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Treewidth
Graph G of treewidth k: looks like a tree where edges are replaced by “bags” of size k.

Informally:

this tree forms a tree-decomposition of G

its width is the largest size of a bag

treewidth tw(G) of G is the smallest width over all tree-decompositions

Very important in:

Structural graph theory

Graph algorithms

Many applications in other areas: Database queries, Optimization, Boolean SAT...
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Treewidth: the King of Structural Parameters

Fixed parameter tractable (FPT) problems
A decision problem with input I and parameter k is FPT parameterized by k if it can be solved
in time f (k) · |I|O(1), where f is a computable function.

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on a
tree-decomposition: running time f (tw) · nO(1).

Classic examples: Colouring, Clique, Dominating Set, Hamilton Cycle...

Generally: graph problems expressible in Monadic Second-Order (MSO) logic are FPT
parameterized by the treewidth plus the length of the MSO formula [Courcelle, 1990].

However, f (tw) may be a tower of exponentials!
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ETH-based conditional lower bounds on f (tw) for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time 2o(n). (stronger than P ̸= NP)

Lower bounds for f (tw) using ETH usually of the form 2o(tw), 2o(tw log tw) or 2o(poly(tw)).

Rarer results: Assuming the ETH,

• QSAT (PSPACE-complete) with k alternations admits a lower bound of a tower of
exponents of height k in the tw of the primal graph [Fichte, Hecher, Pfandler, 2020];

• k-Choosability (Πp
2-complete) and k-Choosability Deletion (Σp

3-complete) admit
double- and triple-exponential lower bounds in tw, resp. [Marx, Mitsou, 2016];

• ∃∀-CSP (Σp
2-complete) admits a double-exponential lower bound in the vertex cover

number [Lampis, Mitsou, 2017].

P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

PSPACE
.
.
.

P: computationally “easy” to solve NP: hard to solve, easy to verify
higher levels: hard to even verify

Common theme: complexity classes higher than NP require large dependency in tw.
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Main results

ETH-based double-exponential lower bounds in the treewidth for NP-complete problems.

We develop a technique to prove such lower bounds for (nice) graph problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

Metric Dimension and Geodetic Set

can be solved in 2diam
O(tw) · nO(1) time

admit no 2f (diam)
o(tw) · nO(1) time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

Locating-Dominating Set and Test Cover

can be solved in 22
O(tw) · nO(1) time

admit no 22
o(tw) · nO(1) time algorithm assuming the ETH
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A graph identification problem
Identification problems:

want to distinguish all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...
→ studied in combinatorics since the 1960’s (Bondy, Rényi...)

Locating-dominating set [Slater, 1980’s]

D ⊆ V locating-dominating set of G = (V ,E):

for every v ∈ V , N[v ] ∩ D ̸= ∅ (domination)

∀u ̸= v of V \ D, N(u) ∩ D ̸= N(v) ∩ D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Decision problem:

Locating-Dominating Set
Input: an undirected graph G = (V ,E) and an integer k ≥ 1
Question: Does G have a locating-dominating set of size at most k?

NP-complete, FPT for treewidth using MSOL and Courcelle’s theorem
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Locating-dominating set [Slater, 1980’s]

D ⊆ V locating-dominating set of G = (V ,E):

for every v ∈ V , N[v ] ∩ D ̸= ∅ (domination)

∀u ̸= v of V \ D, N(u) ∩ D ̸= N(v) ∩ D (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Decision problem:

Locating-Dominating Set
Input: an undirected graph G = (V ,E) and an integer k ≥ 1
Question: Does G have a locating-dominating set of size at most k?

NP-complete, FPT for treewidth using MSOL and Courcelle’s theorem

Florent Foucaud Double-exponential lower bounds for graph identification problems

January 2026 8
/
14



8/14

A graph identification problem
Identification problems:

want to distinguish all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...
→ studied in combinatorics since the 1960’s (Bondy, Rényi...)
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!
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Other applications:
biological testing, graph isomorphism, machine learning (VC-dimension)...
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Main result for Locating-dominating Set

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

Locating-Dominating Set

can be solved in 22
O(tw) · nO(1) time

admits no 22
o(tw) · nO(1) time algorithm assuming the ETH

Algorithm: classic dynamic programming over a tree-decomposition.

Main idea: for each bag, remember which subsets of solution vertices form the
intersection of some neighborhood

→ Number of DP-states per bag: 22
O(tw)

possible collections of subsets
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Main result for Locating-dominating Set: lower bound
Locating-Dominating Set admits no 22

o(tw) · nO(1) time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n-variable 3-SAT cannot be solved in time 2o(n).

Goal: reduction from n-variable 3-SAT such that tw(G) = O(log n).

→ Algorithm running in 22
o(tw)

= 22
o(log n)

= 2o(n) → contradicts the ETH.

Fact: can assume every variable appears ≤ 3 times (standard reduction)
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How to encode clause-variable relations using a set of size O(log n)?

Set-representation gadget: vertex set S of size 2p.

Assign as neighbours, a distinct
subset of size p to each literal occurrence.

(2p
p

)
≥ 4n → p = O(log n)

(these subsets form a Sperner family)

Each clause C is represented by 3 vertices, each connected to the same vertices in S as
one of the literals in C .
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Metric dimension

Metric dimension of a graph G = (V ,E ) [Slater ’75 + Harary, Melter ’76]

S ⊆ V is a resolving set of G if ∀u, v ∈ V , ∃z ∈ S with d(z, u) ̸= d(z, v). The
minimum size of a resolving set of G is the metric dimension of G .
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(3, 2) (2, 2)

(3, 1)

(4, 0)

(4, 1)

(1, 3)

(2, 4)

(0, 4)

Vertices 4 and 6 are not resolved by 5 nor 8.

Metric Dimension
Input: an undirected graph G = (V ,E) and an integer k ≥ 1
Question: Is the metric dimension of G at most k?
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Results for Metric Dimension
Metric Dimension is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)

But: becomes FPT for treewidth if the diameter is bounded.

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

Metric Dimension:

can be solved in 2diam
O(tw) · nO(1) time

admits no 2f (diam)
o(tw) · nO(1) time algorithm assuming the ETH

The original proof is a more complex use-case of the set-representation gadget:

Vα

t2i
α

f2i-1
α

Aα

xi
α,°

xi
α,*

Xα
C

cq

cq*

nullifier(Xα) nullifier(Aα) nullifier(Vα) nullifier(С)

bit-rep(С)bit-rep(Vα)bit-rep(Aα)bit-rep(Xα)

ai

aj

cq

cq*

O(log n)
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Conclusion
Main takeaway:

Most natural NP-complete problems FPT for tw can be solved in time 2poly(tw) · nO(1)

Graph identification problems require 22
O(tw) · nO(1) time, assuming the ETH

Further results:

These problems have other “exotic” behaviours

Other NP-complete problems behave similarly:
Geodetic Set (on graphs of bounded diameter)

Others admit lower bounds for the larger vertex cover number:
Strong Metric Dimension

Identification problems:

Have intriguing algorithmic behaviours

Also interesting from graph-theoretical point of view

Nice, sometimes challenging, research problems and solutions

Question: what about triple-exponential lower bounds for natural NP-complete problems?

THANKS!
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