

Double-exponential lower bounds for graph identification problems

Florent Foucaud

joint works with:

Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney,
Roohani Sharma, Prafullkumar Tale (ICALP 2024)

Dipayan Chakraborty, Diptapriyo Majumdar, Prafullkumar Tale (ISAAC 2024)

January 2026

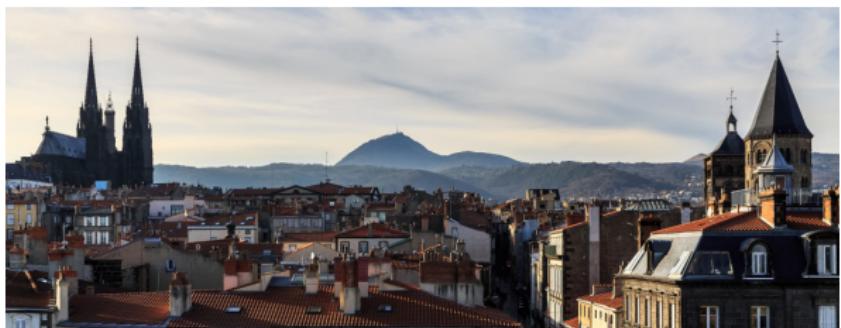
ADVERTISEMENT

- 37th International Workshop on Combinatorial Algorithms.
- Yearly since 1989, started in Australia.
- Submission deadline: January 26 (abstract), February 2 (full paper)
- Conference dates: June 8-12, 2026
- Collaborative aspect
- Website: <https://iwoca2026.limos.fr>

Where: Clermont-Ferrand, France

Where: Clermont-Ferrand, France

Where: Clermont-Ferrand, France

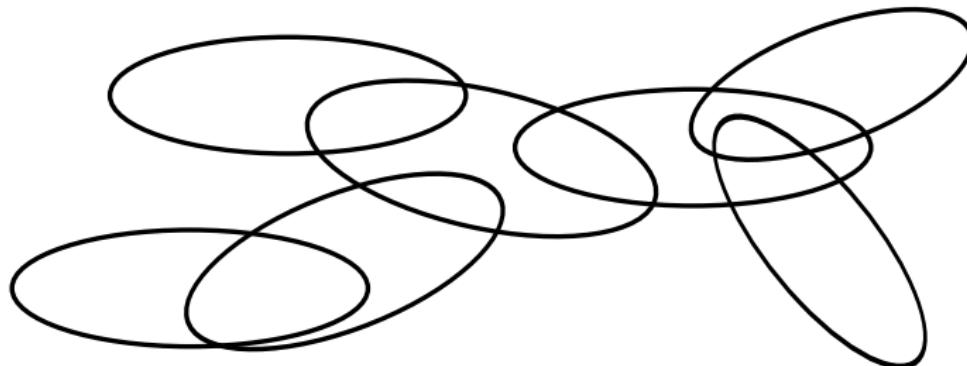


(START OF THE TALK)

Treewidth

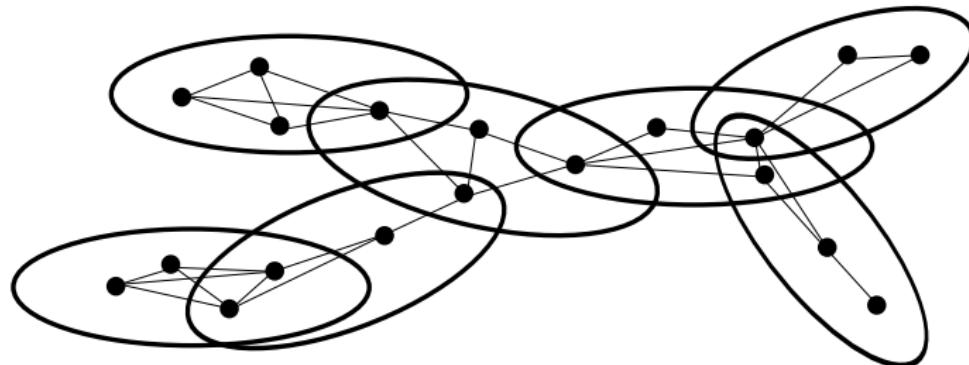
Treewidth

Graph G of treewidth k : looks like a tree where edges are replaced by “bags” of size k .



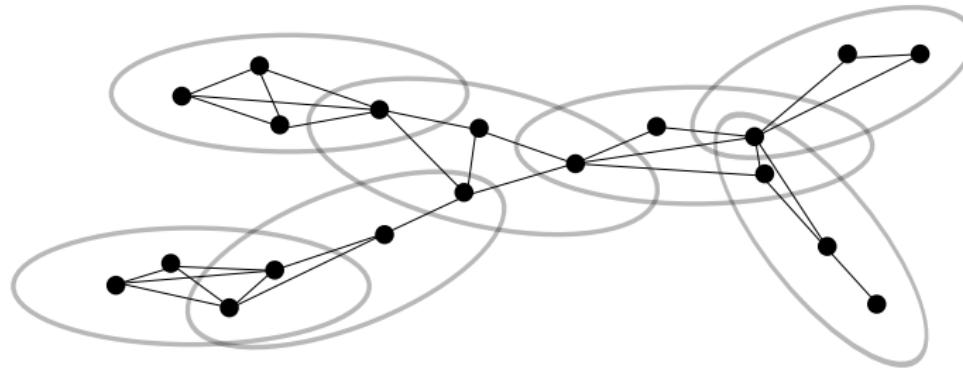
Treewidth

Graph G of treewidth k : looks like a tree where edges are replaced by “bags” of size k .



Treewidth

Graph G of treewidth k : looks like a tree where edges are replaced by “bags” of size k .

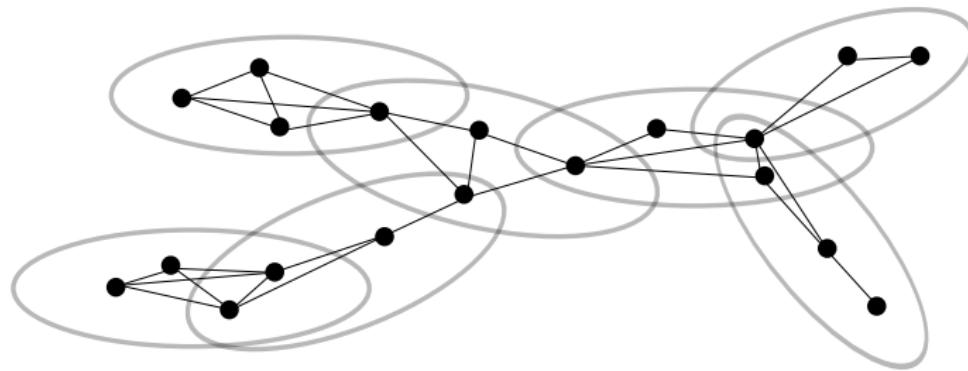


Informally:

- this tree forms a **tree-decomposition** of G
- its width is the largest size of a bag
- **treewidth** $\text{tw}(G)$ of G is the smallest width over all tree-decompositions

Treewidth

Graph G of treewidth k : looks like a tree where edges are replaced by “bags” of size k .



Informally:

- this tree forms a **tree-decomposition** of G
- its width is the largest size of a bag
- **treewidth** $\text{tw}(G)$ of G is the smallest width over all tree-decompositions

Very important in:

- Structural graph theory
- Graph algorithms
- Many applications in other areas: Database queries, Optimization, Boolean SAT...

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are **FPT** parameterized by **treewidth** via **dynamic programming** on a **tree-decomposition**: running time $f(\text{tw}) \cdot n^{O(1)}$.

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are **FPT** parameterized by **treewidth** via **dynamic programming** on a **tree-decomposition**: running time $f(\text{tw}) \cdot n^{O(1)}$.

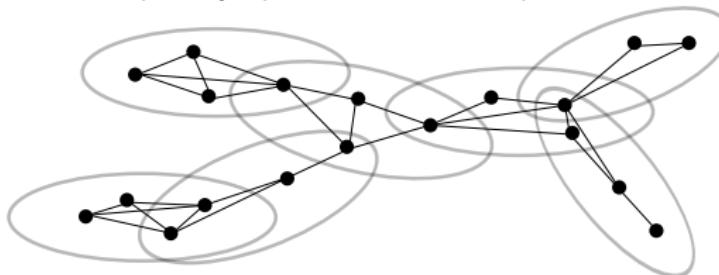
Classic examples: COLOURING, CLIQUE, DOMINATING SET, HAMILTON CYCLE...

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are **FPT** parameterized by **treewidth** via **dynamic programming** on a **tree-decomposition**: running time $f(\text{tw}) \cdot n^{O(1)}$.

Classic examples: COLOURING, CLIQUE, DOMINATING SET, HAMILTON CYCLE...



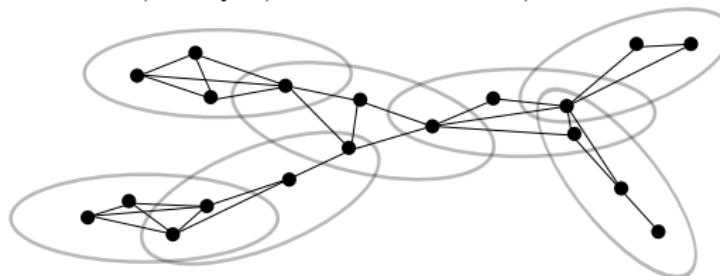
Treewidth: the **King** of Structural Parameters

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are **FPT** parameterized by **treewidth** via **dynamic programming** on a **tree-decomposition**: running time $f(\text{tw}) \cdot n^{O(1)}$.

Classic examples: COLOURING, CLIQUE, DOMINATING SET, HAMILTON CYCLE...



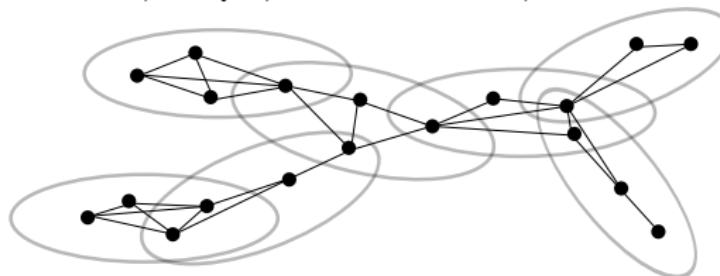
Generally: graph problems expressible in **Monadic Second-Order (MSO) logic** are **FPT** parameterized by the **treewidth** plus the length of the MSO formula [Courcelle, 1990].

Fixed parameter tractable (FPT) problems

A **decision problem** with input \mathcal{I} and **parameter** k is **FPT** parameterized by k if it can be solved in time $f(k) \cdot |\mathcal{I}|^{O(1)}$, where f is a computable function.

Many **NP-hard** problems are **FPT** parameterized by **treewidth** via **dynamic programming** on a **tree-decomposition**: running time $f(\text{tw}) \cdot n^{O(1)}$.

Classic examples: COLOURING, CLIQUE, DOMINATING SET, HAMILTON CYCLE...



Generally: graph problems expressible in **Monadic Second-Order (MSO) logic** are **FPT** parameterized by the **treewidth** plus the length of the MSO formula [Courcelle, 1990].

However, $f(\text{tw})$ may be a tower of exponentials!

ETH-based conditional lower bounds on $f(\text{tw})$ for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$. (stronger than $P \neq NP$)

ETH-based conditional lower bounds on $f(\text{tw})$ for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$. (stronger than $P \neq NP$)

Lower bounds for $f(\text{tw})$ using ETH usually of the form $2^{o(\text{tw})}$, $2^{o(\text{tw} \log \text{tw})}$ or $2^{o(\text{poly}(\text{tw}))}$.

ETH-based conditional lower bounds on $f(\text{tw})$ for FPT algorithms

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$. (stronger than $P \neq NP$)

Lower bounds for $f(\text{tw})$ using ETH usually of the form $2^{o(\text{tw})}$, $2^{o(\text{tw} \log \text{tw})}$ or $2^{o(\text{poly}(\text{tw}))}$.

Rarer results: Assuming the ETH,

- QSAT (PSPACE-complete) with k alternations admits a lower bound of a **tower of exponents** of height k in the **tw** of the primal graph [Fichte, Hecher, Pfandler, 2020];
- k -CHOOSABILITY (Π_2^P -complete) and k -CHOOSABILITY DELETION (Σ_3^P -complete) admit **double-** and **triple-exponential** lower bounds in **tw**, resp. [Marx, Mitsou, 2016];
- $\exists\forall$ -CSP (Σ_2^P -complete) admits a **double-exponential** lower bound in the **vertex cover number** [Lampis, Mitsou, 2017].

ETH-based conditional lower bounds on $f(\text{tw})$ for FPT algorithms

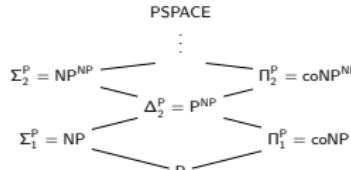
Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$. (stronger than $P \neq NP$)

Lower bounds for $f(\text{tw})$ using ETH usually of the form $2^{o(\text{tw})}$, $2^{o(\text{tw} \log \text{tw})}$ or $2^{o(\text{poly}(\text{tw}))}$.

Rarer results: Assuming the ETH,

- QSAT (PSPACE-complete) with k alternations admits a lower bound of a **tower of exponents** of height k in the **tw** of the primal graph [Fichte, Hecher, Pfandler, 2020];
- k -CHOOSABILITY (Σ_2^P -complete) and k -CHOOSABILITY DELETION (Σ_3^P -complete) admit **double-** and **triple-exponential** lower bounds in **tw**, resp. [Marx, Mitsou, 2016];
- $\exists\forall$ -CSP (Σ_2^P -complete) admits a **double-exponential** lower bound in the **vertex cover number** [Lampis, Mitsou, 2017].



P: computationally “easy” to solve

higher levels: hard to even verify

NP: hard to solve, easy to verify

ETH-based conditional lower bounds on $f(\text{tw})$ for FPT algorithms

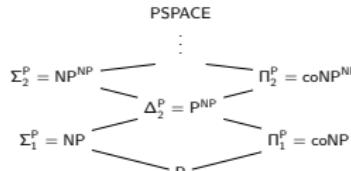
Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$. (stronger than $P \neq NP$)

Lower bounds for $f(\text{tw})$ using ETH usually of the form $2^{o(\text{tw})}$, $2^{o(\text{tw} \log \text{tw})}$ or $2^{o(\text{poly}(\text{tw}))}$.

Rarer results: Assuming the ETH,

- QSAT (PSPACE-complete) with k alternations admits a lower bound of a **tower of exponents** of height k in the **tw** of the primal graph [Fichte, Hecher, Pfandler, 2020];
- k -CHOOSABILITY (Σ_2^P -complete) and k -CHOOSABILITY DELETION (Σ_3^P -complete) admit **double-** and **triple-exponential** lower bounds in **tw**, resp. [Marx, Mitsou, 2016];
- $\exists\forall$ -CSP (Σ_2^P -complete) admits a **double-exponential** lower bound in the **vertex cover number** [Lampis, Mitsou, 2017].



P: computationally “easy” to solve

higher levels: hard to even verify

NP: hard to solve, easy to verify

Common theme: complexity classes higher than NP require large dependency in **tw**.

Our results

Main results

ETH-based **double-exponential** lower bounds in the **treewidth** for **NP-complete** problems.

Main results

ETH-based **double-exponential** lower bounds in the **treewidth** for **NP-complete** problems.

We develop a **technique** to prove such lower bounds for (nice) graph problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

METRIC DIMENSION and GEODETIC SET

- can be solved in $2^{\text{diam}^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admit no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Main results

ETH-based double-exponential lower bounds in the treewidth for NP-complete problems.

We develop a technique to prove such lower bounds for (nice) graph problems:

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

METRIC DIMENSION and GEODETIC SET

- can be solved in $2^{\text{diam}^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admit no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET and TEST COVER

- can be solved in $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admit no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Identification problems

A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...

→ studied in combinatorics since the 1960's (Bondy, Rényi...)

A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...

→ studied in combinatorics since the 1960's (Bondy, Rényi...)

Locating-dominating set [Slater, 1980's]

$D \subseteq V$ **locating-dominating set** of $G = (V, E)$:

- for every $v \in V$, $N[v] \cap D \neq \emptyset$ (domination)
- $\forall u \neq v$ of $V \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...

→ studied in combinatorics since the 1960's (Bondy, Rényi...)

Locating-dominating set [Slater, 1980's]

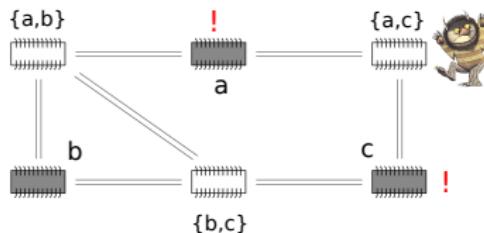
$D \subseteq V$ **locating-dominating set** of $G = (V, E)$:

- for every $v \in V$, $N[v] \cap D \neq \emptyset$ (domination)
- $\forall u \neq v \text{ of } V \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Motivation: fault-detection in networks.

→ The set D of grey processors is a set of fault-detectors.



A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...

→ studied in combinatorics since the 1960's (Bondy, Rényi...)

Locating-dominating set [Slater, 1980's]

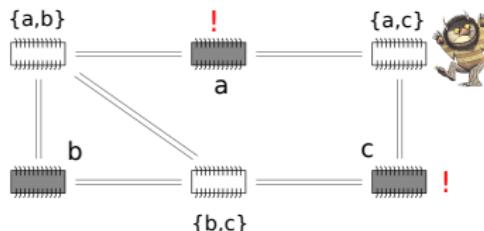
$D \subseteq V$ **locating-dominating set** of $G = (V, E)$:

- for every $v \in V$, $N[v] \cap D \neq \emptyset$ (domination)
- $\forall u \neq v$ of $V \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Motivation: fault-detection in networks.

→ The set D of grey processors is a set of fault-detectors.



Other applications:

biological testing, graph isomorphism, machine learning (VC-dimension)...

A graph identification problem

Identification problems:

want to **distinguish** all elements of a discrete structure using a (small) solution set

Examples: Test Cover, Separating Set/System, Identifying Code...

→ studied in combinatorics since the 1960's (Bondy, Rényi...)

Locating-dominating set [Slater, 1980's]

$D \subseteq V$ **locating-dominating set** of $G = (V, E)$:

- for every $v \in V$, $N[v] \cap D \neq \emptyset$ (domination)
- $\forall u \neq v$ of $V \setminus D$, $N(u) \cap D \neq N(v) \cap D$ (location)

(Every vertex not in D has a distinct neighbourhood within the solution D)

Decision problem:

LOCATING-DOMINATING SET

Input: an undirected graph $G = (V, E)$ and an integer $k \geq 1$

Question: Does G have a locating-dominating set of size at most k ?

NP-complete, FPT for treewidth using MSOL and Courcelle's theorem

Proof ideas

Main result for Locating-dominating Set

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET

- can be solved in $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admits no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Main result for Locating-dominating Set

Theorem [Chakraborty, F., Majumdar, Tale, ISAAC 2024]

LOCATING-DOMINATING SET

- can be solved in $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admits no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Algorithm: classic **dynamic programming** over a tree-decomposition.

Main idea: for each bag, remember which **subsets** of solution vertices form the intersection of some neighborhood

→ Number of DP-states per bag: $2^{2^{O(\text{tw})}}$ possible collections of subsets

Main result for Locating-dominating Set: lower bound

LOCATING-DOMINATING SET admits no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$.

Goal: reduction from n -variable 3-SAT such that $\text{tw}(G) = O(\log n)$.

→ Algorithm running in $2^{2^{o(\text{tw})}} = 2^{2^{o(\log n)}} = 2^{o(n)}$ → contradicts the ETH.

Main result for Locating-dominating Set: lower bound

LOCATING-DOMINATING SET admits no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$.

Goal: reduction from n -variable 3-SAT such that $\text{tw}(G) = O(\log n)$.

→ Algorithm running in $2^{2^{o(\text{tw})}} = 2^{2^{o(\log n)}} = 2^{o(n)}$ → contradicts the ETH.

Fact: can assume every variable appears ≤ 3 times (standard reduction)

Main result for Locating-dominating Set: lower bound

LOCATING-DOMINATING SET admits no $2^{2^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH.

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, n -variable 3-SAT cannot be solved in time $2^{o(n)}$.

Goal: reduction from n -variable 3-SAT such that $\text{tw}(G) = O(\log n)$.

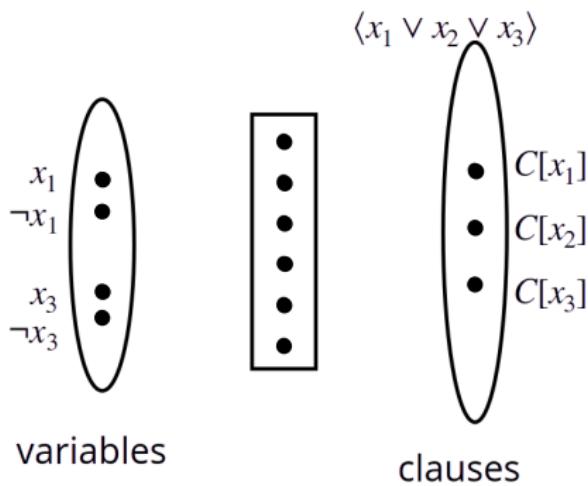
→ Algorithm running in $2^{2^{o(\text{tw})}} = 2^{2^{o(\log n)}} = 2^{o(n)}$ → contradicts the ETH.

Fact: can assume every variable appears ≤ 3 times (standard reduction)



How to encode clause-variable relations using a set of size $O(\log n)$?

Set-representation gadget: vertex set S of size $2p$.

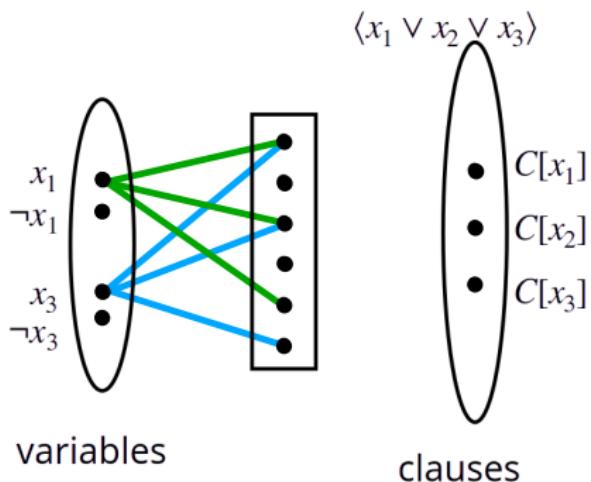


$$S_1 = \{1, 3, 5\} \quad S_3 = \{1, 3, 6\}$$

How to encode clause-variable relations using a set of size $O(\log n)$?

Set-representation gadget: vertex set S of size $2p$. Assign as neighbours, a **distinct** subset of size p to each literal occurrence. $\binom{2p}{p} \geq 4n \rightarrow p = O(\log n)$

(these subsets form a Sperner family)



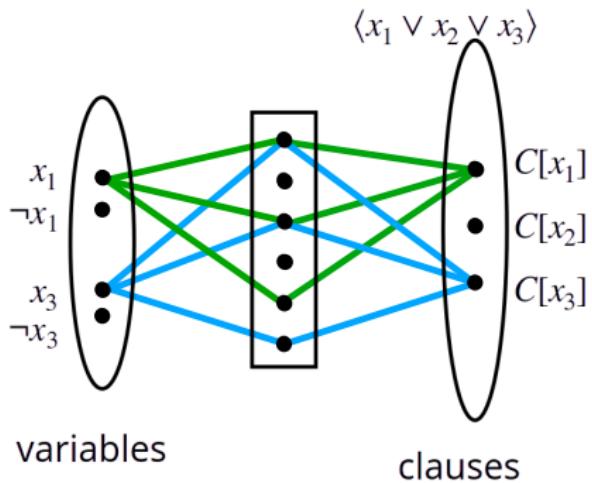
$$S_1 = \{1,3,5\} \quad S_3 = \{1,3,6\}$$

How to encode clause-variable relations using a set of size $O(\log n)$?

Set-representation gadget: vertex set S of size $2p$. Assign as neighbours, a **distinct** subset of size p to **each literal occurrence**. $\binom{2p}{p} \geq 4n \rightarrow p = O(\log n)$

(these subsets form a Sperner family)

Each clause C is represented by 3 vertices, each connected to the same vertices in S as one of the literals in C .

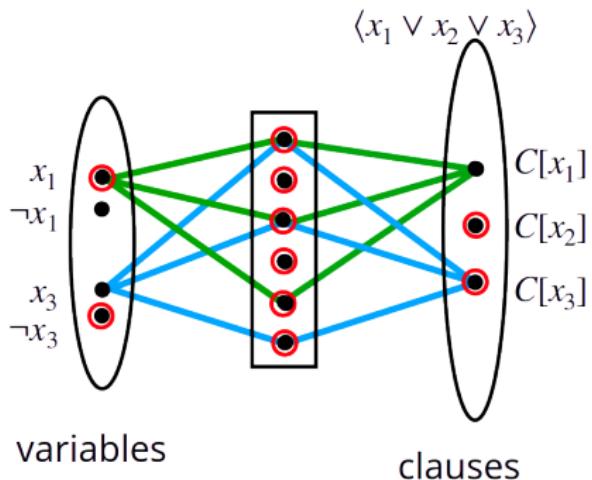


$$S_1 = \{1, 3, 5\} \quad S_3 = \{1, 3, 6\}$$

How to encode clause-variable relations using a set of size $O(\log n)$?

Set-representation gadget: vertex set S of size $2p$. Assign as neighbours, a **distinct** subset of size p to each literal occurrence. $\binom{2p}{p} \geq 4n \rightarrow p = O(\log n)$
(these subsets form a Sperner family)

Each clause C is represented by 3 vertices, each connected to the same vertices in S as one of the literals in C .



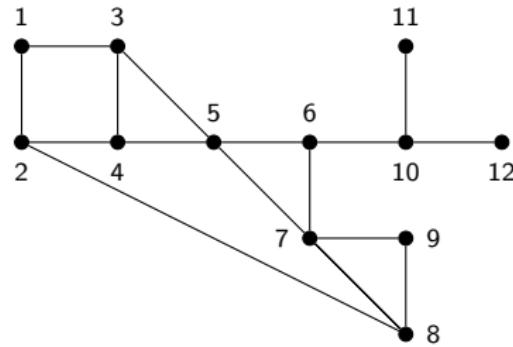
$$S_1 = \{1,3,5\} \quad S_3 = \{1,3,6\}$$

Metric Dimension

Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

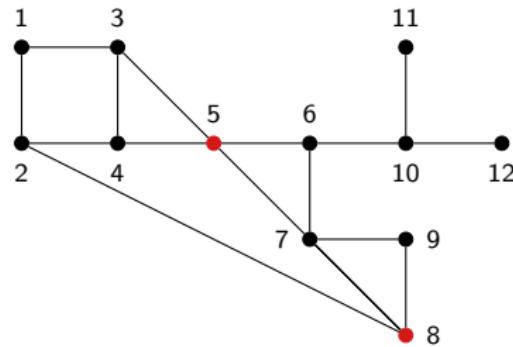
$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G .



Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

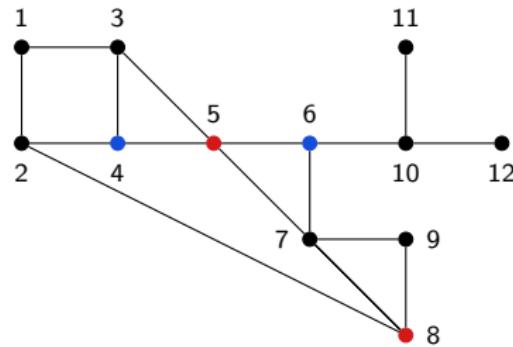
$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G .



Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G .

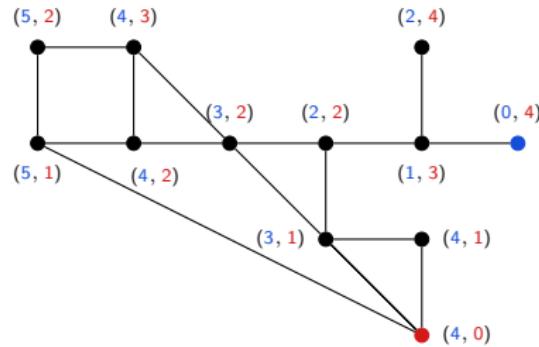


Vertices 4 and 6 are not resolved by 5 nor 8.

Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

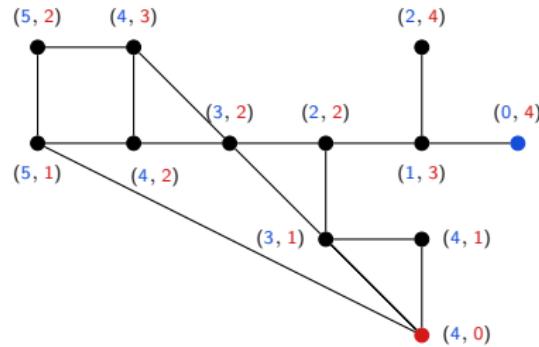
$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G .



Metric dimension

Metric dimension of a graph $G = (V, E)$ [Slater '75 + Harary, Melter '76]

$S \subseteq V$ is a **resolving set** of G if $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$. The **minimum size** of a resolving set of G is the **metric dimension** of G .



METRIC DIMENSION

Input: an undirected graph $G = (V, E)$ and an integer $k \geq 1$

Question: Is the metric dimension of G at most k ?

Results for Metric Dimension

METRIC DIMENSION is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)

But: becomes FPT for treewidth if the diameter is bounded.

Results for Metric Dimension

METRIC DIMENSION is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)

But: becomes FPT for treewidth if the diameter is bounded.

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

METRIC DIMENSION:

- can be solved in $2^{\text{diam}^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admits no $2^{f(\text{diam})^{O(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

Results for Metric Dimension

METRIC DIMENSION is NP-hard for graphs of treewidth 24 (Li-Pilipczuk, 2021)

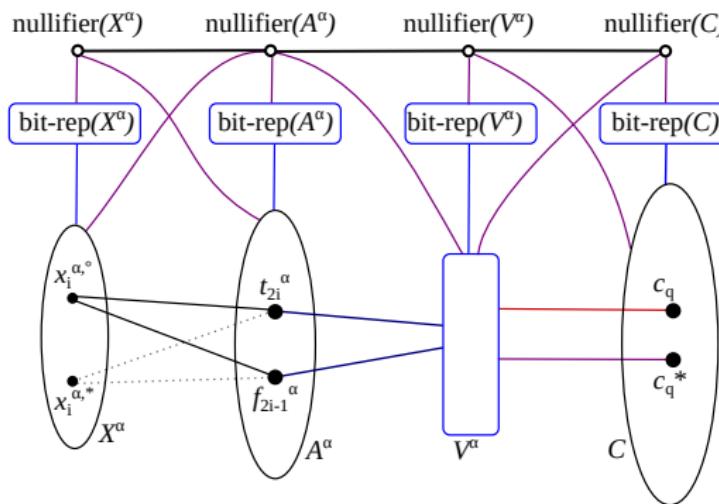
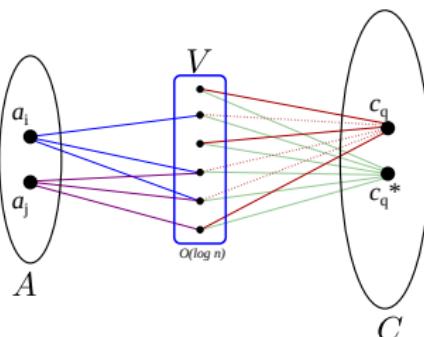
But: becomes FPT for treewidth if the diameter is bounded.

Theorem [F., Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale, ICALP 2024]

METRIC DIMENSION:

- can be solved in $2^{\text{diam}^{O(\text{tw})}} \cdot n^{O(1)}$ time
- admits no $2^{f(\text{diam})^{O(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming the ETH

The original proof is a more complex use-case of the set-representation gadget:



Conclusion

Main takeaway:

- Most natural NP-complete problems FPT for tw can be solved in time $2^{poly(\text{tw})} \cdot n^{O(1)}$
- **Graph identification problems** require $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time, assuming the ETH

Conclusion

Main takeaway:

- Most natural NP-complete problems FPT for tw can be solved in time $2^{\text{poly}(\text{tw})} \cdot n^{O(1)}$
- **Graph identification problems** require $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time, assuming the ETH

Further results:

- These problems have other “exotic” behaviours
- Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)
- Others admit lower bounds for the larger **vertex cover number**:
STRONG METRIC DIMENSION

Conclusion

Main takeaway:

- Most natural NP-complete problems FPT for tw can be solved in time $2^{\text{poly}(\text{tw})} \cdot n^{O(1)}$
- **Graph identification problems** require $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time, assuming the ETH

Further results:

- These problems have other “exotic” behaviours
- Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)
- Others admit lower bounds for the larger **vertex cover number**:
STRONG METRIC DIMENSION

Identification problems:

- Have intriguing algorithmic behaviours
- Also interesting from graph-theoretical point of view
- Nice, sometimes challenging, research problems and solutions

Conclusion

Main takeaway:

- Most natural NP-complete problems FPT for tw can be solved in time $2^{\text{poly}(\text{tw})} \cdot n^{O(1)}$
- **Graph identification problems** require $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time, assuming the ETH

Further results:

- These problems have other “exotic” behaviours
- Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)
- Others admit lower bounds for the larger **vertex cover number**:
STRONG METRIC DIMENSION

Identification problems:

- Have intriguing algorithmic behaviours
- Also interesting from graph-theoretical point of view
- Nice, sometimes challenging, research problems and solutions

Question: what about **triple-exponential** lower bounds for natural NP-complete problems?

Conclusion

Main takeaway:

- Most natural NP-complete problems FPT for tw can be solved in time $2^{\text{poly}(\text{tw})} \cdot n^{O(1)}$
- **Graph identification problems** require $2^{2^{O(\text{tw})}} \cdot n^{O(1)}$ time, assuming the ETH

Further results:

- These problems have other “exotic” behaviours
- Other NP-complete problems behave similarly:
GEODETIC SET (on graphs of bounded diameter)
- Others admit lower bounds for the larger **vertex cover number**:
STRONG METRIC DIMENSION

Identification problems:

- Have intriguing algorithmic behaviours
- Also interesting from graph-theoretical point of view
- Nice, sometimes challenging, research problems and solutions

Question: what about **triple-exponential** lower bounds for natural NP-complete problems?

THANKS!