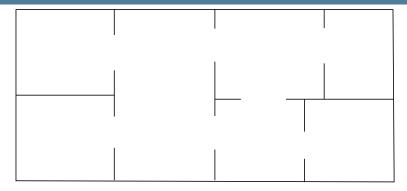
Random subgraphs make identification affordable

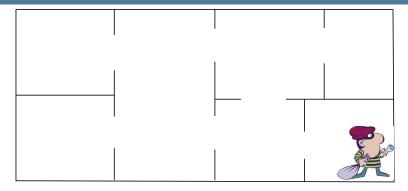
Florent Foucaud

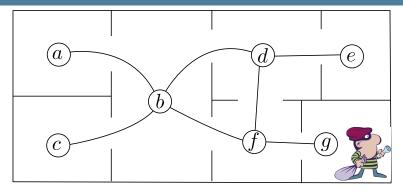
Universitat Politècnica de Catalunya, Barcelona (Spain)

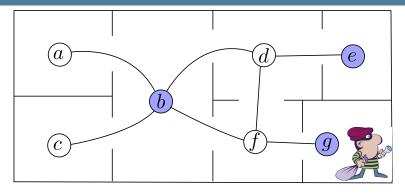
joint work with Guillem Perarnau and Oriol Serra.

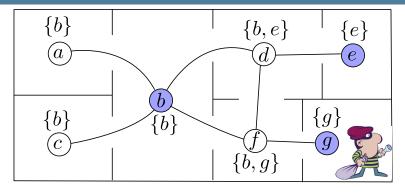
CID 2013, September 20th, 2013

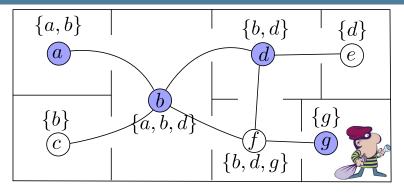


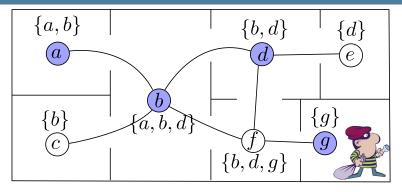






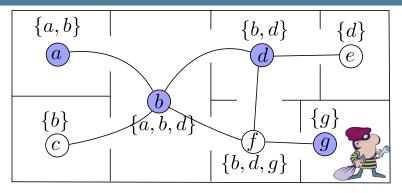






 $N[v] = N(v) \cup \{v\}$

- C is an identifying code of G:
 - for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
 - $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

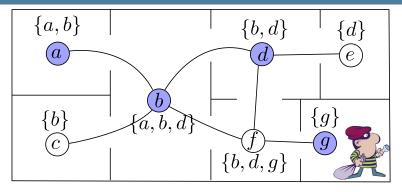


 $N[v] = N(v) \cup \{v\}$

C is an identifying code of G:

- for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
- $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

 $\gamma^{\text{ID}}(G)$: identifying code number , minimum size of an identifying code of G.

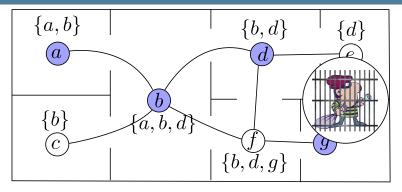


 $N[v] = N(v) \cup \{v\}$

- C is an identifying code of G:
 - for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
 - $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

$$\gamma^{\text{ID}}(G)$$
: identifying code number

 $\gamma({\sf G}) \leq \gamma^{{\scriptscriptstyle {\sf ID}}}({\sf G})$



 $N[v] = N(v) \cup \{v\}$

- C is an identifying code of G:
 - for every $u \in V$, $N[v] \cap C \neq \emptyset$ (domination).
 - $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$ (separation).

$$\gamma^{\text{ID}}(G)$$
: identifying code number

 $\gamma({\sf G}) \leq \gamma^{{\scriptscriptstyle {\sf ID}}}({\sf G})$

Not always exists...

G admits an identifying code $C \Leftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Not always exists...

G admits an identifying code $C \Leftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky et al. (1998), Gravier, Moncel (2007))

Let G be a nonempty graph on n vertices, then

```
\lceil \log_2(n+1) \rceil \leq \gamma^{\mathsf{ID}}(\mathcal{G}) \leq n-1
```

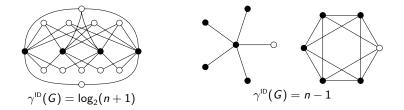
Not always exists...

G admits an identifying code $C \Leftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky et al. (1998), Gravier, Moncel (2007))

Let G be a nonempty graph on n vertices, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{{\scriptscriptstyle {\rm ID}}}(G) \leq n-1$$



Not always exists...

G admits an identifying code $C \Leftrightarrow \forall u, v, N[u] \neq N[v]$ (twin-free graph)

Theorem (Karpovsky et al. (1998), Gravier, Moncel (2007))

Let G be a nonempty graph on n vertices, then

$$\lceil \log_2(n+1) \rceil \le \gamma^{\text{ID}}(G) \le n-1$$

There exist arb. large connected r-regular graphs G_r with

$$\gamma(\mathsf{G}_r) = rac{1}{r} n \quad ext{and} \quad \gamma^{ extsf{id}}(\mathsf{G}_r) = \left(1 - rac{1}{r}
ight) n \ .$$

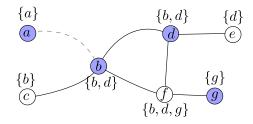
Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

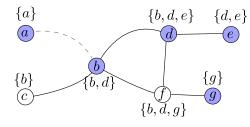
 $\gamma^{\rm ID}$ is non–monotone parameter with respect to graph inclusion:



Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

 $\gamma^{\rm ID}$ is non–monotone parameter with respect to graph inclusion:

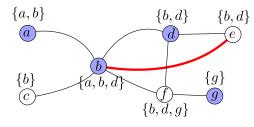


 $\gamma^{\text{ID}}(G) = 4$, while $\gamma^{\text{ID}}(G \setminus \{ab\}) = 5$

Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

 $\gamma^{\rm ID}$ is non–monotone parameter with respect to graph inclusion:

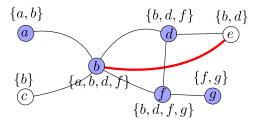


 $\gamma^{\text{\tiny{ID}}}(G) = 4$, while $\gamma^{\text{\tiny{ID}}}(G \setminus \{ab\}) = 5$

Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

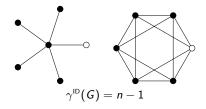
 $\gamma^{\rm ID}$ is non–monotone parameter with respect to graph inclusion:



 $\gamma^{\text{ID}}(G) = 4$, while $\gamma^{\text{ID}}(G \setminus \{ab\}) = 5$ and $\gamma^{\text{ID}}(G \cup \{be\}) = 5$.

Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?



Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

Question

Can we delete a small number of edges such that the remaining graph has an optimal identifying code?

Question

Can we delete (or add) a small number of edges such that the remaining graph has an optimal identifying code?

Question

Can we delete a small number of edges such that the remaining graph has an optimal identifying code?

Observation: for any $H \subseteq G$,

$$\gamma^{^{\mathrm{ID}}}(H) \geq \gamma(H) \geq \gamma(G)$$
.

Question

Does G admit a spanning subgraph H satisfying

$$\gamma^{^{\mathrm{ID}}}(H) = \Theta\left(\gamma(G)\right)$$
 ?

For any 0 , let <math>b = 1/(1-p). Then, whp

$$\gamma(G(n,p)) = (1+o(1))\frac{\log n}{\log b}$$

For any 0 , let <math>b = 1/(1-p). Then, whp

$$\gamma(G(n,p)) = (1+o(1))\frac{\log n}{\log b}$$

Theorem (Frieze et al. (2006))

For any $0 , let <math>q = p^2 + (1 - p)^2$. Then, whp

$$\gamma^{^{|\mathsf{D}}}(G(n,p)) = (1+o(1))rac{2\log n}{\log (1/q)} = \Theta(\gamma(G)) \; .$$

For any 0 , let <math>b = 1/(1-p). Then, whp

$$\gamma(G(n,p)) = (1+o(1))\frac{\log n}{\log b}$$

Theorem (Frieze et al. (2006))

For any $0 , let <math>q = p^2 + (1 - p)^2$. Then, whp

$$\gamma^{ ext{
m ID}}(G(n,p)) = (1+o(1))rac{2\log n}{\log\left(1/q
ight)} = \Theta(\gamma(G)) \; .$$

Intuition:

If G has a random structure, then domination is almost enough to identify it.

Idea:

Introduce randomness in G by removing edges to decrease $\gamma^{D}(G)$.

For any graph G on n vertices with maximum degree $\Delta = \omega(1)$ and minimum degree $d \ge 66 \log \Delta$, there exists a subset of edges $F \subset E(G)$ of size

$$|F| = O(n \log \Delta) ,$$

such that

$$\gamma^{\rm ID}(G\setminus F)=O\left(\frac{n\log\Delta}{d}\right)$$

For any graph G on n vertices with minimum degree $d = \Theta(n)$, there exists a subset of edges $F \subset E(G)$ of size

$$|F| = O(n \log n) ,$$

such that

$$\gamma^{^{\mathrm{ID}}}(G\setminus F)=O\left(\log n
ight)$$
 .

For any graph G on n vertices with maximum degree $\Delta = \omega(1)$ and minimum degree $d \ge 66 \log \Delta$, there exists a subset of edges $F \subset E(G)$ of size

$$|F| = O(n \log \Delta) ,$$

such that

$$\gamma^{\text{ID}}(G \setminus F) = O\left(\frac{n\log\Delta}{d}\right)$$

If Δ is bounded, for any $H \subseteq G$,

$$\gamma^{\scriptscriptstyle {
m ID}}(H) \geq \gamma(G) \geq rac{n}{\Delta+1} = \Omega(n) \; .$$

For any graph G on n vertices with maximum degree $\Delta = \omega(1)$ and minimum degree $d \ge 66 \log \Delta$, there exists a subset of edges $F \subset E(G)$ of size

$$|F| = O(n \log \Delta) ,$$

such that

$$\gamma^{\rm ID}(G\setminus F)=O\left(\frac{n\log\Delta}{d}\right)$$

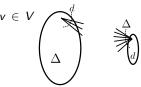
Consider $K_{d,\Delta}$, with $d = \frac{1}{2} \log_2 \Delta$ ($\Delta = 4^d$).

Let $H \subseteq K_{d,\Delta}$ and let \mathcal{C} be a code of H. For $v \in V$ there are at most 2^d candidates for $N_H(v) \cap \mathcal{C}$.

Then

$$\gamma^{\rm ID}(H)=(1-o(1))n\;,$$

for any $H \subseteq K_{d,\Delta}$.



For any graph G on n vertices with maximum degree $\Delta = \omega(1)$ and minimum degree $d \ge 66 \log \Delta$, there exists a subset of edges $F \subset E(G)$ of size

$$|F| = O(n \log \Delta) ,$$

such that

$$\gamma^{{}_{\mathrm{ID}}}(G\setminus F) = O\left(rac{n\log\Delta}{d}
ight) \;.$$

Consider G to be a random r-regular graph. With high probability

$$\gamma(G) = (1+o(1))\frac{n\log r}{r} ,$$

thus, for any $H \subseteq G$

$$\gamma^{\text{ID}}(H) \geq \gamma(G) \geq \frac{n \log r}{r}$$

It is not clear whether $\log \Delta$ can be replaced by $\log d$.

Florent Foucaud

For any graph G on n vertices with maximum degree $\Delta = \omega(1)$ and minimum degree $d \ge 66 \log \Delta$, there exists a subset of edges $F \subset E(G)$ of size

 $|F| = O(n \log \Delta) ,$

such that

$$\gamma^{\rm ID}(G\setminus F)=O\left(\frac{n\log\Delta}{d}\right)$$

Proposition

For any set $F \subseteq E(K_n)$ of size $o(n \log n)$ we have $\gamma^{\text{ID}}(K_n \setminus F) = \omega(\log n)$.

Let G_r denote the disjoint union of cliques of size r + 1, then for any set $F \subseteq E(G_r)$ of size $o(n \log r)$,

$$\gamma^{\text{ID}}(G_r \setminus F) = \omega\left(\frac{n\log r}{r}\right) \;.$$

Again, not clear whether $\log \Delta$ can be replaced by $\log d$.

Florent Foucaud

$$p = O\left(rac{\log\Delta}{d}
ight)$$
 .

For any pair of vertices $u, v \in V$ we want

$$N[u] \cap \mathcal{C} \neq N[v] \cap \mathcal{C}$$
.

In the worst case

$$N[u] = N[v]$$
 .

$$p = O\left(rac{\log\Delta}{d}
ight)$$
 .

For any pair of vertices $u, v \in V$ we want

$$N[u] \cap \mathcal{C} \neq N[v] \cap \mathcal{C}$$

In the worst case

N[u] = N[v] .

Goal: Remove edges to make

 $(N[u] \setminus N[v]) \cup (N[v] \setminus N[u])$

large enough $\Rightarrow C$ intersects it *whp*.

$$p = O\left(rac{\log\Delta}{d}
ight)$$

For any pair of vertices $u, v \in V$ we want

$$N[u] \cap \mathcal{C} \neq N[v] \cap \mathcal{C}$$

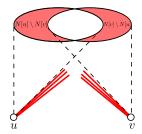
In the worst case

N[u] = N[v] .

Goal: Remove edges to make

 $(N[u] \setminus N[v]) \cup (N[v] \setminus N[u])$

large enough $\Rightarrow C$ intersects it *whp*.



$$p = O\left(rac{\log\Delta}{d}
ight)$$
 .

For any pair of vertices $u, v \in V$ we want

$$N[u] \cap \mathcal{C} \neq N[v] \cap \mathcal{C}$$

In the worst case

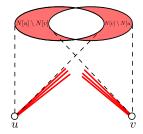
N[u] = N[v] .

Goal: Remove edges to make

 $(N[u] \setminus N[v]) \cup (N[v] \setminus N[u])$

large enough $\Rightarrow C$ intersects it *whp*.

It suffices to remove $\Theta(\log \Delta)$ edges!



$$p_{u,v} = \Theta\left(rac{\log\Delta}{d_{\mathcal{C}}(u)} + rac{\log\Delta}{d_{\mathcal{C}}(v)}
ight) \; ,$$

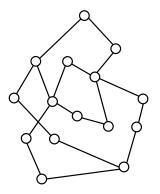
if it is incident to \mathcal{C} .

For any $u \in V$, we expect to remove

 $\Theta(\log \Delta)$,

incident edges.

The expected number of removed edges is



$$p_{u,v} = \Theta\left(rac{\log\Delta}{d_{\mathcal{C}}(u)} + rac{\log\Delta}{d_{\mathcal{C}}(v)}
ight) \; ,$$

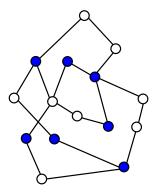
if it is incident to \mathcal{C} .

For any $u \in V$, we expect to remove

 $\Theta(\log \Delta)$,

incident edges.

The expected number of removed edges is



$$p_{u,v} = \Theta\left(rac{\log\Delta}{d_{\mathcal{C}}(u)} + rac{\log\Delta}{d_{\mathcal{C}}(v)}
ight) \; ,$$

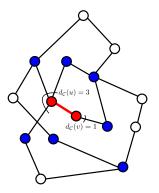
if it is incident to \mathcal{C} .

For any $u \in V$, we expect to remove

 $\Theta(\log \Delta)$,

incident edges.

The expected number of removed edges is



$$p_{u,v} = \Theta\left(rac{\log\Delta}{d_{\mathcal{C}}(u)} + rac{\log\Delta}{d_{\mathcal{C}}(v)}
ight) \; ,$$

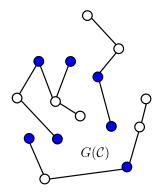
if it is incident to \mathcal{C} .

For any $u \in V$, we expect to remove

 $\Theta(\log \Delta)$,

incident edges.

The expected number of removed edges is



1.- Select ${\mathcal C}$ at random. Then,

$$|\mathcal{C}| > 2 \frac{n \log \Delta}{d} \; ,$$

with exponentially small probability.

2.- Use Lovász Local Lemma to show that a random set ${\cal C}$ and the random subgraph $G({\cal C})$ satisfy

i) $d_{\mathcal{C}}(v)$ are concentrated around $d(v)p \ \forall v \in V$.

ii) $N_{G(\mathcal{C})}[u] \cap \mathcal{C} \neq N_{G(\mathcal{C})}[v] \cap \mathcal{C} \ \forall u, v \in V$ at distance at most 2 (local separation). with exponentially large probability.

3.- Add a dominating set to ${\mathcal C}$ which has size at most

$$\frac{n \log d}{d}$$

to take care of global separation property.

4.- The conditioned expected number of deleted edges is

 $O(n \log \Delta)$.

Florent Foucaud

Adding edges

Adding:

Since,

$$\gamma^{^{\rm ID}}(\overline{G}) = \Theta(\gamma^{^{\rm ID}}(G))$$

an analogous result holds for adding edges instead of removing them.

Deleting + Adding:

Question

Can we improve the previous result if we are allowed to delete and add edges?

Of course! : Remove all the edges of G and add the edges to construct an optimal graph.

Adding edges

Adding:

Since,

$$\gamma^{^{\rm ID}}(\overline{G}) = \Theta(\gamma^{^{\rm ID}}(G))$$

an analogous result holds for adding edges instead of removing them.

Deleting + Adding:

Question

Can we improve the previous result if we are allowed to delete and add a small amount of edges?

NO : If we delete/add at most $O(n \log \Delta)$ edges, the previous result cannot be improved.

If $\Delta = Poly(d)$, then the theorem is asymptotically tight $(\log \Delta = \Theta(\log d))$.

Due to domination property, for some graphs any code is of size $\Omega(\frac{n \log d}{d})$. Question

Can we always find $H \subseteq G$ satisfying

$$\gamma^{^{\rm ID}}(H) = O\left(\frac{n\log d}{d}\right)$$

or there is a graph G such that

$$\gamma^{\rm ID}(H) = \Omega\left(\frac{n\log\Delta}{d}\right)$$

for all $H \subseteq G$?

Question

Can we apply similar techniques to other non-monotone parameters that behave nicely in random graphs?

THANKS FOR YOUR ATTENTION

