On some problems in graph theory: from colourings to vertex identification

F. Foucaud ${ }^{1}$

Joint works with: E. Guerrini ${ }^{1,2}$, R. Klasing ${ }^{1}$, A. Kosowski ${ }^{1,3}$, M. Kovše ${ }^{1,2}$, R. Naserasr ${ }^{1}$, A. Parreau ${ }^{2}$, A. Raspaud ${ }^{1}$, P. Valicov ${ }^{1}$

1: LaBRI, Bordeaux University, France
2: Institut Fourier, Grenoble University, France
3: Gdańsk University of Technology, Poland

Calicut University, Kerala, India - September 4th, 2010

Glem

Outline

(1) Graph theory - an introduction (definitions, colouring maps, the 4CT) [board]
(2) Networks as graphs, the domination problem [board]
(3) Complexity of graph theory problems - the "P versus NP" problem [board]
(9) Identifying codes - definitions, complexity, extremal problems [slides]

Locating an intruder in a building

simple, undirected graph: models a building

Locating an intruder in a building

simple, undirected graph: models a building

Locating an intruder in a building

simple detectors: able to detect an intruder in a neighbouring room
goal: locate an eventual intruder

Locating an intruder in a building

simple detectors: able to detect an intruder in a neighbouring room
goal: locate an eventual intruder
intruder in room f

Locating an intruder in a building

simple detectors: able to detect an intruder in a neighbouring room
goal: locate an eventual intruder
intruder in room f
the identifying sets of all vertices must be distinct

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$.
Definition: identifying code of G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Let $N[u]$ be the set of vertices v s.t. $d(u, v) \leq 1$.
Definition: identifying code of G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Notation

$\gamma^{\text {ID }}(G)$: minimum cardinality of an identifying code of G

Identifiable graphs

Remark: not all graphs have an identifying code
u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Identifiable graphs

Remark: not all graphs have an identifying code
u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Non-identifiable graphs

Identifiable graphs

Remark: not all graphs have an identifying code
u and v are twins if $N[u]=N[v]$.
A graph is identifiable iff it is twin-free (i.e. it has no twin vertices).

Non-identifiable graphs

Hardness

Decision problem ID-CODE

Input: identifiable graph G and an integer k Question: Is $\gamma^{\mathrm{ID}}(G) \leq k$?

Thm (Cohen et al. 01, Auger et al. 09)
ID-CODE is NP-complete even in bipartite and planar graphs.

Hardness

Decision problem ID-CODE

Input: identifiable graph G and an integer k
Question: Is $\gamma^{\text {ID }}(G) \leq k$?
Thm (Cohen et al. 01, Auger et al. 09)
ID-CODE is NP-complete even in bipartite and planar graphs.
Optimization problem MIN ID-CODE
Input: identifiable graph G
Output: $\gamma^{\text {ID }}(G)$
Thm (Trachtenberg et al. 06, Suomela 07, Gravier et al. 08)
MIN ID-CODE can be approximated within a logarithmic factor, but not within a constant factor.

An upper bound

Thm (Gravier, Moncel 2007)
Let G be a twin-free graph with $n \geq 3$ vertices and at least one edge. Then $\gamma^{\mathrm{ID}}(G) \leq n-1$.

An upper bound

Thm (Gravier, Moncel 2007)
Let G be a twin-free graph with $n \geq 3$ vertices and at least one edge. Then $\gamma^{\mathrm{ID}}(G) \leq n-1$.

Thm (Charon, Hudry, Lobstein, 2007 + Skaggs, 2007)
For all $n \geq 3$, there exist twin-free graphs with n vertices and $\gamma^{\text {ID }}(G)=n-1$.

Upper bound - small examples

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Upper bound - stars

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

Upper bound - complete graph minus max. matching

Recall the definition

- C is a dominating set in G : for all $u \in V, N[u] \cap C \neq \emptyset$, and
- C is a separating set in $G: \forall u \neq v$ of $V, N[u] \cap C \neq N[v] \cap C$

A conjecture

Conjecture (Charon, Hudry, Lobstein, 2008)
$\gamma^{\text {ID }}(G)=n-1$ iff $G \in\left\{P_{4}, K_{n} \backslash M, K_{1, n-1}\right\}$.

A class of graphs called \mathcal{A}

G^{r} : graph where x, y are adjacent iff $d(x, y) \leq r$ in G
Definition: graph A_{k}
$V\left(A_{k}\right)=\left\{x_{1}, \ldots, x_{2 k}\right\}$.
x_{i} connected to x_{j} iff $|j-i| \leq k-1$
$A_{1}=\overline{K_{2}}$; for $k \geq 2, A_{k}=P_{2 k}^{k-1}$

Clique on $\left\{x_{k+1}, \ldots, x_{2 k}\right\}$

Clique on $\left\{x_{1}, \ldots, x_{k}\right\}$

A class of graphs called \mathcal{A} - examples

-

$$
A_{1}=\overline{K_{2}}
$$

$$
A_{2}=P_{4}
$$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Properties

Proposition

Let $k \geq 2, n=2 k . \gamma^{1 D}\left(A_{k}\right)=n-1$.

Remark

In every minimum code C of A_{k}, there exists a vertex x such that $C=N[x]$.

(\mathcal{A}, \bowtie)

Join operation
$G_{1} \bowtie G_{2}$: disjoint copies of G_{1} and $G_{2}+$ all possible edges between G_{1} and G_{2}

Definition

Let (\mathcal{A}, \bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie.

(\mathcal{A}, \bowtie)

Join operation
$G_{1} \bowtie G_{2}$: disjoint copies of G_{1} and $G_{2}+$ all possible edges between G_{1} and G_{2}

Definition

Let (\mathcal{A}, \bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie.

Proposition

Let G be a graph of $(\mathcal{A}, \bowtie) \backslash\left\{\overline{K_{2}}\right\}$ with n vertices. $\gamma^{\mathrm{ID}}(G)=n-1$.

$(\mathcal{A}, \bowtie) \bowtie K_{1}$

Proposition

Let G be a graph of (\mathcal{A}, \bowtie) with $n-1$ vertices. $\gamma^{\mathrm{ID}}\left(G \bowtie K_{1}\right)=n-1$.

A characterization

Thm (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010)
Let G be a twin-free graph on n vertices. $\gamma^{\text {lD }}(G)=n-1$ iff $G \in \mathcal{S} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1}$ and $G \neq \overline{K_{2}}$.

A useful Proposition

Proposition

Let G be a twin-free graph and $S \subseteq V$ such that $G-S$ is twin-free. Then $\gamma^{\text {ID }}(G) \leq \gamma^{\text {ID }}(G-S)+|S|$.

Corollary

Let G be a graph with $\gamma^{\text {ID }}(G)=|V(G)|-1$, then there is a vertex x of G such that $\gamma^{\text {ID }}(G-x)=|V(G-x)|-1$

Proof ideas

Proof

- By contradiction: take a minimum counterexample, G
- By the proposition, there is a vertex x such that $\gamma^{\mathrm{ID}}(G-x)=|V(G-x)|-1$. Hence $G-x \in \mathcal{S} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1}$ and $G \neq \overline{K_{2}}$.
- For the three cases, show that by adding a vertex to $G-x$, we either stay in the family or decrease γ^{ID}.

What about r-id codes? - Definition

Definition: r-identifying codes subset C of V such that:

- C is an r-dominating set in G : for all $u \in V, B_{r}(u) \cap C \neq \emptyset$, and
- C is an r-separating set in $G: \forall u \neq v$ of $V, B_{r}(u) \cap C \neq B_{r}(v) \cap C$

What about r-id codes? - Definition

Definition: r-identifying codes subset C of V such that:

- C is an r-dominating set in G : for all $u \in V, B_{r}(u) \cap C \neq \emptyset$, and
- C is an r-separating set in $G: \forall u \neq v$ of $V, B_{r}(u) \cap C \neq B_{r}(v) \cap C$

Remark

- C is an r-identifying code of G iff C is a 1-identifying code of G^{r}
- $\rightarrow \gamma_{r}^{\mathrm{ID}}(G)=\gamma^{\mathrm{ID}}\left(G^{r}\right)$
- $\rightarrow\left\{G \mid \gamma_{r}^{\mathrm{ID}}(G)=n-1\right\}=\left\{G \mid G^{r} \in\left(\mathcal{S} \cup(\mathcal{A}, \bowtie) \cup(\mathcal{A}, \bowtie) \bowtie K_{1}\right) \backslash \overline{K_{2}}\right\}$

What about r-id codes? - Roots of A_{k}

Question

Let $r \geq 2$ and $k \geq 2$. What are the graphs G such that $G^{r}=A_{k}=P_{2 k}^{k-1}$?

What about r-id codes? - Roots of A_{k}

Question

Let $r \geq 2$ and $k \geq 2$. What are the graphs G such that $G^{r}=A_{k}=P_{2 k}^{k-1}$?

Partial answer

- All $P_{2 k}^{s}$ such that $s \cdot r=k-1$. Example: $\left(P_{10}^{2}\right)^{2}=P_{10}^{4}$ hence $\gamma_{2}^{\mathrm{ID}}\left(P_{10}^{2}\right)=9$.
- Those graphs minus some edges...
- And other ones! Example: G such that $G^{2}=P_{10}^{4}\left(\right.$ so $\left.\gamma_{2}^{\mathrm{ID}}(G)=9\right)$

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u
Definition: identifying code of a digraph $D=(V, A)$ subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of $V, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u

Definition: identifying code of a digraph $D=(V, A)$

 subset C of V such that:- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of $V, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Idcodes in digraphs

Let $N^{-}[u]$ be the set of incoming neighbours of u, plus u
Definition: identifying code of a digraph $D=(V, A)$ subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of $V, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

Definition

Let $\overrightarrow{\gamma^{\mathrm{ID}}}(D)$ be the minimum size of an identifying code of D

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\overrightarrow{(}(D)$: D joined to K_{1} by incoming arcs only

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\checkmark(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \triangleleft\right)$ be the digraphs which can be built from K_{1} by successive application of \oplus and \triangleleft.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\checkmark}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \triangleleft\right)$ be the digraphs which can be built from K_{1} by successive application of \oplus and \checkmark.

Remark

Every element of $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ is the transitive closure of a forest of rooted oriented trees.

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{\checkmark}(D)$: D joined to K_{1} by incoming arcs only

Definition

Let $\left(K_{1}, \oplus, \triangleleft\right)$ be the digraphs which can be built from K_{1} by successive application of \oplus and \triangleleft.

Remark

Every element of $\left(K_{1}, \oplus, \vec{\checkmark}\right)$ is the transitive closure of a forest of rooted oriented trees.

Proposition

Let D be a digraph of $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ on n vertices. $\overrightarrow{\gamma^{\mathrm{D}}}(D)=n$.

A characterization

Thm (F., Naserasr, 2010)
Let D be a twin-free digraph on n vertices. $\overrightarrow{\gamma^{\mathrm{D}}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

A characterization

Thm (F., Naserasr, 2010)
Let D be a twin-free digraph on n vertices. $\overrightarrow{\gamma^{10}}(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.
A useful proposition (digraphs)
Let D be a digraph with $\overrightarrow{\gamma^{\mathrm{D}}}(G)=|V(D)|-1$, then there is a vertex x of D such that $\gamma^{\mathbb{D}}(D-x)=|V(D-x)|-1$

Proof

- By contradiction: take a minimum counterexample, D
- By the proposition, there is a vertex x such that

$$
\overrightarrow{\gamma^{\mathrm{D}}}(D-x)=|V(D-x)|-1 . \text { Hence } D-x \in\left(K_{1}, \oplus, \vec{\triangleleft}\right) \text {. }
$$

- Show that by adding a vertex to $D-x$, we either stay in the family or decrease $\overrightarrow{\gamma^{\mathrm{DD}}}$.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)
Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $n+k$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)
Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $n+k$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)
Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $n+k$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $k=1$
$X=\{1,2,3,4,5\}$ and $\mathcal{S}=\{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

A theorem of Bondy

Theorem on "induced subsets" (Bondy, 1972)
Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots S_{n}\right\}$ be a collection of distinct (possibly empty) subsets of an $n+k$-set $X(k \geq 0)$. Then there is a $(k+1)$-subset X^{\prime} of X such that $S_{1}-X^{\prime}, S_{2}-X^{\prime}, \cdots S_{n}-X^{\prime}$ are all distinct.

Example with $k=0$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1,4\},\{3\},\{2,4\},\{1,2,4\}\}$

Example with $k=1$
$X=\{1,2,3,4,5\}$ and $\mathcal{S}=\{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$
False for $k=-1$
$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\emptyset,\{1\},\{2\},\{3\},\{4\}\}$

A theorem of Bondy - proof

Proof

Note: if $S_{1}, S_{2} \subseteq X$ and $S_{1}-x=S_{2}-x$, then $S_{1} \Delta S_{2}=\{x\}$.
By contradiction:
Construct a graph $H=(\mathcal{S}, E)$ where for each $x \in X$, choose one unique (i, j) s.t. $S_{i} \Delta S_{j}=\{x\}$, and connect S_{i} to S_{j}.
Claim: H has no cycle - a contradiction!

Saying the same thing in another language

Bipartite representation

We can build a bipartite graph $B=(\mathcal{S}+X, E)$ where S_{i} connected to x iff $x \in S_{i}$.
Bondy's theorem states that there exists a discriminating code (see Charon, Cohen, Lobstein, Hudry, 2006) of \mathcal{S} using X of size at most $|X|-1$ in B.

Saying the same thing in another language

Bipartite representation

We can build a bipartite graph $B=(\mathcal{S}+X, E)$ where S_{i} connected to x iff $x \in S_{i}$.
Bondy's theorem states that there exists a discriminating code (see Charon, Cohen, Lobstein, Hudry, 2006) of \mathcal{S} using X of size at most $|X|-1$ in B.

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Discriminating codes and identifying codes

Remark

Let B be the bipartite graph representing \mathcal{S}, X If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D. A discriminating code in B is a separating set of D !

Discriminating codes and identifying codes

Remark

Let B be the bipartite graph representing \mathcal{S}, X If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D. A discriminating code in B is a separating set of D !

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Discriminating codes and identifying codes

Remark

Let B be the bipartite graph representing \mathcal{S}, X If B has a matching from \mathcal{S} to X, B is the neighbourhood graph of a digraph D.
A discriminating code in B is a separating set of D !

Example

$X=\{1,2,3,4\}$ and $\mathcal{S}=\{\{1\},\{1,3\},\{2,3\},\{1,3,4\}\}$

Application to Bondy's setting

Corollary (F., Naserasr, 2010)

In Bondy's theorem, if we have $S_{i}-x=\emptyset$ for some S_{i} and for any good choice of x, then B is the neighbourhood graph of a digraph in $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

In other words
This happens iff for every $S_{i}, S_{j} \in \mathcal{S}, S_{i} \cap S_{j} \neq \emptyset \Rightarrow S_{i} \subseteq S_{j}$ or $S_{j} \subseteq S_{i}$.

Application to Bondy's setting - Hall's theorem

Marriage theorem (Hall, 1935)
Let $B=(X+Y, E)$ be a bipartite graph. B has a matching from X to Y iff for all $X^{\prime} \subseteq X,\left|X^{\prime}\right| \leq\left|N\left(X^{\prime}\right)\right|$.

Application to Bondy's setting - a proof

Proof (1)

If $|X|>|\mathcal{S}|(|X|=n+k, k \geq 0)$: by Bondy's theorem we can remove $k+1$ elements of X.
At most one can create an \emptyset, so we choose another one of the $k+1$.
(\Leftarrow) By our theorem: $\overrightarrow{\gamma^{\mathrm{D}}}=n \Rightarrow$ separating set of size $\geq n-1$

Application to Bondy's setting - a proof

Proof (2) (\Rightarrow)

- If B has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset \mathcal{S}_{1} of \mathcal{S} s.t. $\left|\mathcal{S}_{1}\right|>\left|N\left(\mathcal{S}_{1}\right)\right|$.

Upper bound and Δ : a corollary and a question

Corollary

Let G be a twin-free graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{1 \mathbb{D}}(G) \leq n-2$.

Upper bound and Δ : a corollary and a question

Corollary

Let G be a twin-free graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\mathbb{D}}(G) \leq n-2$.

Question

Is $\gamma^{\text {ID }}$ bounded by a function of n and Δ ?

Upper bound and \triangle - two propositions

Proposition 1

Let G be a twin-free graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and $V-y$ is an identifying code of G.

Upper bound and \triangle - two propositions

Proposition 1

Let G be a twin-free graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and $V-y$ is an identifying code of G.

Proposition 2

Let G be a twin-free graph, and I a 4-independent set of G (all distances $\geq 4)$. If for all $x \in I, V-x$ is an identifying code of $G, V-I$ is also one.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a twin-free graph of maximum degree $\Delta . \gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree Δ. $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$.

Proof

- Consider a maximal 6-independant set I: distance between two vertices is at least 6 and $|I| \geq \frac{n}{\Theta\left(\Delta^{5}\right)}$
- For every $x \in I$, let $f(x)$ be the vertex found in Prop. 1.
- $V-f(I)$ is an identifying code of size at most $n-|I|$ by Prop. 2.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree $\Delta . \gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$.

Proof

- Consider a maximal 6-independant set I: distance between two vertices is at least 6 and $|I| \geq \frac{n}{\Theta\left(\Delta^{5}\right)}$
- For every $x \in I$, let $f(x)$ be the vertex found in Prop. 1.
- $V-f(I)$ is an identifying code of size at most $n-|I|$ by Prop. 2.

Remark

Can be improved to $n-\frac{n}{\Theta\left(\Delta^{4}\right)}$ with a bit of modifications.

A first bound

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree $\Delta . \gamma^{1 \mathrm{D}}(G) \leq n-\frac{n}{\Theta\left(\Delta^{5}\right)}$.

Proof

- Consider a maximal 6-independant set I : distance between two vertices is at least 6 and $|I| \geq \frac{n}{\Theta\left(\Delta^{5}\right)}$
- For every $x \in I$, let $f(x)$ be the vertex found in Prop. 1.
- $V-f(I)$ is an identifying code of size at most $n-|I|$ by Prop. 2.

Remark

Can be improved to $n-\frac{n}{\Theta\left(\Delta^{4}\right)}$ with a bit of modifications.

Question

Is this bound sharp?

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example: $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices

Example: $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example: $H=K_{4}$

For every clique, at least $\Delta-1$ vertices in the code $\Rightarrow \gamma^{\mathrm{ID}}(G)=m \cdot(\Delta-1)=n-\frac{n}{\Delta}$

Triangle-free graphs

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free connected triangle-free graph G with $n \geq 3$ vertices and maximum degree Δ. Then $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{3 \Delta+3}$. If G has minimum degree $3, \gamma^{\text {ID }}(G) \leq n-\frac{n}{2 \Delta+2}$.

Triangle-free graphs

Thm (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a twin-free connected triangle-free graph G with $n \geq 3$ vertices and maximum degree Δ. Then $\gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{3 \Delta+3}$. If G has minimum degree $3, \gamma^{\mathrm{ID}}(G) \leq n-\frac{n}{2 \Delta+2}$.

Proof

- Consider a maximal independent set $I:|S| \geq \frac{n}{\Delta+1}$
- $C=V \backslash I$
- Some vertices may not be identified correctly
- \rightarrow modify C locally. It is possible to add not too much vertices to C.

Is this bound sharp?

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $\gamma^{\mathrm{ID}}\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Is this bound sharp?

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $\gamma^{\mathrm{ID}}\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Let T_{k}^{h} be the k-ary tree with h levels and n
vertices. $\gamma^{\mathrm{ID}}\left(T_{k}^{h}\right)=\left\lceil\frac{k^{2} n}{k^{2}+k+1}\right\rceil=n-\frac{n}{\Delta-1+\frac{1}{\Delta}}$.

A conjecture

Conjecture (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a connected twin-free graph of maximum degree Δ. Then $\gamma^{\text {ID }}(G) \leq n-\frac{n}{\Delta+1}$.

Graphs of girth at least 5

Thm (F., Klasing, Kosowski, Raspaud, 2009)
Let G be a twin-free graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$. Then $\gamma^{\mathrm{ID}}(G) \leq \frac{7 n}{8}+1$.

Graphs of girth at least 5

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$. Then $\gamma^{\text {ID }}(G) \leq \frac{7 n}{8}+1$.

Proof

- Construct a DFS spanning tree T of G
- Partition the vertices into 4 classes $V_{0}, V_{1}, V_{2}, V_{3}$ depending on their level in T
- Take $C=V \backslash V_{i}$ as a code, $\left|V_{i}\right| \geq \frac{n}{4}:\left|V_{i}\right| \leq \frac{3 n}{4}$
- C must be modified locally; the size of C might increase

Graphs of girth at least 5

Graphs of girth at least 5 - bad example

$$
G_{k, p}: \delta=2, \Delta=p+2, n=(5 p+1) k
$$

$\gamma^{\mathrm{ID}}\left(G_{k, p}\right)=3 p k=\frac{3}{5}(n-k) \rightarrow \frac{3 n}{5}$

A general lower bound

Thm (Karpovsky et al. 98)
Let G be a twin-free graph with n vertices. Then $\gamma^{1 \mathrm{D}}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

A general lower bound

Thm (Karpovsky et al. 98)
Let G be a twin-free graph with n vertices. Then $\gamma^{1 \mathbb{D}}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

Characterization

The graphs reaching this bound have been characterized (Moncel 06)

Lower bound and maximum degree

Thm (Karpovsky et al. 98)
Let G be a twin-free graph with n vertices and maximum degree Δ. Then $\gamma^{\mathrm{ID}}(G) \geq \frac{2 n}{\Delta+2}$.

Graphs reaching the lower bound

Characterization (F., Klasing, Kosowski, Raspaud, 2009)

- n vertices
- independent set C of size $\frac{2 n}{\Delta+2}$ (id. code)
- every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta+2}$ vertices connected to exactly 2 code vertices each

Graphs reaching the lower bound

Characterization (F., Klasing, Kosowski, Raspaud, 2009)

- n vertices
- independent set C of size $\frac{2 n}{\Delta+2}$ (id. code)
- every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta+2}$ vertices connected to exactly 2 code vertices each

Construction

- Take a simple Δ-regular graph D (code)
- Put a new vertex on each edge of D
- Eventually add edges between the new vertices

Graphs reaching the lower bound - example

Example: $D=$ Petersen graph, $\Delta=3, n=10$

Graphs reaching the lower bound - example

Example: $D=$ Petersen graph, $\Delta=3, n=10$

Graphs reaching the lower bound - example

Example: $D=$ Petersen graph, $\Delta=3, n=10$

