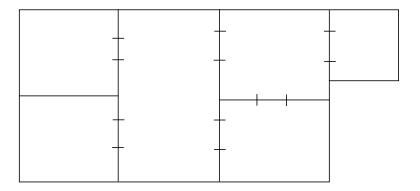
Bounding the identifying code number of a graph using its degree parameters

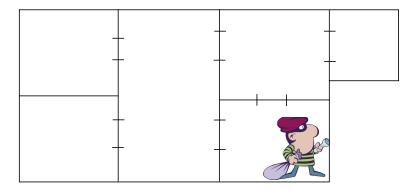
(a probabilistic approach)

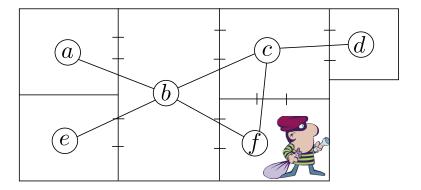
Florent Foucaud (LaBRI)

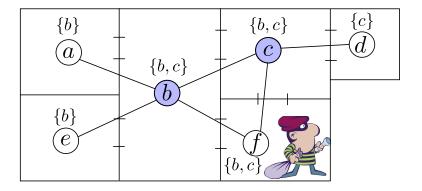
GT G&A - 29th April 2011

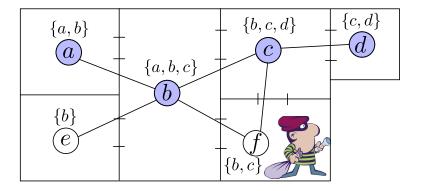
joint work with Guillem Perarnau (UPC, Barcelona)

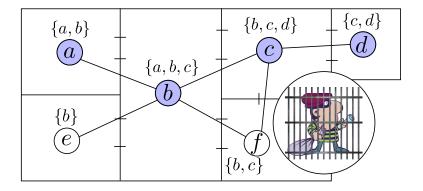


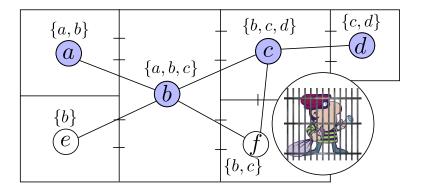












How many detectors do we need?

Definition - Identifying code of *G* (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Definition - Identifying code of G (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V such that:

- C is a dominating set in G: $\forall u \in V$, $N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V, $N[u] \cap C \neq N[v] \cap C$

Notation - Identifying code number

 $\gamma^{\text{ID}}(G)$: minimum cardinality of an identifying code of G

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

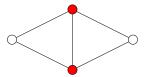
A graph is identifiable iff it is twin-free (i.e. it has no twins).

Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).

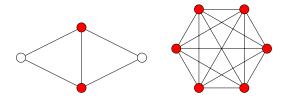


Remark

Not all graphs have an identifying code!

Twins = pair u, v such that N[u] = N[v].

A graph is identifiable iff it is twin-free (i.e. it has no twins).



Let G be an identifiable graph with at least one edge, then

 $\lceil \log_2(n+1) \rceil \leq \gamma^{\text{\tiny ID}}(G) \leq n-1$

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{{\scriptscriptstyle {\rm ID}}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

 $rac{2n}{d+2} \leq \gamma^{\text{ID}}(G)$

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{{\scriptscriptstyle {\rm ID}}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$rac{2n}{d+2} \leq \gamma^{\text{ID}}(G)$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then $\gamma^{\rm ID}(G) \leq n - \tfrac{n}{d} + O(1)$

Let G be an identifiable graph with at least one edge, then

$$\lceil \log_2(n+1) \rceil \leq \gamma^{{\scriptscriptstyle {\rm ID}}}(G) \leq n-1$$

Theorem (Karpovsky, Chakrabarty, Levitin, 1998)

Let G be an identifiable graph with maximum degree d, then

$$rac{2n}{d+2} \leq \gamma^{\mathsf{ID}}(G)$$

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then $\gamma^{\rm ID}(G) \leq n - \tfrac{n}{d} + O(1)$

This would be tight. True for d = 2 and d = n - 1.

Previous results (2/2)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then $\gamma^{\rm ID}(G) \leq n - \tfrac{n}{d} + O(1)$

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Let G be a connected identifiable graph of maximum degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^5)}$$

If G is d-regular, $\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^3)}$

Previous results (2/2)

Conjecture (F., Klasing, Kosowski, Raspaud, 2009+)

Let G be a connected nontrivial identifiable graph of max. degree d. Then $\gamma^{\rm ID}(G) \leq n - \tfrac{n}{d} + O(1)$

Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)

Let G be a connected identifiable graph of maximum degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^5)}$$

If G is d-regular, $\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^3)}$

Theorem (F., Klasing, Kosowski, Raspaud, 2009+)

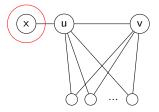
Let G be a connected identifiable triangle-free graph of max. degree d. Then

$$\gamma^{\text{ID}}(G) \leq n - rac{n}{3d+3}$$

If G is d-regular, $\gamma^{\text{ID}}(G) \leq n - rac{n}{2d+2}$

u, v such that $N[v]\Delta N[u] = \{x\}$

Then $x \in C$, forced by uv.



Proposition Let f(G) be the proportion of non forced vertices of G. Then $\frac{1}{d+1} \le f(G) \le 1$

This result is tight for a graph of max. degree d = n - 1. Actually, we believe $\frac{1}{d} - O(\frac{1}{n}) \le f(G)$ holds.

Proposition

Let f(G) be the proportion of non forced vertices of G. Then

$$\frac{1}{d+1} \leq f(G) \leq 1$$

Lemma Bertrand, Hudry, 2005

Let G be an identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex y in N[x].

Proposition

Let f(G) be the proportion of non forced vertices of G. Then

$$\frac{1}{d+1} \leq f(G) \leq 1$$

Lemma Bertrand, Hudry, 2005

Let G be an identifiable graph having no isolated vertices. Let x be a vertex of G. There exists a non forced vertex y in N[x].

Corollary

The set S of non-forced vertices forms a dominating set. Hence $|S| \ge \frac{n}{d+1}$.

Theorem (F., Perarnau, 2011+)

Let G be an identifiable graph of maximum degree d having no isolated vertices. Then

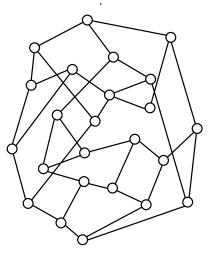
$$\gamma^{\mathsf{ID}}(\mathsf{G}) \leq \left\{ egin{array}{c} \left(1 - rac{f(\mathsf{G})}{\Theta(d^{3/2})}
ight) \mathsf{n} & ext{if } f(\mathsf{G}) = \omega(d^{-1/2}) \ \left(1 - rac{f(\mathsf{G})^2}{\Theta(d)}
ight) \mathsf{n} & ext{if } f(\mathsf{G}) = O(d^{-1/2}) \end{array}
ight.$$

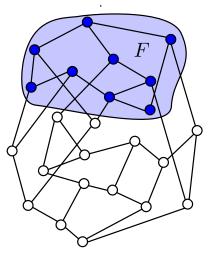
Corollary

By the previous Proposition we know $f(G) \ge \frac{1}{d+1}$, then

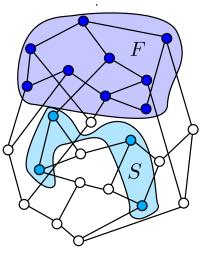
$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(d^3)}$$

Moreover if G is d-regular, $f(G) = 1$ and $\gamma^{\text{ID}}(G) \leq n - \frac{n}{\Theta(d^{3/2})}$.



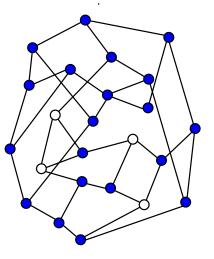


• Select a random set S from $V' = V \setminus F$: each vertex $v \in S$ with prob. p.



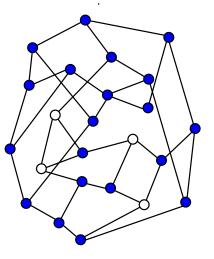
• Select a random set S from $V' = V \setminus F$: each vertex $v \in S$ with prob. p.

• $\mathcal{C} = V \setminus S$



• Select a random set S from $V' = V \setminus F$: each vertex $v \in S$ with prob. p.

• $\mathcal{C} = V \setminus S$



Theorem (Weighted Local Lemma: particular case of the Local Lemma Erdős, Lovász, 1973 - Molloy, Reed, 2001¹)

Let $0 and <math>\mathcal{E} = \{E_1, \ldots, E_m\}$ be a set of "bad" events such that each E_i is mutually independent of $\mathcal{E} \setminus (\mathcal{D}_i \cup \{E_i\})$ where $\mathcal{D}_i \subseteq \mathcal{E}$, and • $Pr(E_i) < p^{t_i}$

•
$$\sum_{E_j \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$$

Then $Pr(\bigcap_{i=1}^M \overline{E_i}) \geq \prod_{i=1}^M (1-(2p)^{t_i}) \geq \exp\left\{-\sum_{i=1}^m (2p)^{t_i}\right\} > 0.$

^{1:} Molloy and Reed - Graph colouring and the probabilistic method, 2001

Theorem (Weighted Local Lemma: particular case of the Local Lemma Erdős, Lovász, 1973 - Molloy, Reed, 2001¹)

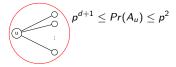
Let $0 and <math>\mathcal{E} = \{E_1, \dots, E_m\}$ be a set of "bad" events such that each E_i is mutually independent of $\mathcal{E} \setminus (\mathcal{D}_i \cup \{E_i\})$ where $\mathcal{D}_i \subseteq \mathcal{E}$, and • $Pr(E_i) \leq p^{t_i}$ • $\sum_{E_i \in D_i} (2p)^{t_j} \leq \frac{t_i}{2}$

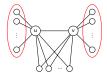
Then
$$Pr(\bigcap_{i=1}^{M}\overline{E_i}) \geq \prod_{i=1}^{M}(1-(2p)^{t_i}) \geq \exp\left\{-\sum_{i=1}^{m}(2p)^{t_i}\right\} > 0.$$

 \implies If the dependencies are "rare":

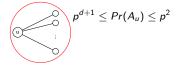
with non-zero probability none of the bad events occur

^{1:} Molloy and Reed - Graph colouring and the probabilistic method, 2001



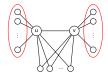


$$p^{2d-2} \leq \Pr(B_{u,v}) \leq p^2$$

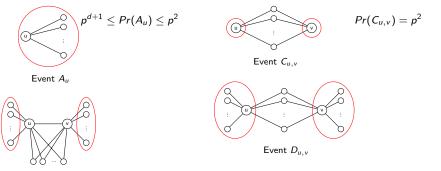


$$Pr(C_{u,v}) = p^2$$

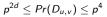
Event A_u



$$p^{2d-2} \leq Pr(B_{u,v}) \leq p^2$$



$$p^{2d-2} \leq \Pr(B_{u,v}) \leq p^2$$



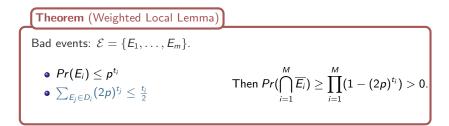
Proof (regular case) - Lovász Local Lemma, technicalities

Theorem (Weighted Local Lemma)Bad events: $\mathcal{E} = \{E_1, \dots, E_m\}.$ • $Pr(E_i) \le p^{t_i}$ • $\sum_{E_j \in D_i} (2p)^{t_j} \le \frac{t_i}{2}$ Then $Pr(\bigcap_{i=1}^M \overline{E_i}) \ge \prod_{i=1}^M (1 - (2p)^{t_i}) > 0.$

Build the event-intersection table:

	A	В	С	D
A	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2 - d + 1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2 - 2d + 2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^2 + d - 2$
D	d + 2	$d^2 + d$	$d^3 - d$	2d - 4

Proof (regular case) - Lovász Local Lemma, technicalities



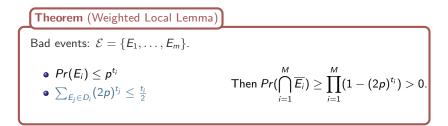
Build the event-intersection table:

	A	В	С	D
A	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2 - d + 1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2 - 2d + 2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^2 + d - 2$
D	d + 2	$d^2 + d$	$d^3 - d$	2d - 4

For an A-event, we need:

 $d^{2}(2p)^{d+1} + (d^{3} - 2d^{2} + 2d)(2p)^{2} + (d^{4} + d^{2} - 2d)(2p)^{3} + (d^{2} - d + 1)(2p)^{2} \leq \frac{2}{2} = 1$

Proof (regular case) - Lovász Local Lemma, technicalities



Build the event-intersection table:

	A	В	С	D
A	d ²	$d^3 - 2d^2 + 2d$	$d^4 + d^2 - 2d$	$d^2 - d + 1$
В	$2(d^2 - d + 1)$	$2d^3 - 4d^2 + 4d - 1$	$2d(d^3 - 3d^2 + 4d - 2)$	$d^2 - d$
С	$2d^2 + 2$	$2d(d^2 - 2d + 2)$	$2d^4 - 6d^3 + 9d^2 - 5d - 1$	$d^{2} + d - 2$
D	d + 2	$d^2 + d$	$d^3 - d$	2d - 4

For an A-event, we need:

 $d^2(2p)^{d+1} + (d^3 - 2d^2 + 2d)(2p)^2 + (d^4 + d^2 - 2d)(2p)^3 + (d^2 - d + 1)(2p)^2 \le \frac{2}{2} = 1$

Taking $p = \frac{1}{kd^{3/2}} \Longrightarrow$ LLL can be applied

There exists some set S such that no bad event occurs

There exists some set S such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

There exists some set S such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

Bu by the LLL we know more:

$$\Pr\left(\bigcap_{i=1}^{m}\overline{E_{i}}\right) > \exp\left\{-\sum_{i=1}^{m}(2p)^{t_{i}}
ight\}$$

There exists some set S such that no bad event occurs

And we also know: if $S = \emptyset$, $C = V \setminus S = V$ is a trivial code!

Bu by the LLL we know more:

$$\Pr\left(\bigcap_{i=1}^{m}\overline{E_i}\right) > \exp\left\{-\frac{5}{k^2d^2}n\right\}$$

The probability to have a good set S is at least $\exp\left\{-\frac{5}{k^2d^2}n\right\}$

Theorem (Chernoff bound)

Let X_1, \ldots, X_n a set of i.i.d random variables s.t. $Pr(X_i = 1) = p$ and $Pr(X_i = 0) = 1 - p$ and $X = \sum X_i$. Then $Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2np}\right\}$

Theorem (Chernoff bound)

Let X_1, \ldots, X_n a set of i.i.d random variables s.t. $Pr(X_i = 1) = p$ and $Pr(X_i = 0) = 1 - p$ and $X = \sum X_i$. Then $Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2np}\right\}$

Define the random variables

$$X_i = \left\{egin{array}{cc} 1 & ext{if } v_i \in C \ 0 & ext{otherwise} \end{array}
ight.$$

Then,

$$\Pr\left(\mathbb{E}(X) - X > \frac{1}{cd^{7/4}}n\right) \le \exp\left\{\frac{k}{2c^2d^2}n\right\}$$

Theorem (Chernoff bound)

Let X_1, \ldots, X_n a set of i.i.d random variables s.t. $Pr(X_i = 1) = p$ and $Pr(X_i = 0) = 1 - p$ and $X = \sum X_i$. Then $Pr(\mathbb{E}(X) - X > \alpha) \le \exp\left\{-\frac{\alpha^2}{2np}\right\}$

Define the random variables

$$X_i = \left\{egin{array}{cc} 1 & ext{if } v_i \in C \ 0 & ext{otherwise} \end{array}
ight.$$

Then,

$$\Pr\left(\mathbb{E}(X) - X > \frac{1}{cd^{7/4}}n\right) \le \exp\left\{\frac{k}{2c^2d^2}n\right\}$$

Probability that S is too small: at most $\exp\left\{-\frac{k}{2c^2d^2}n\right\}$

$\Pr(S \text{ good}) - \Pr(S \text{ too small}) > 0$

$\Pr(S \text{ good}) - \Pr(S \text{ too small}) > 0$

There exist S such that $V \setminus S$ is an identifying code

$$|S| = X \ge \mathbb{E}(X) - \frac{1}{cd^{7/4}}n \ge (1 + o(1))\frac{1}{2.52d^{3/2}}n$$

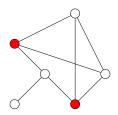
$\Pr(S \text{ good}) - \Pr(S \text{ too small}) > 0$

There exist S such that $V \setminus S$ is an identifying code

$$|S| = X \ge \mathbb{E}(X) - \frac{1}{cd^{7/4}}n \ge (1 + o(1))\frac{1}{2.52d^{3/2}}n$$

$$|\mathcal{C}| = |V \setminus S| \le n - \frac{1}{2.52d^{3/2}}n$$

Weak twins = pair u, v such that N(u) = N(v) but $u \not\sim v$.



Weak twins = pair u, v such that N(u) = N(v) but $u \not\sim v$.

Theorem (F., Perarnau, 2011+) Let *G* be a *d*-regular identifiable graph without weak twins, then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{41d}$$

Moreover there are graphs such that $\gamma^{\text{ID}}(G) = n - \frac{n}{d}$, so it is (asymptotically) best possible.

Weak twins = pair u, v such that N(u) = N(v) but $u \not\sim v$.

Theorem (F., Perarnau, 2011+)

Let G be a d-regular identifiable graph without weak twins, then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{41d}$$

Moreover there are graphs such that $\gamma^{D}(G) = n - \frac{n}{d}$, so it is (asymptotically) best possible.

Proof: Delete events *C*,

Weak twins = pair u, v such that N(u) = N(v) but $u \not\sim v$.

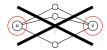
Theorem (F., Perarnau, 2011+)

Let G be a d-regular identifiable graph without weak twins, then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{41d}$$

Moreover there are graphs such that $\gamma^{D}(G) = n - \frac{n}{d}$, so it is (asymptotically) best possible.

Proof: Delete events *C*,



Event $C_{u,v}$

Weak twins = pair u, v such that N(u) = N(v) but $u \not\sim v$.

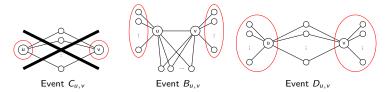
Theorem (F., Perarnau, 2011+)

Let G be a d-regular identifiable graph without weak twins, then

$$\gamma^{\text{ID}}(G) \leq n - \frac{n}{41d}$$

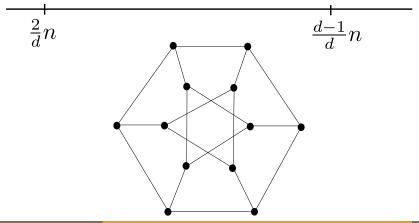
Moreover there are graphs such that $\gamma^{\text{ID}}(G) = n - \frac{n}{d}$, so it is (asymptotically) best possible.

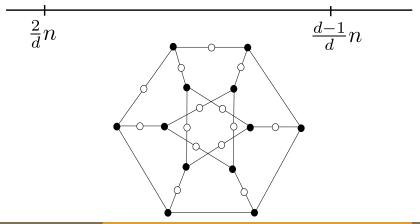
Proof: Delete events *C*, and split *B* and *D* depending on their size.

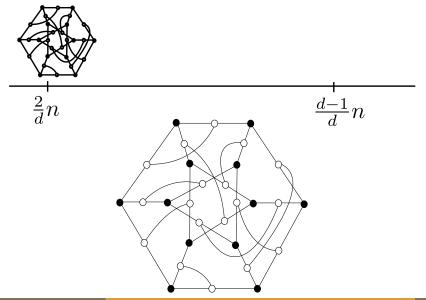


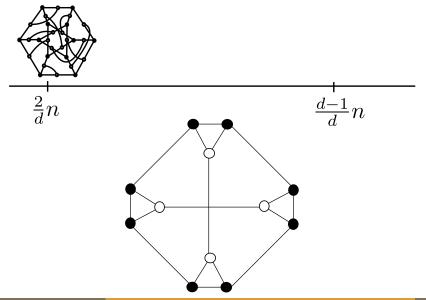
$$rac{2}{d}n$$
 $rac{d-1}{d}n$
 $\gamma^{\text{ID}}(G) \ge rac{2n}{d+2}$ Karpovsky et al. (1998)
 $\gamma^{\text{ID}}(G) \le n - rac{n}{d} + O(1)$ Conjecture - F. et al. (2009+)

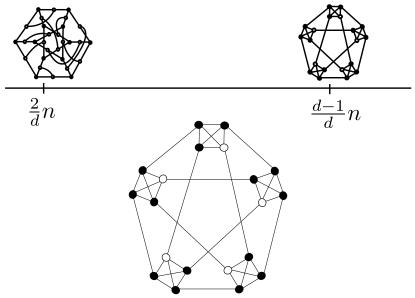
$$\gamma^{\text{ID}}(G) \geq rac{2n}{d+2}$$
 Karpovsky et al (1998)
 $\gamma^{\text{ID}}(G) \leq n - rac{n}{\Theta(d^{3/2})}$ F., Perarnau (2011+)

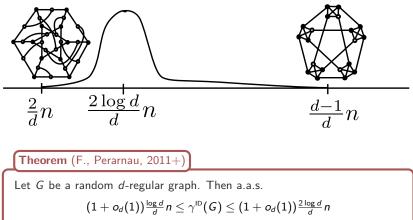




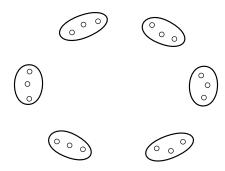






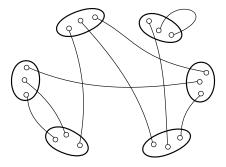


Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



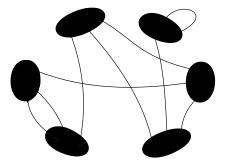
• Take *nd* vertices grouped in *n* buckets of size *d*

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



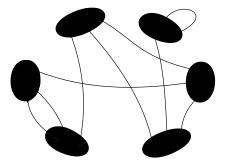
- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph
- Contract buckets

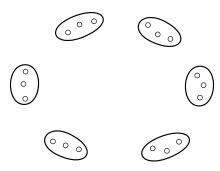
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges!

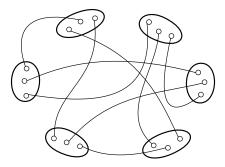
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

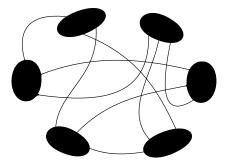
Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.



- Take *nd* vertices grouped in *n* buckets of size *d*
- Choose a random perfect matching of this graph
- Contract buckets

Problem : possible loops or multiple edges! Start over...

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let $G \in \mathcal{G}^*_{n,d}.$ Then $Pr(G \text{ is simple}) \longrightarrow e^{rac{1-d^2}{4}} > 0$

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let
$$G \in \mathcal{G}^*_{n,d}$$
. Then $Pr(G \text{ is simple}) \longrightarrow e^{rac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^* \mid$ the graph is simple.

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let
$$G \in \mathcal{G}^*_{n,d}$$
. Then $Pr(G \text{ is simple}) \longrightarrow e^{rac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^* \mid$ the graph is simple.

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let
$$G \in \mathcal{G}^*_{n,d}$$
. Then $Pr(G \text{ is simple}) \longrightarrow e^{rac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^* \mid$ the graph is simple.

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Any property which holds a.a.s. for $\mathcal{G}_{n,d}^*$, also does for $\mathcal{G}_{n,d}$.

Probability space $\mathcal{G}_{n,d}^*$ of *d*-regular multigraphs on *n* vertices.

Proposition (Bollobás, 1980 - Wormald, 1981)

Let
$$G \in \mathcal{G}^*_{n,d}$$
. Then $Pr(G \text{ is simple}) \longrightarrow e^{rac{1-d^2}{4}} > 0$

Notation - Simple random regular graphs

Let $\mathcal{G}_{n,d} = \mathcal{G}_{n,d}^* \mid \text{the graph is simple.}$

 $\mathcal{G}_{n,d}^*$: non-uniform distribution. $\mathcal{G}_{n,d} = \mathcal{G}$: uniform distribution

Any property which holds a.a.s. for $\mathcal{G}_{n,d}^*$, also does for $\mathcal{G}_{n,d}$.

Proposition (Bollobás, 1980 - Wormald, 1981)

 $\mathbb{E}(\text{number of } k\text{-cycles in } \mathcal{G}_{n,d}^*) \longrightarrow \frac{(d-1)^k}{2k}.$

Florent Foucaud (LaBRI)

Proposition (F., Perarnau, 2011+)

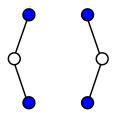
Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$

Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$

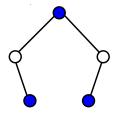
Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{\tiny ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



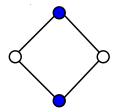
Proposition (F., Perarnau, 2011+)

Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{\tiny ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



Proposition (F., Perarnau, 2011+)

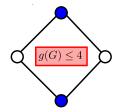
Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{\tiny ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



Proposition (F., Perarnau, 2011+)

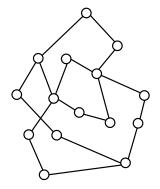
Let G be a d-regular graph with girth at least 5. Then $\gamma^{\text{\tiny ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$

2-dominating is "almost sufficient" to identify.

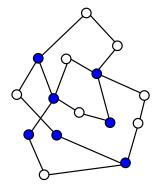


 $g(G) \ge 5$ makes identifying easier.

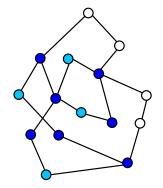
 S ⊆ V at random, each element with probability p.



 S ⊆ V at random, each element with probability p.



 S ⊆ V at random, each element with probability p.

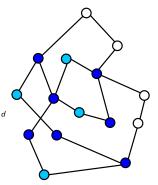


Sketch of the proof: construct 2-dominating set D

 S ⊆ V at random, each element with probability p.

$$X_v = \left\{ egin{array}{cc} 0 & ext{if } |N[v] \cap S| \geq 2 \ 1 & ext{otherwise} \end{array}
ight.$$

$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)$$



۲

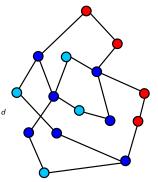
Sketch of the proof: construct 2-dominating set D

 S ⊆ V at random, each element with probability p.

$$X_{v} = \left\{ egin{array}{cc} 0 & ext{if } |N[v] \cap S| \geq 2 \ 1 & ext{otherwise} \end{array}
ight.$$

$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)$$

• $X(S) = \sum X_{\nu}$ (# non 2-dominated).



۲

Sketch of the proof: construct 2-dominating set D

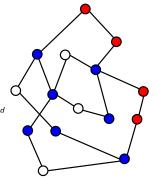
 S ⊆ V at random, each element with probability p.

$$X_{v} = \left\{ egin{array}{cc} 0 & ext{if } |N[v] \cap S| \geq 2 \ 1 & ext{otherwise} \end{array}
ight.$$

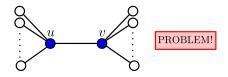
$$Pr(X_v = 1) = (1-p)^{d+1} + (d+1)p(1-p)^{d+1}$$

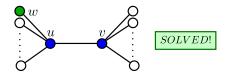
- $X(S) = \sum X_v$ (# non 2-dominated).
- $\mathcal{C} = S \cup \{ v : X_v = 1 \}, \ p = \frac{\log d}{d}$

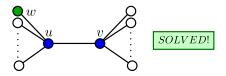
$$\mathbb{E}(|D|) = \mathbb{E}(|S|) + X(S) \le \frac{2\log d}{d}n$$

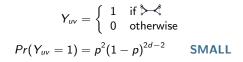


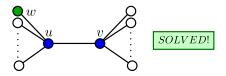
۲











$$Y_{uv} = \begin{cases} 1 & \text{if } \\ 0 & \text{otherwise} \end{cases}$$

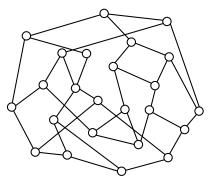
$$Pr(Y_{uv} = 1) = p^2 (1-p)^{2d-2} \qquad \text{SMALL}$$

$$\begin{aligned} \mathcal{C} &= S \cup \{ v : X_v = 1 \} \cup \{ w : w \in \mathcal{N}(u), \ Y_{uv} = 1 \}, \ p = \frac{\log d}{d} \\ \mathbb{E}(|\mathcal{C}|) &= (1 + o_d(1)) \frac{2 \log d}{d} n \end{aligned}$$

Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s. $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$

Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

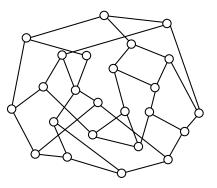


Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s. $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$

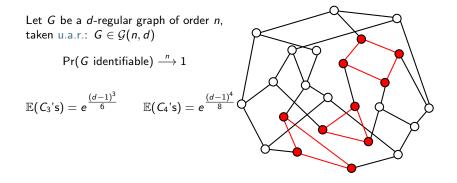
Let G be a d-regular graph of order n, taken u.a.r.: $G \in \mathcal{G}(n, d)$

 $\Pr(G \text{ identifiable}) \xrightarrow{n} 1$



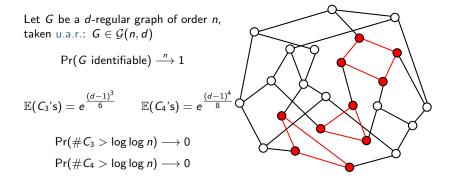
Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s. $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



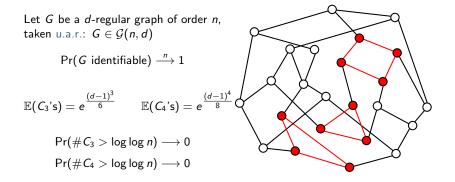
Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s. $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



Theorem (F., Perarnau, 2011+)

Let G be a random d-regular graph. Then a.a.s. $\gamma^{\text{ID}}(G) \leq (1+o_d(1)) \tfrac{2\log d}{d} n$



$$\gamma^{\mathsf{ID}}(G) \leq |\mathcal{C}| = (1 + o_d(1)) rac{2\log d}{d} n$$
 a.a.s.

Summary for *d*-regular graphs

	Identifying codes	Dominating sets
girth 3	$n-\frac{n}{\Theta(d^{3/2})}$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FP] (Conj.: $n - \frac{n}{\Theta(d)}$ [FKKR])	[AS], [TY]
girth 3 and	$n - \frac{n}{\Theta(d)}$	$\Theta\left(\frac{\log d}{d}n\right)$
weak-twin-free	[FP], [FKKR]	[AS], [TY]
girth 4	$n - \frac{n}{\Theta(d)}$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FKKR], [FKKR]	[AS], [TY]
girth 5	$\Theta\left(\frac{\log d}{d}n\right)$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FP], [1]	[AS], [TY]
random <i>d</i> -regular graphs	$\Theta\left(\frac{\log d}{d}n\right)$	$\Theta\left(\frac{\log d}{d}n\right)$
(a.a.s.)	[FP], [1]	[FP], [1]

FP: F., Perarnau, 2011+

FKKR: F., Klasing, Kosowski, Raspaud, 2009+

AS: Alon and Spencer, The probabilistic method, 2000

TY: Thomassé and Yeo, 2007

1: relatively easy LB for dominating sets in RRG, no reference found

THANKS FOR YOUR ATTENTION!

	Identifying codes	Dominating sets
girth 3	$n-\frac{n}{\Theta(d^{3/2})}$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FP] (Conj.: $n - \frac{n}{\Theta(d)}$ [FKKR])	[AS], [TY]
girth 3 and	$n - \frac{n}{\Theta(d)}$	$\Theta\left(\frac{\log d}{d}n\right)$
weak-twin-free	[FP], [FKKR]	[AS], [TY]
girth 4	$n - \frac{n}{\Theta(d)}$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FKKR], [FKKR]	[AS], [TY]
girth 5	$\Theta\left(\frac{\log d}{d}n\right)$	$\Theta\left(\frac{\log d}{d}n\right)$
	[FP], [1]	[AS], [TY]
random <i>d</i> -regular graphs	$\Theta\left(\frac{\log d}{d}n\right)$	$\Theta\left(\frac{\log d}{d}n\right)$
(a.a.s.)	[FP], [1]	[FP], [1]

FP: F., Perarnau, 2011+ FKKR: F., Klasing, Kosowski, Raspaud, 2009+ AS: Alon and Spencer, *The probabilistic method*, 2000 TY: Thomassé and Yeo, 2007

1: relatively easy LB for dominating sets in RRG, no reference found