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ADVERTISEMENT



IWOCA 2026 in Clermont-Ferrand

@ 37th International Workshop on Combinatorial Algorithms.

@ Yearly since 1989, started in Australia.

@ Submission deadline: January 26 (abstract), February 2 (full paper)
o Conference dates: June 8-12, 2026

@ Collaborative aspect

o Website: https://iwoca2026.limos.fr
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(START OF THE TALK)

Treewidth



Treewidth

Graph G of treewidth k: looks like a tree where edges are replaced by “bags” of size k.
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Treewidth

Graph G of treewidth k: looks like a tree where edges are replaced by “bags” of size k.

Informally:

@ this tree forms a tree-decomposition of G
@ its width is the largest size of a bag

@ treewidth tw(G) of G is the smallest width over all tree-decompositions
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Treewidth

Graph G of treewidth k: looks like a tree where edges are replaced by “bags” of size k.

Informally:
@ this tree forms a tree-decomposition of G
@ its width is the largest size of a bag

@ treewidth tw(G) of G is the smallest width over all tree-decompositions

Very important in:
@ Structural graph theory
@ Graph algorithms

@ Many applications in other areas: Database queries, Optimization, Boolean SAT...
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Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT) problems

A decision problem with input Z and parameter k is FPT parameterized by k if it can be solved
in time f(k) - |Z|°(), where f is a computable function.
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Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on a
tree-decomposition: running time f(tw) - n°(1).
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parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].
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Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT) problems

A decision problem with input Z and parameter k is FPT parameterized by k if it can be solved
in time f(k) - |Z|°(), where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on a
tree-decomposition: running time f(tw) - n°(1).

Classic examples: COLOURING, CLIQUE, DOMINATING SET, HAMILTON CYCLE...

Generally: graph problems expressible in Monadic Second-Order (MSO) logic are FPT
parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

However, f(tw) may be a tower of exponentials!
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ETH-based conditional lower bounds on f(tw) for FPT algorithms

Exponential Time Hypothesis (ETH) [impagliazzo, Paturi, 1000]
Roughly, n-variable 3-SAT cannot be solved in time 2°("). (stronger than P # NP)J
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Exponential Time Hypothesis (ETH) [impagliazzo, Paturi, 1000] J

Roughly, n-variable 3-SAT cannot be solved in time 2°("). (stronger than P # NP)

Lower bounds for f(tw) using ETH usually of the form 20(t%) o(twlogtu) gp po(poly(tw))

Rarer results: Assuming the ETH,

e QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of
exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

o k-CHOOSABILITY (M5-complete) and k-CHOOSABILITY DELETION (XZ5-complete) admit
double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

e IV-CSP (X5-complete) admits a double-exponential lower bound in the vertex cover
number [Lampis, Mitsou, 2017].
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exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];
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double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

e IV-CSP (X5-complete) admits a double-exponential lower bound in the vertex cover

number [Lampis, Mitsou, 2017].
PSPACE

PNV T8 = coNPVP
ar—pw
f = NP N = coNP
T b _—
P: computationally “easy” to solve NP: hard to solve, easy to verify
higher levels: hard to even verify
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Roughly, n-variable 3-SAT cannot be solved in time 2°("). (stronger than P # NP)

Lower bounds for f(tw) using ETH usually of the form 20(t%) o(twlogtu) gp po(poly(tw))

Rarer results: Assuming the ETH,

e QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of
exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

o k-CHOOSABILITY (M5-complete) and k-CHOOSABILITY DELETION (XZ5-complete) admit
double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

e IV-CSP (X5-complete) admits a double-exponential lower bound in the vertex cover

number [Lampis, Mitsou, 2017].
PSPACE

PNV T8 = coNPVP
ar—pw
f = NP N = coNP
T b _—
P: computationally “easy” to solve NP: hard to solve, easy to verify
higher levels: hard to even verify

Common theme: complexity classes higher than NP require large dependency in tw. /14
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Our results



Main results

ETH-based double-exponential lower bounds in the treewidth for NP-complete problems.
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Main results

ETH-based double-exponential lower bounds in the treewidth for NP-complete problems.

We develop a technique to prove such lower bounds for (nice) graph problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

METRIC DIMENSION and GEODETIC SET

O(tw) o(1)

@ can be solved in 2d4ian -n time

@ admit no 2f(@am)°™ | ,0(1) time algorithm assuming the ETH
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ETH-based double-exponential lower bounds in the treewidth for NP-complete problems.

We develop a technique to prove such lower bounds for (nice) graph problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]
METRIC DIMENSION and GEODETIC SET
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@ can be solved in 2432 . 10(1) time

@ admit no 2f(@am)°™ | ,0(1) time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]
LOCATING-DOMINATING SET and TEST COVER
a O(tw q
@ can be solved in 22 &) %) time

@ admit no 22 0(1) time algorithm assuming the ETH
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Identification problems



A graph identification problem
Identification problems:
want to distinguish all elements of a discrete structure using a (small) solution set
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— studied in combinatorics since the 1960’s (Bondy, Rényi...)
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Identification problems:
want to distinguish all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...
— studied in combinatorics since the 1960’s (Bondy, Rényi...)
Locating-dominating set [siater, 1980's]
D C V locating-dominating set of G = (V, E):
@ forevery v eV, Nl[vnD #0 (domination)
@ Yu#vof V\D, N(uynD # N(v)n D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)
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Examples: Test Cover, Separating Set/System, Identifying Code...
— studied in combinatorics since the 1960’s (Bondy, Rényi...)
Locating-dominating set [siater, 1980's]
D C V locating-dominating set of G = (V, E):
@ forevery v eV, Nl[vnD #0 (domination)
@ Yu#vof V\D, N(uynD # N(v)n D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Motivation: fault-detection in networks.
— The set D of grey processors is a set of fault-detectors.

{a,b} ! {ach gy
o —— - —— o

a
b c‘
] o) B
{b,c}
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Examples: Test Cover, Separating Set/System, Identifying Code...
— studied in combinatorics since the 1960’s (Bondy, Rényi...)
Locating-dominating set [siater, 1980's]
D C V locating-dominating set of G = (V, E):
@ forevery v eV, Nl[vnD #0 (domination)
@ Yu#vof V\D, N(uynD # N(v)n D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Motivation: fault-detection in networks.
— The set D of grey processors is a set of fault-detectors.

{a,b} ! {a.c}g
K <
b [«
] o) B
{b,c}

Other applications:
biological testing, graph isomorphism, machine learning (VC-dimension)...
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A graph identification problem

Identification problems:
want to distinguish all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...
— studied in combinatorics since the 1960’s (Bondy, Rényi...)
Locating-dominating set [siater, 1980's]
D C V locating-dominating set of G = (V, E):
@ forevery v eV, Nl[vnD #0 (domination)
@ Yu#vof V\D, N(uynD # N(v)n D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)
Decision problem:

LOCATING-DOMINATING SET

Input: an undirected graph G = (V, E) and an integer k > 1
Question: Does G have a locating-dominating set of size at most k?

NP-complete, FPT for treewidth using MSOL and Courcelle’s theorem
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Proof ideas



Main result for Locating-dominating Set

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET

. o .
@ can be solved in 22 L n°1) time

20(tw)

@ admits no 2 -n°M) time algorithm assuming the ETH
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Main result for Locating-dominating Set

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]
LOCATING-DOMINATING SET
a O(tw g
@ can be solved in 22 L n°1) time

@ admits no 22°™ . n0(1) time algorithm assuming the ETH

Algorithm: classic dynamic programming over a tree-decomposition.

Main idea: for each bag, remember which subsets of solution vertices form the
intersection of some neighborhood

O(tw, . .
— Number of DP-states per bag: 22 ) possible collections of subsets
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Main result for Locatmg—dommatmg Set: lower bound
LOCATING-DOMINATING SET admits no 220 K n%1) time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [impagliazzo, Paturi, 1990} J

Roughly, n-variable 3-SAT cannot be solved in time 2°(").

Goal: reduction from n-variable 3-SAT such that tw(G) = O(log n).

— Algorithm running in 22°(w) = 220(Iog " 20(n) s contradicts the ETH.
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Main result for Locating-dominating Set: lower bound
LOCATING-DOMINATING SET admits no 22o(w) - n91) time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [impagliazzo, Paturi, 1990} J

Roughly, n-variable 3-SAT cannot be solved in time 2°(").

Goal: reduction from n-variable 3-SAT such that tw(G) = O(log n).
— Algorithm running in 220(w) = 220(Iog " 20(n) s contradicts the ETH.

Fact: can assume every variable appears < 3 times (standard reduction)

variable x_i

variable x_{i+1}

EEEETE]

clause cj

set-representation gadget: size O(log n)
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How to encode clause-variable relations using a set of size O(log n)?

Set-representation gadget: vertex set S of size 2p.

(X1 Vx5 ¥ x3)
°
X ° Clx]
™ b C[xz]
[ ]
X3 ° Clx;]
X3 °
variables clauses

Sl:{1’3’5} S3={17376}
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Metric Dimension



Metric dimension

Metric dimension of a graph G = (V/, E) [Stater 75 + Harary, Melter '76]

S C V is a resolving set of G if Yu,v € V, 3z € S with d(z,u) # d(z,v). The
minimum size of a resolving set of G is the metric dimension of G.
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Metric dimension

Metric dimension of a graph G = (V/, E) [Stater 75 + Harary, Melter '76]

S C V is a resolving set of G if Yu,v € V, 3z € S with d(z,u) # d(z,v). The
minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.
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Metric dimension

Metric dimension of a graph G = (V/, E) [Stater 75 + Harary, Melter '76]

S C V is a resolving set of G if Yu,v € V, 3z € S with d(z,u) # d(z,v). The
minimum size of a resolving set of G is the metric dimension of G.

(5,2) (4,3) (2,4
3,2) (2,2) (0,4)
(5,1) (4,2) (1,3)
6,1 (4,1)
(4,0)
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Metric dimension

Metric dimension of a graph G = (V/, E) [Stater 75 + Harary, Melter '76]

S C V is a resolving set of G if Yu,v € V, 3z € S with d(z,u) # d(z,v). The
minimum size of a resolving set of G is the metric dimension of G.

(5,2) (4,3) (2,4)

3,2) (2,2) I (0,4)
(5,1) (4,2) -\\\\\\\\1 (1,3)
6,1 (4,1)

(4,0)

METRIC DIMENSION

Input: an undirected graph G = (V, E) and an integer k > 1
Question: Is the metric dimension of G at most k?
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Results for Metric Dimension
METRIC DIMENSION is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)

But: becomes FPT for treewidth if the diameter is bounded.
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But: becomes FPT for treewidth if the diameter is bounded.

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]
METRIC DIMENSION:

. o O(tw)
@ can be solved in 24ian

-n%W) time

@ admits no 27(@am)°™) _ ,0(1) time algorithm assuming the ETH
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Results for Metric Dimension
METRIC DIMENSION is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)
But: becomes FPT for treewidth if the diameter is bounded
Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]
METRIC DIMENSION:

. . O(tw .
@ can be solved in 24:°%)  ,0(1) time

@ admits no 27(@am)°™) _ ,0(1) time algorithm assuming the ETH

The original proof is a more complex use-case of the set-representation gadget:
nullifier(X®)

nullifier(A%) nullifier(V%) nullifier(C)
(bit-rep(x”)) (bit-repa®)] "\ pit-rep(v*) ] X[ bit-rep(C) |

X by Cq

- O(log n)

! AR . o A

X foi C
X A* % C
13/14
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Conclusion
Main takeaway:

@ Most natural NP-complete problems FPT for tw can be solved in time 2Po(tw) . O(1)

@ Graph identification problems require 22O(W) -n°M) time, assuming the ETH
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@ Graph identification problems require 220(W) -n°M) time, assuming the ETH

Further results:

@ These problems have other “exotic” behaviours

@ Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)

@ Others admit lower bounds for the larger vertex cover number:
STRONG METRIC DIMENSION

14/14

Florent Foucaud Double-exponential lower bounds for graph identification problems



Conclusion
Main takeaway:

@ Most natural NP-complete problems FPT for tw can be solved in time 2Po(tw) . O(1)

@ Graph identification problems require 220(W) -n°M) time, assuming the ETH

Further results:

@ These problems have other “exotic” behaviours

@ Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)

@ Others admit lower bounds for the larger vertex cover number:
STRONG METRIC DIMENSION

Identification problems:

@ Have intriguing algorithmic behaviours
@ Also interesting from graph-theoretical point of view

@ Nice, sometimes challenging, research problems and solutions
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@ These problems have other “exotic” behaviours
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Identification problems:

@ Have intriguing algorithmic behaviours
@ Also interesting from graph-theoretical point of view

@ Nice, sometimes challenging, research problems and solutions

Question: what about triple-exponential lower bounds for natural NP-complete problems?
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