Bounds on the size of identifying codes for graphs of maximum degree Δ

Florent Foucaud joint work with Ralf Klasing, Adrian Kosowski, André Raspaud

Université Bordeaux 1

September 2009
Llaser

Locating a fire in a building

simple, undirected graph : models a building

Locating a fire in a building

simple detectors: able to detect a fire in a neighbouring room
goal : locate an eventual fire

		b	c	
a		\bullet		
b		\bullet	\bullet	
c		\bullet	\bullet	
d			\bullet	
e		\bullet		
f		\bullet	\bullet	

Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room
goal : locate an eventual fire
fire in room f

		b	c	
a		\bullet		
b		\bullet	\bullet	
c		\bullet	\bullet	
d			\bullet	
e		\bullet		
f		\bullet	\bullet	

Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room
goal : locate an eventual fire
fire in room f
the identifying sets of all vertices must be distinct

	a	b	c	d
a	\bullet	\bullet		
b	\bullet	\bullet	\bullet	
c		\bullet	\bullet	\bullet
d			\bullet	\bullet
e		\bullet		
f		\bullet	\bullet	

Identifying codes: definition

Definition : identifying code of a graph $G=(V, E)$
 (Karpovsky et al. 1998 [4])

subset C of V such that :

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets : $N[u] \cap C \neq N[v] \cap C$

Identifying codes: definition

Definition : identifying code of a graph $G=(V, E)$
 (Karpovsky et al. 1998 [4])

subset C of V such that :

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets : $N[u] \cap C \neq N[v] \cap C$

Remark

Note : close to locating-dominating sets (Slater, Rall 84 [6])

Identifying codes: definition

Definition : identifying code of a graph $G=(V, E)$ (Karpovsky et al. 1998 [4])

subset C of V such that :

- C is a dominating set in G, and
- for all distinct u, v of V, u and v have distinct identifying sets:

$$
N[u] \cap C \neq N[v] \cap C
$$

Remark

Note : close to locating-dominating sets (Slater, Rall 84 [6])

Notation

$\gamma_{i d}(G)$: minimum cardinality of an identifying code in a graph G

Identifiable graphs

Remark : not all graphs admit an identifying code

u and v are twin vertices if $N[u]=N[v]$.
A graph is identifiable iff it has no twin vertices.

Identifiable graphs

Remark : not all graphs admit an identifying code
u and v are twin vertices if $N[u]=N[v]$.
A graph is identifiable iff it has no twin vertices.

Non-identifiable graphs

Identifiable graphs

Remark : not all graphs admit an identifying code
u and v are twin vertices if $N[u]=N[v]$.
A graph is identifiable iff it has no twin vertices.

Non-identifiable graphs

Hardness

Decision problem ID-CODE

Input : identifiable graph G and an integer k Question: Is $\gamma_{i d}(G) \leq k$?

Thm (Cohen et al. 01, Auger et al. 09)
ID-CODE is NP-complete even in bipartite and planar graphs.

Hardness

Decision problem ID-CODE

Input : identifiable graph G and an integer k
Question: Is $\gamma_{i d}(G) \leq k$?
Thm (Cohen et al. 01, Auger et al. 09)
ID-CODE is NP-complete even in bipartite and planar graphs.

Optimization problem MIN ID-CODE

Input : identifiable graph G
Output : $\gamma_{i d}(G)$
Thm (Trachtenberg et al. 06, Suomela 07, Gravier et al. 08 [1, 7, 2]) MIN ID-CODE can be approximated within a logarithmic factor, but not within a constant factor.

Lower bound and maximum degree

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices.
Then $\gamma_{i d}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

Lower bound and maximum degree

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices.
Then $\gamma_{i d}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [5])

Lower bound and maximum degree

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices.
Then $\gamma_{i d}(G) \geq\left\lceil\log _{2}(n+1)\right\rceil$.

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [5])

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices and maximum degree Δ.
Then $\gamma_{i d}(G) \geq \frac{2 n}{\Delta+2}$.

Graphs reaching the lower bound

Characterization

- n vertices
- independent set C of size $\frac{2 n}{\Delta+2}$ (id. code)
- every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta+2}$ vertices connected to exactly 2 code vertices each

Graphs reaching the lower bound

Characterization

- n vertices
- independent set C of size $\frac{2 n}{\Delta+2}$ (id. code)
- every vertex of C has exactly Δ neighbours
- $\frac{\Delta n}{\Delta+2}$ vertices connected to exactly 2 code vertices each

Construction

- Take a simple Δ-regular graph D (code)
- Put a new vertex on each edge of D
- Eventually add edges between the new vertices

Graphs reaching the lower bound - example

Example : $D=$ Petersen graph, $\Delta=3, n=10$

Graphs reaching the lower bound - example

Example : $D=$ Petersen graph, $\Delta=3, n=10$

Graphs reaching the lower bound - example

Example : $D=$ Petersen graph, $\Delta=3, n=10$

A general upper bound

Thm (Gravier, Moncel 07 [3])

Let G be an identifiable connected graph with $n \geq 3$ vertices.
Then $\gamma_{i d}(G) \leq n-1$.

A general upper bound

Thm (Gravier, Moncel 07 [3])

Let G be an identifiable connected graph with $n \geq 3$ vertices. Then $\gamma_{i d}(G) \leq n-1$.

Thm (Gravier, Moncel 07 [3])

For all $n \geq 3$, there exist identifiable graphs with n vertices with $\gamma_{i d}(G)=n-1$.

Upper bound - example

Examples

Upper bound - example

Examples

Upper bound and maximum degree

Remark

All these graphs have a high maximum degree $\Delta(G): n-1$ or $n-2$.

Result - general case

Thm

Let G be a connected identifiable graph of maximum degree Δ.
Then $\gamma_{i d}(G) \leq n-\frac{n}{\Theta\left(\Delta^{4}\right)}$.
If G is regular, $\gamma_{i d}(G) \leq n-\frac{n}{\Theta\left(\Delta^{2}\right)}$.

Result - general case

Thm

Let G be a connected identifiable graph of maximum degree Δ.
Then $\gamma_{i d}(G) \leq n-\frac{n}{\Theta\left(\Delta^{4}\right)}$.
If G is regular, $\gamma_{i d}(G) \leq n-\frac{n}{\Theta\left(\Delta^{2}\right)}$.

Sketch of the proof

- Greedily construct a 4-independant (resp. 2-independent) set S : distance between two vertices is at least 5 (resp. 3)
- take $C=V \backslash S$ as a code
- C must be modified locally

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Example : $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- Replace any vertex of H by a clique of Δ vertices

Exemple : $H=K_{4}$

Connected cliques

- Take any Δ-regular graph H with m vertices
- replace any vertex of H by a clique of Δ vertices

Exemple : $H=K_{4}$

For every clique, at least $\Delta-1$ vertices in the code $\Rightarrow \gamma_{i d}(G) \geq m \cdot(\Delta-1)=n-\frac{n}{\Delta}$

Large codes in triangle-free graphs

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $i d\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Large codes in triangle-free graphs

Proposition

Let $K_{m, m}$ be the complete bipartite graph with $n=2 m$ vertices. $i d\left(K_{m, m}\right)=2 m-2=n-\frac{n}{\Delta}$.

Thm (Bertrand et al. 05)

Let T_{k}^{h} be the k-ary tree with h levels and n vertices.
$i d\left(T_{k}^{h}\right)=\left\lceil\frac{k^{2} n}{k^{2}+k+1}\right\rceil=n-\frac{n}{\Delta-1+\frac{1}{\Delta}}$.

Triangle-free graphs - Result

Thm

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ.
Then $\gamma_{i d}(G) \leq n-\frac{n}{3 \Delta+3}$.
If G is regular, $\gamma_{i d}(G) \leq n-\frac{n}{2 \Delta+2}$.

Triangle-free graphs - Result

Thm

Let G be a connected triangle-free identifiable graph G with $n \geq 3$ vertices and maximum degree Δ.
Then $\gamma_{i d}(G) \leq n-\frac{n}{3 \Delta+3}$.
If G is regular, $\gamma_{i d}(G) \leq n-\frac{n}{2 \Delta+2}$.

Sketch of the proof

- Greedily construct an independent set S with special properties : $|S| \geq \frac{n}{\Delta+1}$
- Take $C=V \backslash S$ as a code
- Some vertices may not be identified correctly
- \rightarrow locally modify C. It is possible to add not too much vertices to C

Graphs of girth at least 5

Thm

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$.
Then $\gamma_{i d}(G) \leq \frac{7 n}{8}+1$.

Graphs of girth at least 5

Thm

Let G be an identifiable graph with n vertices, of minimum degree $\delta \geq 2$ and girth $g \geq 5$.
Then $\gamma_{i d}(G) \leq \frac{7 n}{8}+1$.

Sketch of the proof

- Construct a DFS spanning tree T of G
- Partition the vertices into 4 classes $V_{0}, V_{1}, V_{2}, V_{3}$ depending on their level in T
- Take $C=V \backslash V_{i}$ as a code, $\left|V_{i}\right| \geq \frac{n}{4}:\left|V_{i}\right| \leq \frac{3 n}{4}$
- C must be modified locally; the size of C might increase

Graphs of girth at least 5

Graphs of girth at least 5 - bad example

$$
G_{k, p}: \delta=2, \Delta=p+2, n=(5 p+1) k
$$

$\gamma_{i d}\left(G_{k, p}\right)=3 p k=\frac{3}{5}(n-k) \rightarrow \frac{3 n}{5}$

Summary

	arbitrary graphs	Δ-regular graphs
arbitrary graphs	$\left\langle n-\frac{n}{\Delta}, n-\frac{n}{\Theta\left(\Delta^{4}\right)}\right\rangle$	$\left\langle n-\frac{n}{\Delta}, n-\frac{n-1}{\Delta^{2}}\right\rangle$
triangle-free graphs	$\left\langle n-\frac{n}{\Delta-1+\frac{1}{\Delta}}, n-\frac{n}{3 \Delta+3}\right\rangle$	$\left\langle n-\frac{n}{\frac{2 \Delta}{3}}, n-\frac{n}{2 \Delta+2}\right\rangle$

Summary

	arbitrary graphs	Δ-regular graphs
arbitrary graphs	$\left\langle n-\frac{n}{\Delta}, n-\frac{n}{\Theta\left(\Delta^{4}\right)}\right\rangle$	$\left\langle n-\frac{n}{\Delta}, n-\frac{n-1}{\Delta^{2}}\right\rangle$
triangle-free graphs	$\left\langle n-\frac{n}{\Delta-1+\frac{1}{\Delta}}, n-\frac{n}{3 \Delta+3}\right\rangle$	$\left\langle n-\frac{n}{\frac{2 \Delta}{3}}, n-\frac{n}{2 \Delta+2}\right\rangle$

	minimum degree $\delta \geq 2$
graphs of girth at least 5	$\left\langle\frac{3 n}{5}, \frac{7 n}{8}+1\right\rangle$

Upper bound : conjecture

Conjecture

Let G be a connected identifiable graph of maximum degree Δ. Then $\gamma_{i d}(G) \leq n-\frac{n}{\Delta}$.

Subcubic graphs

$\Delta=3$

Let G be a subcubic identifiable graph with n vertices.

- $\gamma_{i d}(G) \leq \frac{101 n}{102}$
- If G is triangle-free, $\gamma_{i d}(G) \leq \frac{11 n}{12}$
- If G is cubic, $\gamma_{i d}(G) \leq \frac{8 n}{9}$
- If G is cubic and triangle-free, $\gamma_{i d}(G) \leq \frac{7 n}{8}$

Subcubic graphs

$\Delta=3$

Let G be a subcubic identifiable graph with n vertices.

- $\gamma_{i d}(G) \leq \frac{101 n}{102}$
- If G is triangle-free, $\gamma_{i d}(G) \leq \frac{11 n}{12}$
- If G is cubic, $\gamma_{i d}(G) \leq \frac{8 n}{9}$
- If G is cubic and triangle-free, $\gamma_{i d}(G) \leq \frac{7 n}{8}$

Recall:

There are infinitely many cubic graphs G such that $\gamma_{i d}(G)=\frac{2 n}{3}$.

Subcubic graphs

Thm

Let G be a Hamiltonian subcubic graph with $n \geq 4$ vertices. Then $\gamma_{i d}(G) \leq\left\lfloor\frac{3 n}{4}\right\rfloor$.

Subcubic graphs

Thm

Let G be a Hamiltonian subcubic graph with $n \geq 4$ vertices.
Then $\gamma_{i d}(G) \leq\left\lfloor\frac{3 n}{4}\right\rfloor$.

Sketch of the proof

- Consider a Hamiltonian path P
- Start with $C=V$
- Remove 1 from 4 vertices on P

Corollary for cubic graphs

Lemma (Kawarabayashi et al., 2002)

Every 2-connected cubic graph has a 2-factor in which every component is a cycle of length at least 4.

Corollary for cubic graphs

Lemma (Kawarabayashi et al., 2002)

Every 2-connected cubic graph has a 2-factor in which every component is a cycle of length at least 4.

Corollary

Let G be a 2-connected cubic graph with n vertices.
Then $\gamma_{i d}(G) \leq \frac{3 n}{4}$.

Bibliography I

Tanya Y. Berger-Wolf, Moshe Laifenfeld, and Ari Trachtenberg. Identifying codes and the set cover problem.
Proceedings of the 44th Annual Allerton Conference on Communication, Control and Computing, Monticello, USA, September 2006.

Sylvain Gravier, Ralf Klasing, and Julien Moncel.
Hardness results and approximation algorithms for identifying codes and locating-dominating codes in graphs.
Algorithmic Operations Research, 3(1):43-50, 2008.
(i) Sylvain Gravier and Julien Moncel.

On graphs having a $\mathrm{V} \backslash\{x\}$ set as an identifying code.
Discrete Mathematics, 307(3-5):432-434, 2007.
Algebraic and Topological Methods in Graph Theory.
T. Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin.

On a new class of codes for identifying vertices in graphs.
IEEE Transactions on Information Theory, 44:599-611, 1998.

Bibliography II

(Julien Moncel.
On graphs on n vertices having an identifying code of cardinality $\log _{2}(n+1)$.
Discrete Applied Mathematics, 154(14):2032-2039, 2006.
P. J. Slater and D. F. Rall.

On location-domination numbers for certain classes of graphs.
Congressus Numerantium, 45:97-106, 1984.
直 Jukka Suomela.
Approximability of identifying codes and locating-dominating codes.
Information Processing Letters, 103(1):28-33, 2007.

