the LLL we know more:

Pr

(
m⋂
i=1

Ei

)
> exp

{
− 9

k2d
n

}

The probability to have a good set S is at least exp
{
− 9

k2d
n
}
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Proof (regular case) - concentration inequality

Let X1, . . . ,Xm a set of i.i.d random variables s.t. Pr(Xi = 1) = p and
Pr(Xi = 0) = 1− p and X =

∑
Xi . Then

Pr(E(X )− X > α) ≤ exp
{
− α2

2mp

}
Theorem (Chernoff bound)

For each vi ∈ V \ F define the random variable:

Xi =

{
1 if vi ∈ C
0 otherwise

Then, we set α = n·NF (G)
cd

. Using mp = n·NF (G)
kd

:

Pr

(
E(X )− X >

n · NF (G)

cd

)
≤ exp

{
kNF (G)

2c2d
n

}

Probability that S is too small: at most exp

{
−kNF (G)

2c2d
n

}
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Proof (regular case) - size of the code

Pr(S good)− Pr(S too small) > 0

There exist S such that V \ S is an identifying code

|S | = X ≥ E(X )− n · NF (G)

cd
=

n · NF (G)

kd
− n · NF (G)

cd
≥ ... ≥ n · NF (G)2

85d

|C| = |V \ S | ≤ n − n · NF (G)2

85d
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Corollaries

There exists an integer d0 such that for each identifiable graph G on n
vertices having maximum degree d ≥ d0 and no isolated vertices,

γ ID(G) ≤ n − n · NF (G)2

85d

Theorem (F., Perarnau, 2011+)

Let NF (G) be the proportion of non forced vertices of G . Then

1
d+1
≤ NF (G) ≤ 1

Proposition

In general, NF (G) ≥ 1
d+1

and γ ID(G) ≤ n − n
Θ(d3)

If G is d-regular, NF (G) = 1 and γ ID(G) ≤ n − n
85d

.

Corollary
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Where are most of the d-regular graphs?

Let G be a d-regular graph.

γ ID(G) ≥ 2n

d + 2
Karpovsky et al. (1998)

γ ID(G) ≤ n − n

d
+ O(1) Conjecture (2009)
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Where are most of the d-regular graphs?

Let G be a d-regular graph.

Let G be a random d-regular graph. Then a.a.s.

(1 + od(1)) log d
d

n ≤ γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)
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The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space G∗n,d of d-regular multigraphs on n vertices.

Take nd vertices grouped in n buckets of size d
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The pairing model (a.k.a. configuration model) - Bollobás, 1980

Probability space G∗n,d of d-regular multigraphs on n vertices.

Let G ∈ G∗n,d . Then Pr(G is simple) −→ e
1−d2

4 > 0
(depends only on d , not on n)

Proposition (Bollobás, 1980 - Wormald, 1981)

Let Gn,d = G∗n,d | the graph is simple.

Notation - Simple random regular graphs

Any property which holds a.a.s. for G∗n,d , also does for Gn,d .

E(number of k-cycles in G∗n,d) −→ (d−1)k

2k
. (depends only on d , not on n)

Proposition (Bollobás, 1980 - Wormald, 1981)
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Graphs with girth at least 5

Let G be a d-regular graph with girth at least 5. Then

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Proposition (F., Perarnau, 2011+)

2-dominating is “almost sufficient” to identify.
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Graphs with girth at least 5

Let G be a d-regular graph with girth at least 5. Then

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Proposition (F., Perarnau, 2011+)

2-dominating is “almost sufficient” to identify.

g(G) ≥ 5 makes identifying easier.
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Sketch of the proof: construct 2-dominating set D

S ⊆ V at random, each element
with probability p.

Xv =

{
0 if |N[v ] ∩ S | ≥ 2
1 otherwise

Pr(Xv = 1) = (1−p)d+1+(d+1)p(1−p)d

X (S) =
∑

Xv (# non
2-dominated).

C = S ∪ {v : Xv = 1}, p = log d
d

E(|D|) = E(|S |)+X (S) ≤ 2 log d

d
n
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Sketch of the proof: identifying code

Yuv =

{
1 if
0 otherwise

Pr(Yuv = 1) = p2(1− p)2d−2 SMALL

C = S ∪ {v : Xv = 1} ∪ {w : w ∈ N(u), Yuv = 1}, p = log d
d

E(|C|) = (1 + od(1))
2 log d

d
n
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Back to random regular graphs - upper bound

Let G be a random d-regular graph. Then a.a.s.

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n,
taken u.a.r.: G ∈ G(n, d)

Pr(G identifiable)
n−→ 1

E(C3’s) = e
(d−1)3

6 E(C4’s) = e
(d−1)4

8

Pr(#C3 > log log n) −→ 0

Pr(#C4 > log log n) −→ 0

γ ID(G) ≤ |C| = (1 + od(1)) 2 log d
d

n a.a.s.

Florent Foucaud (LaBRI, Bordeaux, France) Identifying codes in regular graphs 23 / 24



Back to random regular graphs - upper bound

Let G be a random d-regular graph. Then a.a.s.

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n,
taken u.a.r.: G ∈ G(n, d)

Pr(G identifiable)
n−→ 1

E(C3’s) = e
(d−1)3

6 E(C4’s) = e
(d−1)4

8

Pr(#C3 > log log n) −→ 0

Pr(#C4 > log log n) −→ 0

γ ID(G) ≤ |C| = (1 + od(1)) 2 log d
d

n a.a.s.

Florent Foucaud (LaBRI, Bordeaux, France) Identifying codes in regular graphs 23 / 24



Back to random regular graphs - upper bound

Let G be a random d-regular graph. Then a.a.s.

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n,
taken u.a.r.: G ∈ G(n, d)

Pr(G identifiable)
n−→ 1

E(C3’s) = e
(d−1)3

6 E(C4’s) = e
(d−1)4

8

Pr(#C3 > log log n) −→ 0

Pr(#C4 > log log n) −→ 0

γ ID(G) ≤ |C| = (1 + od(1)) 2 log d
d

n a.a.s.

Florent Foucaud (LaBRI, Bordeaux, France) Identifying codes in regular graphs 23 / 24



Back to random regular graphs - upper bound

Let G be a random d-regular graph. Then a.a.s.

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n,
taken u.a.r.: G ∈ G(n, d)

Pr(G identifiable)
n−→ 1

E(C3’s) = e
(d−1)3

6 E(C4’s) = e
(d−1)4

8

Pr(#C3 > log log n) −→ 0

Pr(#C4 > log log n) −→ 0

γ ID(G) ≤ |C| = (1 + od(1)) 2 log d
d

n a.a.s.

Florent Foucaud (LaBRI, Bordeaux, France) Identifying codes in regular graphs 23 / 24



Back to random regular graphs - upper bound

Let G be a random d-regular graph. Then a.a.s.

γ ID(G) ≤ (1 + od(1)) 2 log d
d

n

Theorem (F., Perarnau, 2011+)

Let G be a d-regular graph of order n,
taken u.a.r.: G ∈ G(n, d)

Pr(G identifiable)
n−→ 1

E(C3’s) = e
(d−1)3

6 E(C4’s) = e
(d−1)4

8

Pr(#C3 > log log n) −→ 0

Pr(#C4 > log log n) −→ 0

γ ID(G) ≤ |C| = (1 + od(1)) 2 log d
d

n a.a.s.

Florent Foucaud (LaBRI, Bordeaux, France) Identifying codes in regular graphs 23 / 24



Thank you!
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