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Locating a fire in a building

simple, undirected graph : models a building
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Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room

goal : locate an eventual fire
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Locating a fire in a building

simple detectors : able to detect a fire in a neighbouring room

goal : locate an eventual fire

fire in room f

the identifying sets of all vertices must be distinct

a

b

c d

e f

{a, b}

{a, b, c}

{b, c, d}
{c, d}

{b} {b, c}

a b c d

a • •

b • • •

c • • •

d • •

e •

f • •

F. Foucaud (U. Bordeaux 1) Bounds on id codes September 2009 5 / 32



Identifying codes : definition

Definition : identifying code of a graph G = (V , E )
(Karpovsky et al. 1998 [4])

subset C of V such that :

C is a dominating set in G , and

for all distinct u, v of V , u and v have distinct identifying sets :
N[u] ∩ C 6= N[v ] ∩ C
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Note : close to locating-dominating sets (Slater, Rall 84 [6])
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Identifying codes : definition

Definition : identifying code of a graph G = (V , E )
(Karpovsky et al. 1998 [4])

subset C of V such that :

C is a dominating set in G , and

for all distinct u, v of V , u and v have distinct identifying sets :
N[u] ∩ C 6= N[v ] ∩ C

Remark

Note : close to locating-dominating sets (Slater, Rall 84 [6])

Notation

γid (G ) : minimum cardinality of an identifying code in a graph G
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Identifiable graphs

Remark : not all graphs admit an identifying code

u and v are twin vertices if N[u] = N[v ].
A graph is identifiable iff it has no twin vertices.
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Hardness

Decision problem ID-CODE

Input : identifiable graph G and an integer k

Question : Is γid (G ) ≤ k?

Thm (Cohen et al. 01, Auger et al. 09)

ID-CODE is NP-complete even in bipartite and planar graphs.
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Hardness

Decision problem ID-CODE

Input : identifiable graph G and an integer k

Question : Is γid (G ) ≤ k?

Thm (Cohen et al. 01, Auger et al. 09)

ID-CODE is NP-complete even in bipartite and planar graphs.

Optimization problem MIN ID-CODE

Input : identifiable graph G

Output : γid (G )

Thm (Trachtenberg et al. 06, Suomela 07, Gravier et al. 08 [1, 7, 2])

MIN ID-CODE can be approximated within a logarithmic factor, but not
within a constant factor.
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Lower bound and maximum degree

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices.
Then γid (G ) ≥ ⌈log2(n + 1)⌉.
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Thm (Karpovsky et al. 98 [4])
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Characterization

The graphs reaching this bound have been characterized (Moncel 06 [5])
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Lower bound and maximum degree

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices.
Then γid (G ) ≥ ⌈log2(n + 1)⌉.

Characterization

The graphs reaching this bound have been characterized (Moncel 06 [5])

Thm (Karpovsky et al. 98 [4])

Let G be an identifiable graph with n vertices and maximum degree ∆.

Then γid (G ) ≥
2n

∆ + 2
.
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Graphs reaching the lower bound

Characterization

n vertices

independent set C of size 2n
∆+2

(id. code)

every vertex of C has exactly ∆ neighbours
∆n

∆+2
vertices connected to exactly 2 code vertices each
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Graphs reaching the lower bound

Characterization

n vertices

independent set C of size 2n
∆+2

(id. code)

every vertex of C has exactly ∆ neighbours
∆n

∆+2
vertices connected to exactly 2 code vertices each

Construction

Take a simple ∆-regular graph D (code)

Put a new vertex on each edge of D

Eventually add edges between the new vertices
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Graphs reaching the lower bound - example

Example : D=Petersen graph, ∆ = 3, n = 10
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A general upper bound

Thm (Gravier, Moncel 07 [3])

Let G be an identifiable connected graph with n ≥ 3 vertices.
Then γid (G ) ≤ n − 1.
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A general upper bound

Thm (Gravier, Moncel 07 [3])

Let G be an identifiable connected graph with n ≥ 3 vertices.
Then γid (G ) ≤ n − 1.

Thm (Gravier, Moncel 07 [3])

For all n ≥ 3, there exist identifiable graphs with n vertices with
γid (G ) = n − 1.
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Upper bound - example

Examples
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Upper bound and maximum degree

Remark

All these graphs have a high maximum degree ∆(G ) : n − 1 or n − 2.
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Result - general case

Thm

Let G be a connected identifiable graph of maximum degree ∆.
Then γid (G ) ≤ n − n

Θ(∆4)
.

If G is regular, γid (G ) ≤ n − n
Θ(∆2)

.
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Result - general case

Thm

Let G be a connected identifiable graph of maximum degree ∆.
Then γid (G ) ≤ n − n

Θ(∆4)
.

If G is regular, γid (G ) ≤ n − n
Θ(∆2)

.

Sketch of the proof

Greedily construct a 4-independant (resp. 2-independent) set S :
distance between two vertices is at least 5 (resp. 3)

take C = V \S as a code

C must be modified locally
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Connected cliques

Take any ∆-regular graph H with m vertices

replace any vertex of H by a clique of ∆ vertices
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Connected cliques

Take any ∆-regular graph H with m vertices

Replace any vertex of H by a clique of ∆ vertices

Exemple : H = K4
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Connected cliques

Take any ∆-regular graph H with m vertices

replace any vertex of H by a clique of ∆ vertices

Exemple : H = K4

For every clique, at least ∆ − 1 vertices in the code
⇒ γid (G ) ≥ m · (∆ − 1) = n − n

∆
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Large codes in triangle-free graphs

Proposition

Let Km,m be the complete bipartite graph with n = 2m vertices.
id(Km,m) = 2m − 2 = n − n

∆ .
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Large codes in triangle-free graphs

Proposition

Let Km,m be the complete bipartite graph with n = 2m vertices.
id(Km,m) = 2m − 2 = n − n

∆ .

Thm (Bertrand et al. 05)

Let T h
k be the k-ary tree with h levels and n vertices.

id(T h
k ) =

⌈

k2n

k2 + k + 1

⌉

= n −
n

∆ − 1 + 1

∆

.
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Triangle-free graphs - Result

Thm

Let G be a connected triangle-free identifiable graph G with n ≥ 3 vertices
and maximum degree ∆.
Then γid (G ) ≤ n − n

3∆+3
.

If G is regular, γid (G ) ≤ n − n
2∆+2

.
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Triangle-free graphs - Result

Thm

Let G be a connected triangle-free identifiable graph G with n ≥ 3 vertices
and maximum degree ∆.
Then γid (G ) ≤ n − n

3∆+3
.

If G is regular, γid (G ) ≤ n − n
2∆+2

.

Sketch of the proof

Greedily construct an independent set S with special properties :
|S | ≥ n

∆+1

Take C = V \S as a code

Some vertices may not be identified correctly

→ locally modify C . It is possible to add not too much vertices to C
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Graphs of girth at least 5

Thm

Let G be an identifiable graph with n vertices, of minimum degree δ ≥ 2
and girth g ≥ 5.

Then γid (G ) ≤
7n

8
+ 1.
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Graphs of girth at least 5

Thm

Let G be an identifiable graph with n vertices, of minimum degree δ ≥ 2
and girth g ≥ 5.

Then γid (G ) ≤
7n

8
+ 1.

Sketch of the proof

Construct a DFS spanning tree T of G

Partition the vertices into 4 classes V0, V1, V2, V3 depending on their
level in T

Take C = V \Vi as a code, |Vi | ≥
n
4

: |Vi | ≤
3n
4

C must be modified locally; the size of C might increase
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Graphs of girth at least 5

level 0

level 1

level 2

level 3

level 4

level 5

level 6
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Graphs of girth at least 5 - bad example

Gk,p : δ = 2, ∆ = p + 2, n = (5p + 1)k

Ck (k = 9) ..
. p times

γid (Gk,p) = 3pk = 3

5
(n − k) → 3n

5
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Summary

arbitrary graphs ∆-regular graphs

arbitrary

〈

n −
n

∆
, n −

n

Θ(∆4)

〉 〈

n −
n

∆
, n −

n − 1

∆2

〉

graphs

triangle-free

〈

n −
n

∆ − 1 + 1

∆

, n −
n

3∆ + 3

〉 〈

n −
n
2∆
3

, n −
n

2∆ + 2

〉

graphs
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〈
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Θ(∆4)

〉 〈

n −
n

∆
, n −

n − 1
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graphs

triangle-free

〈

n −
n

∆ − 1 + 1

∆

, n −
n

3∆ + 3

〉 〈

n −
n
2∆
3

, n −
n

2∆ + 2

〉

graphs

minimum degree δ ≥ 2

graphs of girth

〈

3n

5
,
7n

8
+ 1

〉

at least 5
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Upper bound : conjecture

Conjecture

Let G be a connected identifiable graph of maximum degree ∆.
Then γid (G ) ≤ n − n

∆ .
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Subcubic graphs

∆ = 3

Let G be a subcubic identifiable graph with n vertices.

γid (G ) ≤
101n

102

If G is triangle-free, γid (G ) ≤
11n

12

If G is cubic, γid (G ) ≤
8n

9

If G is cubic and triangle-free, γid (G ) ≤
7n

8
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Subcubic graphs

∆ = 3

Let G be a subcubic identifiable graph with n vertices.

γid (G ) ≤
101n

102

If G is triangle-free, γid (G ) ≤
11n

12

If G is cubic, γid (G ) ≤
8n

9

If G is cubic and triangle-free, γid (G ) ≤
7n

8

Recall:

There are infinitely many cubic graphs G such that γid (G ) = 2n
3

.
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Subcubic graphs

Thm

Let G be a Hamiltonian subcubic graph with n ≥ 4 vertices.

Then γid (G ) ≤

⌊

3n

4

⌋

.
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Subcubic graphs

Thm

Let G be a Hamiltonian subcubic graph with n ≥ 4 vertices.

Then γid (G ) ≤

⌊

3n

4

⌋

.

Sketch of the proof

Consider a Hamiltonian path P

Start with C = V

Remove 1 from 4 vertices on P
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Corollary for cubic graphs

Lemma (Kawarabayashi et al., 2002)

Every 2-connected cubic graph has a 2-factor in which every component is
a cycle of length at least 4.
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Corollary for cubic graphs

Lemma (Kawarabayashi et al., 2002)

Every 2-connected cubic graph has a 2-factor in which every component is
a cycle of length at least 4.

Corollary

Let G be a 2-connected cubic graph with n vertices.

Then γid (G ) ≤
3n

4
.
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