Extremal cardinalities of identifying codes and related problems

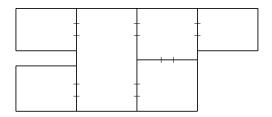
Joint works with: E. Guerrini, R. Klasing, A. Kosowski, M. Kovše, R. Naserasr, A. Parreau, A. Raspaud, P. Valicov

LaBRI

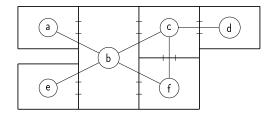
April 16, 2010

- Introduction, definitions, examples
- ⁽²⁾ Characterization of graphs having $\gamma^{\text{ID}} = n 1$
- So Characterization of digraphs having $\overrightarrow{\gamma^{\text{ID}}} = n + \text{applications to Bondy's theorem}$
- ${ \ \, {\rm O} \ \ \, {\rm Bounding} \ \, \gamma^{\rm \tiny ID} \ \, {\rm by} \ \, n \ \, {\rm and} \ \, \Delta}$

simple, undirected graph: models a building

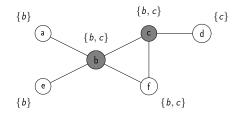


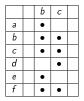
simple, undirected graph: models a building



simple detectors: able to detect an intruder in a neighbouring room

goal: locate an eventual intruder



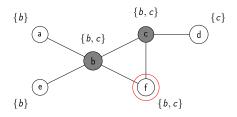


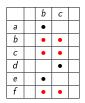
Locating an intruder in a building

simple detectors: able to detect an intruder in a neighbouring room

goal: locate an eventual intruder

intruder in room f





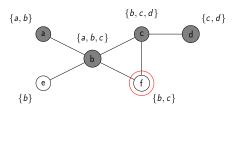
Locating an intruder in a building

simple detectors: able to detect an intruder in a neighbouring room

goal: locate an eventual intruder

intruder in room f

the *identifying sets* of all vertices must be distinct



	а	b	с	d
а	٠	•		
b	٠	٠	٠	
с		٠	٠	٠
d			٠	٠
е		٠		
f		٠	•	

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$.

Definition: identifying code of G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G: for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Let N[u] be the set of vertices v s.t. $d(u, v) \leq 1$.

Definition: identifying code of G (Karpovsky et al. 1998) subset C of V such that:

- C is a dominating set in G: for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation

 $\gamma^{\mathsf{ID}}(G)$: minimum cardinality of an identifying code of G

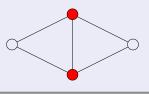
Remark: not all graphs have an identifying code

u and *v* are *twins* if N[u] = N[v]. A graph is *identifiable* iff it is *twin-free* (i.e. it has no twin vertices).

Remark: not all graphs have an identifying code

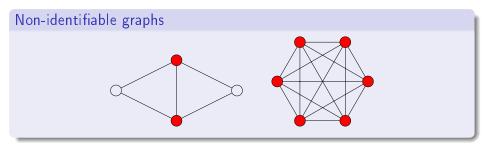
u and *v* are *twins* if N[u] = N[v]. A graph is *identifiable* iff it is *twin-free* (i.e. it has no twin vertices).

Non-identifiable graphs



Remark: not all graphs have an identifying code

u and *v* are *twins* if N[u] = N[v]. A graph is *identifiable* iff it is *twin-free* (i.e. it has no twin vertices).



Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \ge 3$ vertices and at least one edge. Then $\gamma^{\mathsf{ID}}(G) \le n-1.$

Thm (Gravier, Moncel 2007)

Let G be a twin-free graph with $n \geq 3$ vertices and at least one edge. Then $\gamma^{\mathsf{ID}}(G) \leq n-1.$

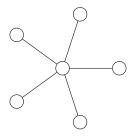
Thm (Charon, Hudry, Lobstein, 2007 + Skaggs, 2007) For all $n \ge 3$, there exist twin-free graphs with n vertices and $\gamma^{\text{ID}}(G) = n - 1$.

Recall the definition

- C is a dominating set in G: for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

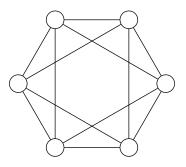
Recall the definition

- C is a dominating set in G: for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$



Recall the definition

- C is a dominating set in G: for all $u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating set in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$



Conjecture (Charon, Hudry, Lobstein, 2008)

$$\gamma^{\text{ID}}(G) = n - 1 \text{ iff } G \in \{P_4, K_n \setminus M, K_{1,n-1}\}.$$

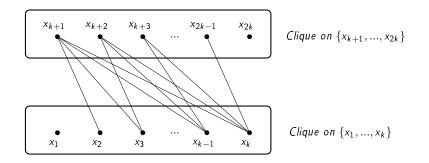
A class of graphs called ${\cal A}$

 G^r : graph where x, y are adjacent iff $d(x, y) \leq r$ in G

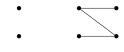
Definition: graph A_k

$$V(A_k) = \{x_1, \dots, x_{2k}\}.$$

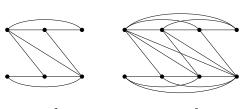
 $x_i \text{ connected to } x_j \text{ iff } |j-i| \le k-1$
 $A_1 = \overline{K_2}; \text{ for } k \ge 2, A_k = P_{2k}^{k-1}$



A class of graphs called \mathcal{A} - examples



 $A_1 = \overline{K_2}$ $A_2 = P_4$



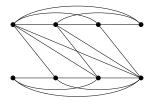
 $A_3 = P_6^2$

 $A_4 = P_8^3$

Properties

Proposition

Let
$$k \ge 2$$
, $n = 2k$. $\gamma^{\text{ID}}(A_k) = n - 1$.



Remark

In every minimum code C of A_k , there exists a vertex x such that C = N[x].

Join operation

 $G_1\bowtie G_2$: disjoint copies of G_1 and G_2 + all possible edges between G_1 and G_2

Definition

Let (\mathcal{A},\bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie .

Join operation

 $G_1\bowtie G_2$: disjoint copies of G_1 and G_2 + all possible edges between G_1 and G_2

Definition

Let (\mathcal{A},\bowtie) be the closure of graphs of \mathcal{A} with respect to \bowtie .

Proposition

Let G be a graph of
$$(\mathcal{A},\bowtie)\setminus \{\overline{K_2}\}$$
 with n vertices. $\gamma^{\mathsf{ID}}(G) = n-1$.

Proposition

Let G be a graph of (\mathcal{A}, \bowtie) with n-1 vertices. $\gamma^{\mathsf{ID}}(G \bowtie \mathcal{K}_1) = n-1$.

Thm (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2010) Let G be a twin-free graph on n vertices. $\gamma^{\text{ID}}(G) = n - 1$ iff $G \in S \cup (A, \bowtie) \cup (A, \bowtie) \bowtie K_1$ and $G \neq \overline{K_2}$.

Proposition

Let G be a twin-free graph and $S \subseteq V$ such that G - S is twin-free. Then $\gamma^{\mathsf{ID}}(G) \leq \gamma^{\mathsf{ID}}(G - S) + |S|$.

Corollary

Let G be a graph with $\gamma^{|D}(G) = |V(G)| - 1$, then there is a vertex x of G such that $\gamma^{|D}(G - x) = |V(G - x)| - 1$

Proof

- By contradiction: take a minimum counterexample, G
- By the proposition, there is a vertex x such that $\gamma^{\text{ID}}(G-x) = |V(G-x)| 1$. Hence $G-x \in S \cup (\mathcal{A}, \bowtie) \cup (\mathcal{A}, \bowtie) \bowtie K_1$ and $G \neq \overline{K_2}$.
- For the three cases, show that by adding a vertex to G x, we either stay in the family or decrease γ^{ID} .

Definition: r-identifying codes

subset C of V such that:

- C is an r-dominating set in G: for all $u \in V$, $B_r(u) \cap C \neq \emptyset$, and
- C is an r-separating set in G: $\forall u \neq v$ of V, $B_r(u) \cap C \neq B_r(v) \cap C$

Definition: r-identifying codes

subset C of V such that:

- C is an r-dominating set in G: for all $u \in V$, $B_r(u) \cap C \neq \emptyset$, and
- C is an r-separating set in G: $\forall u \neq v$ of V, $B_r(u) \cap C \neq B_r(v) \cap C$

Remark

• C is an r-identifying code of G iff C is a 1-identifying code of G^r

•
$$\rightarrow \gamma_r^{\text{ID}}(G) = \gamma^{\text{ID}}(G^r)$$

•
$$\rightarrow \{ G \mid \gamma_r^{\mathsf{ID}}(G) = n-1 \} = \{ G \mid G^r \in (\mathcal{S} \cup (\mathcal{A}, \bowtie) \cup (\mathcal{A}, \bowtie) \bowtie \mathcal{K}_1) \setminus \overline{\mathcal{K}_2} \}$$

Question

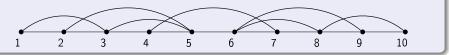
Let $r \ge 2$ and $k \ge 2$. What are the graphs G such that $G^r = A_k = P_{2k}^{k-1}$?

Question

Let $r \ge 2$ and $k \ge 2$. What are the graphs G such that $G^r = A_k = P_{2k}^{k-1}$?

Partial answer

- All P_{2k}^s such that $s \cdot r = k 1$. Example: $(P_{10}^2)^2 = P_{10}^4$ hence $\gamma_2^{\text{ID}}(P_{10}^2) = 9$.
- Those graphs minus some edges...
- And other ones! Example: G such that $G^2 = P_{10}^4$ (so $\gamma_2^{\text{ID}}(G) = 9$)



ldcodes in digraphs

Let $N^{-}[u]$ be the set of *incoming neighbours* of u, plus u

Definition: identifying code of a digraph D = (V, A)

subset C of V such that:

- C is a dominating set in D: for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of V, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$

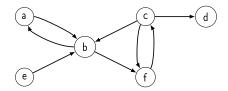
Idcodes in digraphs

Let $N^{-}[u]$ be the set of *incoming neighbours* of u, plus u

Definition: identifying code of a digraph D = (V, A)

subset C of V such that:

- C is a dominating set in D: for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of V, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$



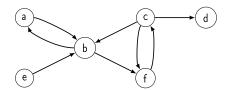
Idcodes in digraphs

Let $N^{-}[u]$ be the set of *incoming neighbours* of u, plus u

Definition: identifying code of a digraph D = (V, A)

subset C of V such that:

- C is a dominating set in D: for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- for all $u \neq v$ of V, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$



DefinitionLet $\overrightarrow{\gamma^{\text{ID}}}(D)$ be the minimum size of an identifying code of DF. Foucaud (LaBRI)Idcodes: extremal cardinalitiesApril 16, 201025 / 53

Which graphs need *n* vertices?

Two operations

- $D_1\oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: D joined to K_1 by incoming arcs only

Which graphs need *n* vertices?

Two operations

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: D joined to K_1 by incoming arcs only

Definition

Let $(K_1, \oplus, \overrightarrow{d})$ be the digraphs which can be built from K_1 by successive application of \oplus and \overrightarrow{d} .

Which graphs need *n* vertices?

Two operations

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: D joined to K_1 by incoming arcs only

Definition

Let $(K_1, \oplus, \overrightarrow{d})$ be the digraphs which can be built from K_1 by successive application of \oplus and \overrightarrow{d} .

Remark

Every element of $(K_1, \oplus, \overrightarrow{\triangleleft})$ is the transitive closure of a forest of rooted oriented trees.

Which graphs need *n* vertices?

Two operations

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: D joined to K_1 by incoming arcs only

Definition

Let $(K_1, \oplus, \overrightarrow{d})$ be the digraphs which can be built from K_1 by successive application of \oplus and \overrightarrow{d} .

Remark

Every element of $(K_1, \oplus, \overrightarrow{\triangleleft})$ is the transitive closure of a forest of rooted oriented trees.

Proposition

Let
$$D$$
 be a digraph of $(K_1,\oplus,\overrightarrow{\triangleleft})$ on n vertices. $\overrightarrow{\gamma^{\mathsf{ID}}}(D)=n.$

A characterization

Thm (F., Naserasr, 2010)

Let D be a twin-free digraph on n vertices. $\overrightarrow{\gamma^{\text{iD}}}(G) = n$ iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

Thm (F., Naserasr, 2010)

Let D be a twin-free digraph on n vertices. $\overrightarrow{\gamma^{\mathsf{D}}}(G) = n$ iff $D \in (K_1, \oplus, \overrightarrow{\triangleleft})$.

A useful proposition (digraphs)

Let *D* be a digraph with $\overline{\gamma^{\text{iD}}}(G) = |V(D)| - 1$, then there is a vertex *x* of *D* such that $\overline{\gamma^{\text{iD}}}(D-x) = |V(D-x)| - 1$

Proof

- By contradiction: take a minimum counterexample, D
- By the proposition, there is a vertex x such that $\overrightarrow{\gamma^{\text{iD}}}(D-x) = |V(D-x)| 1$. Hence $D-x \in (K_1, \oplus, \overrightarrow{\triangleleft})$.
- Show that by adding a vertex to D x, we either stay in the family or decrease $\overrightarrow{\gamma^{\text{ID}}}$.

Let $S = \{S_1, S_2, \dots, S_n\}$ be a collection of distinct (possibly empty) subsets of an n + k-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots, S_n - X'$ are all distinct.

Let $S = \{S_1, S_2, \dots, S_n\}$ be a collection of distinct (possibly empty) subsets of an n + k-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots, S_n - X'$ are all distinct.

Example with k = 0 $X = \{1, 2, 3, 4\}$ and $S = \{\{1, 4\}, \{3\}, \{2, 4\}, \{1, 2, 4\}\}$

Let $S = \{S_1, S_2, \dots, S_n\}$ be a collection of distinct (possibly empty) subsets of an n + k-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots, S_n - X'$ are all distinct.

Example with k = 1

 $X = \{1,2,3,4,5\} \text{ and } \mathcal{S} = \{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

Let $S = \{S_1, S_2, \dots, S_n\}$ be a collection of distinct (possibly empty) subsets of an n + k-set X ($k \ge 0$). Then there is a (k + 1)-subset X' of X such that $S_1 - X', S_2 - X', \dots, S_n - X'$ are all distinct.

Example with k = 1

 $X = \{1,2,3,4,5\} \text{ and } \mathcal{S} = \{\{1,4,5\},\{3\},\{2,4,5\},\{1,2,4,5\}\}$

False for k = -1 $X = \{1, 2, 3, 4\}$ and $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}\}$

Proof

Note: if $S_1, S_2 \subseteq X$ and $S_1 - x = S_2 - x$, then $S_1 \Delta S_2 = \{x\}$. By contradiction: Construct a graph H = (S, E) where for each $x \in X$, choose one unique (i, j) s.t. $S_i \Delta S_j = \{x\}$, and connect S_i to S_j . Claim: H has no cycle - a contradiction!

Saying the same thing in another language

Bipartite representation

We can build a bipartite graph B = (S + X, E) where S_i connected to x iff $x \in S_i$.

Bondy's theorem states that there exists a *discriminating code* (see Charon, Cohen, Lobstein, Hudry, 2006) of S using X of size at most |X| - 1 in B.

Saying the same thing in another language

Bipartite representation

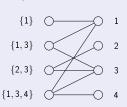
We can build a bipartite graph B = (S + X, E) where S_i connected to x iff $x \in S_i$.

Bondy's theorem states that there exists a *discriminating code* (see Charon, Cohen, Lobstein, Hudry, 2006) of S using X of size at most |X| - 1 in B.

Example

$$X = \{1, 2, 3, 4\}$$
 and $\mathcal{S} = \{\{1\}, \{1, 3\}, \{2, 3\}, \{1, 3, 4\}\}$

S



Х

Remark

Let *B* be the bipartite graph representing S, X If *B* has a matching from *S* to *X*, *B* is the neighbourhood graph of a digraph *D*. A discriminating code in *B* is a separating set of *D*!

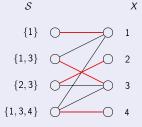
Discriminating codes and identifying codes

Remark

Let B be the bipartite graph representing S, X If B has a matching from S to X, B is the neighbourhood graph of a digraph D. A discriminating code in B is a separating set of D!

Example

$$X = \{1, 2, 3, 4\}$$
 and $\mathcal{S} = \{\{1\}, \{1, 3\}, \{2, 3\}, \{1, 3, 4\}\}$



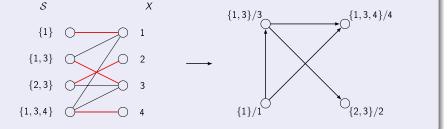
Discriminating codes and identifying codes

Remark

Let B be the bipartite graph representing S, X If B has a matching from S to X, B is the neighbourhood graph of a digraph D. A discriminating code in B is a separating set of D!

Example

$$X = \{1, 2, 3, 4\}$$
 and $\mathcal{S} = \{\{1\}, \{1, 3\}, \{2, 3\}, \{1, 3, 4\}\}$



Corollary (F., Naserasr, 2010)

In Bondy's theorem, if we have $S_i - x = \emptyset$ for some S_i and for any good choice of x, then B is the neighbourhood graph of a digraph in $(K_1, \oplus, \overrightarrow{\triangleleft})$.

In other words

This happens iff for every $S_i, S_j \in S$, $S_i \cap S_j \neq \emptyset \Rightarrow S_i \subseteq S_j$ or $S_j \subseteq S_i$.

Marriage theorem (Hall, 1935)

Let B = (X + Y, E) be a bipartite graph. B has a matching from X to Y iff for all $X' \subseteq X$, $|X'| \leq |N(X')|$.

Proof (1)

If |X| > |S| (|X| = n + k, $k \ge 0$): by Bondy's theorem we can remove k + 1 elements of X.

At most one can create an \emptyset , so we choose another one of the k + 1.

(
$$\Leftarrow$$
) By our theorem: $\overrightarrow{\gamma^{{}_{\mathsf{ID}}}}=n\Rightarrow$ separating set of size $\geq n-1$

Proof (2) (\Rightarrow)

- If B has a perfect matching: use our theorem.
- Otherwise, by Hall's theorem, there is a subset S_1 of S s.t. $|S_1| > |N(S_1)|$.



Corollary

Let G be a twin-free graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text{\tiny ID}}(G) \leq n-2$.

Corollary

Let G be a twin-free graph on n vertices and maximum degree $\Delta \leq n-3$. Then $\gamma^{\text{ID}}(G) \leq n-2$.

Question

Is γ^{ID} bounded by a function of *n* and Δ ?

Proposition 1

Let G be a twin-free graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and V - y is an identifying code of G.

Proposition 1

Let G be a twin-free graph, and x a vertex of G. There exists a vertex y, $d(x, y) \leq 1$, and V - y is an identifying code of G.

Proposition 2

Let G be a twin-free graph, and I a 4-independent set of G (all distances \geq 4). If for all $x \in I$, V - x is an identifying code of G, V - I is also one.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree Δ . $\gamma^{{}_{|D}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$.

Proof

- Consider a maximal 6-independant set *I*: distance between two vertices is at least 6 and |*I*| ≥ n/Θ(Δ⁵)
- For every $x \in I$, let f(x) be the vertex found in Prop. 1.
- V f(I) is an identifying code of size at most n |I| by Prop. 2.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$.

Proof

- Consider a maximal 6-independant set *I*: distance between two vertices is at least 6 and |*I*| ≥ n/Θ(Δ⁵)
- For every $x \in I$, let f(x) be the vertex found in Prop. 1.
- V f(I) is an identifying code of size at most n |I| by Prop. 2.

Remark

Can be improved to
$$n - \frac{n}{\Theta(\Delta^4)}$$
 with a bit of modifications.

Corollary (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph of maximum degree Δ . $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(\Delta^5)}$.

Proof

- Consider a maximal 6-independant set *I*: distance between two vertices is at least 6 and |*I*| ≥ n/Θ(Δ⁵)
- For every $x \in I$, let f(x) be the vertex found in Prop. 1.
- V f(I) is an identifying code of size at most n |I| by Prop. 2.

Remark

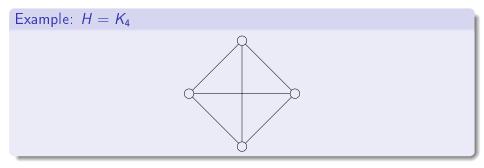
Can be improved to
$$n - \frac{n}{\Theta(\Delta^4)}$$
 with a bit of modifications.

Question

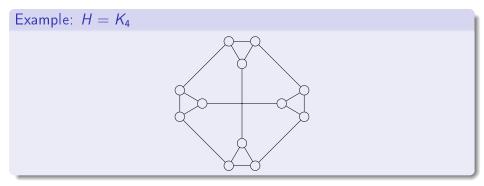
Is this bound sharp?

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices

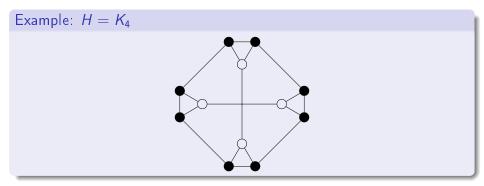


- Take any Δ -regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices



Connected cliques

- Take any Δ -regular graph H with m vertices
- ullet replace any vertex of H by a clique of Δ vertices



For every clique, at least $\Delta - 1$ vertices in the code $\Rightarrow \gamma^{\text{ID}}(G) = m \cdot (\Delta - 1) = n - \frac{n}{\Delta}$

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free connected triangle-free graph G with $n \ge 3$ vertices and maximum degree Δ . Then $\gamma^{\text{ID}}(G) \le n - \frac{n}{3\Delta+3}$. If G has minimum degree 3, $\gamma^{\text{ID}}(G) \le n - \frac{n}{2\Delta+2}$.

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free connected triangle-free graph G with $n \ge 3$ vertices and maximum degree Δ . Then $\gamma^{\text{ID}}(G) \le n - \frac{n}{3\Delta + 3}$. If G has minimum degree 3, $\gamma^{\text{ID}}(G) \le n - \frac{n}{2\Delta + 2}$.

Proof

- Consider a maximal independent set $I: |S| \ge \frac{n}{\Delta+1}$
- $C = V \setminus I$
- Some vertices may not be identified correctly
- \rightarrow modify C locally. It is possible to add not too much vertices to C.

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n = 2m vertices. $\gamma^{\text{ID}}(K_{m,m}) = 2m - 2 = n - \frac{n}{\Delta}$.

Proposition

Let $K_{m,m}$ be the complete bipartite graph with n = 2m vertices. $\gamma^{\text{ID}}(K_{m,m}) = 2m - 2 = n - \frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Let T_k^h be the k-ary tree with h levels and nvertices $\gamma^{\text{ID}}(T_k^h) = \left\lceil \frac{k^2 n}{k^2 + k + 1} \right\rceil = n - \frac{n}{\Delta - 1 + \frac{1}{\Delta}}.$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009) Let G be a connected twin-free graph of maximum degree Δ . Then $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Delta+1}$.

Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph with n vertices, of minimum degree $\delta \ge 2$ and girth $g \ge 5$. Then $\gamma^{\text{ID}}(G) \le \frac{7n}{8} + 1$.

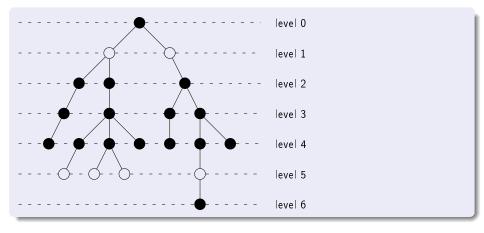
Thm (F., Klasing, Kosowski, Raspaud, 2009)

Let G be a twin-free graph with n vertices, of minimum degree $\delta \ge 2$ and girth $g \ge 5$. Then $\gamma^{\text{ID}}(G) \le \frac{7n}{8} + 1$.

Proof

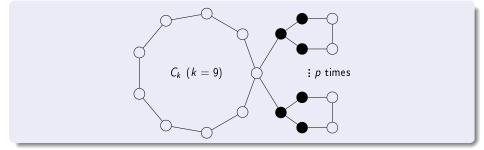
- Construct a DFS spanning tree T of G
- Partition the vertices into 4 classes V₀, V₁, V₂, V₃ depending on their level in T
- Take $C = V \setminus V_i$ as a code, $|V_i| \ge \frac{n}{4}$: $|V_i| \le \frac{3n}{4}$
- C must be modified locally; the size of C might increase

Graphs of girth at least 5



Graphs of girth at least 5 - bad example

$$G_{k,p}: \delta = 2, \Delta = p+2, n = (5p+1)k$$



 $\gamma^{\text{ID}}(G_{k,p}) = 3pk = \frac{3}{5}(n-k) \to \frac{3n}{5}$

Thm (Karpovsky et al. 98)

Let G be a twin-free graph with n vertices. Then $\gamma^{D}(G) \ge \lceil \log_2(n+1) \rceil$.

Thm (Karpovsky et al. 98)

Let G be a twin-free graph with n vertices. Then $\gamma^{\mathsf{ID}}(G) \geq \lceil \log_2(n+1) \rceil$.

Characterization

The graphs reaching this bound have been characterized (Moncel 06)

Thm (Karpovsky et al. 98)

Let G be a twin-free graph with n vertices and maximum degree Δ . Then $\gamma^{\text{ID}}(G) \geq \frac{2n}{\Delta+2}$.

Characterization (F., Klasing, Kosowski, Raspaud, 2009)

- n vertices
- independent set C of size $\frac{2n}{\Delta+2}$ (id. code)
- ullet every vertex of ${\cal C}$ has exactly Δ neighbours
- $\frac{\Delta n}{\Delta + 2}$ vertices connected to exactly 2 code vertices each

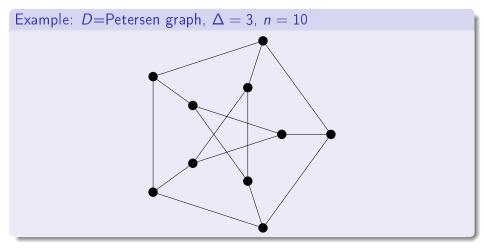
Characterization (F., Klasing, Kosowski, Raspaud, 2009)

- n vertices
- independent set C of size $\frac{2n}{\Delta+2}$ (id. code)
- ullet every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta + 2}$ vertices connected to exactly 2 code vertices each

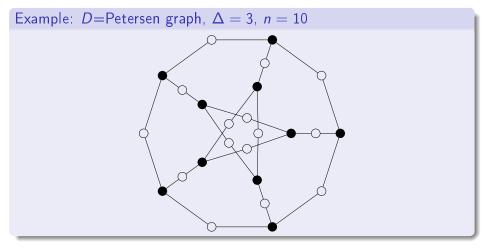
Construction

- Take a simple Δ -regular graph D (code)
- Put a new vertex on each edge of D
- Eventually add edges between the new vertices

Graphs reaching the lower bound - example



Graphs reaching the lower bound - example



Graphs reaching the lower bound - example

