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Separating systems in hypergraphs

Hypergraph (X ,E ). Find subset C ⊆ X such that each edge e ∈ E contains
a distinct subset of C .

De�nition - Separating system (Rényi, 1961)

also knwn as Distinguishing set, Test cover, Distinguishing transversal,
Discriminating code...

E (edges)

example: C = {2,3,5}

( /0) a

({2,3}) b

({3}) c

({3,5}) d

X (vertices)

1

2

3

4

5

Equivalently: for any pair e, f of edges, there is a vertex in C contained in
exactly one of e, f

Remark
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General bounds

For set system (X ,E ), a separating system has size at least log2(|E |).

Theorem (Folklore)

Proof: Must assign to each edge, a distinct subset of C .
Hence |E | ≤ 2|C |.

For set system (X ,E ), a minimal separating system has size at most |E |−1.

Theorem (Bondy's theorem, 1972)

Proof: nice and short graph-theoretic argument.
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Identifying codes in graphs
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Identifying codes

G : undirected graph
N[u]: set of vertices v s.t. d(u,v)≤ 1

Subset C of V (G) such that:
C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and

C is a separating code: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C

Equivalently:
(N[u]	N[v ])∩C 6= /0 → hitting symmetric di�erences

De�nition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

ID(G): identifying code number of G ,
minimum size of an identifying code in G
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Examples: paths

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and

C is a separating code: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C
Equivalently:

(N[u]	N[v ])∩C 6= /0 → hitting symmetric di�erences

De�nition - Identifying code

Domination number: DOM(Pn) =
⌈
n

3

⌉

Identifying code number: ID(Pn) =
⌈
n+1

2

⌉
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Identi�able graphs

Not all graphs have an identifying code!

Remark

Closed twins = pair u, v such that N[u] = N[v ].

u v

A graph is identi�able if and only if it is closed twin-free (i.e. has no twins).

Proposition
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Bounds on ID(G )

n: number of vertices

G identi�able graph on n vertices:

dlog2(n+1)e ≤ ID(G)

Theorem (Folklore)

G identi�able graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

ID(G) = n⇔ G has no edges
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Further examples

Subset C of V (G) such that:

C is a dominating set: ∀u ∈ V (G), N[u]∩C 6= /0, and

C is a separating code: ∀u 6= v of V (G), N[u]∩C 6= N[v ]∩C
Equivalently:

(N[u]	N[v ])∩C 6= /0 → hitting symmetric di�erences

De�nition - Identifying code

G identi�able, n vertices, some edges: dlog2(n+1)e ≤ ID(G)≤ n−1

Theorem

forced vertexforced vertex
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A question

G identi�able graph on n vertices with at least one edge:

ID(G)≤ n−1

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

What are the graphs G with n vertices and ID(G) = n−1 ?

Question

Florent Foucaud Identi�cation problems in graphs 11 / 47



Forced vertices

u,v such that N[v ]	N[u] = {f }:

f belongs to any identifying code

→ f forced by u,v .

f
v u
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Graphs with many forced vertices

Special path powers: Ak = Pk−1
2k

A2 = P4
A3 = P2

6
A4 = P3

8

ID(Ak) = n−1

Proposition
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Constructions using joins

Ak Ak'

Two graphs Ak and Ak ′

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join: add all edges between them

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices (K2)

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Join the new graph to two non-adjacent vertices, again

At each step, the constructed graph has ID = n−1

Proposition
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Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition

Florent Foucaud Identi�cation problems in graphs 14 / 47



Constructions using joins

Ak Ak'

Finally, add a universal vertex

At each step, the constructed graph has ID = n−1

Proposition
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A characterization

(1) stars

(2) Ak = Pk−1
2k

(3) joins between 0 or more members of (2) and 0 or more copies of K2

(4) (2) or (3) with a universal vertex

G connected identi�able graph, n vertices:

ID(G) = n−1 ⇔ G ∈ (1), (2), (3) or (4)

Theorem (F., Guerrini, Kov²e, Naserasr, Parreau, Valicov, 2011)
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Identifying codes in digraphs
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Idcodes in digraphs

N−[u]: in-neighbourhood of u

subset C of V such that:
C is a dominating set in D: for all u ∈ V , N−[u]∩C 6= /0, and

C is a separating code in D: for all u 6= v , N−[u]∩C 6= N−[v ]∩C

De�nition - Identifying code of a digraph D = (V ,A)

a

b

c d

e f

{b}

{b,c,e}

{c, f }
{c}

{e} {b,c, f }

ID(D): minimum size of an identifying code of D
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Which graphs need n vertices?

Two operations

D1⊕D2: disjoint union of D1 and D2

−→/ (D): D joined to K1 by incoming arcs only

D1 D2

D1⊕D2

D

−→/ (D)
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Which digraphs need n vertices?

Two operations

D1⊕D2: disjoint union of D1 and D2

−→/ (D): D joined to K1 by incoming arcs only

Let (K1,⊕,−→/ ) be the digraphs which can be built from K1 by successive
applications of ⊕ and −→/ , starting with K1.

De�nition
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A characterization

For each digraph D of order n in (K1,⊕,−→/ ), ID(D) = n.

Proposition

D1 D2

D1⊕D2

D

−→/ (D)
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A characterization

Let D be an identi�able digraph on n vertices. ID(G) = n i� D ∈ (K1,⊕,−→/ ).

Theorem (F., Naserasr, Parreau, 2013)

D1 D2

D1⊕D2

D

−→/ (D)
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Location-domination in graphs
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Location-domination

subset D of vertices of G = (V ,E) which is:

dominating : ∀u ∈ V ,N[u]∩D 6= /0,

locating : ∀u,v ∈ V \D,N[u]∩D 6= N[v ]∩D.

De�nition - Locating-dominating set (Slater, 1980's)

LD(G): location-domination number of G ,
minimum size of a locating-dominating set of G .
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Examples: paths

Domination number: DOM(Pn) =
⌈
n

3

⌉

Identifying code number: ID(Pn) =
⌈
n+1

2

⌉

Location-domination number: LD(Pn) =
⌈
2n

5

⌉
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Upper bounds

G graph of order n, no isolated vertices. Then DOM(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)
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G graph of order n, no isolated vertices. Then DOM(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

Tight examples:

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

Tight examples:

Remark: tight examples contain many twin-vertices!!
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Upper bound - a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)
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G graph of order n, no isolated vertices. Then DOM(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)
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2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 1. domination-extremal graphs
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2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 2. a similar construction
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Upper bound - a conjecture

G graph of order n, no isolated vertices. Then DOM(G)≤ n

2
.

Theorem (Domination bound � Ore, 1960's)

G graph of order n, no isolated vertices. Then LD(G)≤ n−1.

Theorem (Location-domination bound � Slater, 1980's)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

If true, tight: 3. a family with domination number 2

Clique on {xk+1, ...,x2k}

Clique on {x1, ...,xk}

xk+1 xk+2 xk+3 ...
x2k−1 x2k

x1 x2 x3

...
xk−1 xk
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014)
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Theorem (Garijo, González & Márquez, 2014)

Proof ideas:

• no 4-cycles: use a maximum matching

• bipartite: every vertex cover is a locating-dominating set
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is: • cubic graph
• line graph

Theorem (F., Henning, 2015+)

Split graph: clique + independent set

Cubic graph: all degrees equal to 3

Line graph: Intersection graph of the edges of a graph
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is: • cubic graph
• line graph

Theorem (F., Henning, 2015+)

Remark: Nontrivial proofs using very di�erent techniques!
→ Conjecture seems di�cult.
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Upper bound - a conjecture

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ n

2
.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then LD(G)≤ 2

3
n.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
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Lower bounds
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Lower bounds

G graph of order n, LD(G) = k. Then n≤ 2k +k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980's)
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Lower bounds

G graph of order n, LD(G) = k. Then n≤ 2k +k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980's)

Tight example (k = 4):
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Lower bounds

G graph of order n, LD(G) = k. Then n≤ 2k +k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980's)

G tree of order n, LD(G) = k. Then n ≤ 3k−1 → LD(G)≥ n+1

3
.

Theorem (Slater, 1980's)

G planar graph, order n, LD(G) = k. Then n ≤ 7k−10 → LD(G)≥ n+10

7
.

Theorem (Rall & Slater, 1980's)
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Lower bounds

G graph of order n, LD(G) = k. Then n≤ 2k +k−1 → LD(G) = Ω(logn).

Theorem (Slater, 1980's)

G tree of order n, LD(G) = k. Then n ≤ 3k−1 → LD(G)≥ n+1

3
.

Theorem (Slater, 1980's)

G planar graph, order n, LD(G) = k. Then n ≤ 7k−10 → LD(G)≥ n+10

7
.

Theorem (Rall & Slater, 1980's)

Tight examples:
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Interval graphs

Intersection graph of intervals of the real line.

De�nition - Interval graph

I1 I4

I2 I5

I3
1

2

3

4 5
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2

, i.e. LD(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2

, i.e. LD(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

De�ne zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1

(k− i) +k = k(k+3)
2

.
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2

, i.e. LD(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Each vertex intersects a consecutive set of intervals of D when ordered by
left points.
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2

, i.e. LD(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

1 2

3

4

1−1 2−3

1−2 2−4

1−4

1−3 3−4

Locating-dominating D of size k.

De�ne zones using the right points of intervals in D.

Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

→ n ≤ ∑
k
i=1

(k− i) +k = k(k+3)
2

.
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Lower bound for interval graphs

G interval graph of order n, LD(G) = k.

Then n ≤ k(k+3)
2

, i.e. LD(G) = Ω(
√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Tight:
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Permutation graphs

Given two parallel lines A and B:
intersection graph of segments joining A and B.

De�nition - Permutation graph
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Lower bound for permutation graphs

G permutation graph of order n, LD(G) = k.
Then n ≤ k2 +k−2, i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Locating-sominating set D of size k: k +1 �top zones� and k +1 �bottom
zones�

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:
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Lower bound for permutation graphs

G permutation graph of order n, LD(G) = k.
Then n ≤ k2 +k−2, i.e. LD(G) = Ω(
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Lower bound for permutation graphs

G permutation graph of order n, LD(G) = k.
Then n ≤ k2 +k−2, i.e. LD(G) = Ω(

√
n).

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Locating-sominating set D of size k: k +1 �top zones� and k +1 �bottom
zones�

Only one segment in V \D for one pair of zones

→ n ≤ (k +1)2 +k

Careful counting for the precise bound

Tight:

Florent Foucaud Identi�cation problems in graphs 32 / 47



Bounds for subclasses of interval/permutation

Let G be a graph on n vertices, LD(G) = k.

If G is unit interval, then n ≤ 3k−1.

If G is bipartite permutation, then n ≤ 3k +2.

If G is a cograph, then n ≤ 3k.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Vapnis-Chervonenkis dimension

Set X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

→ interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

planar: n ≤ 7k−10 (Slater & Rall, 1984)

line: n ≤ 8

9
k2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)

permutation: n ≤O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Florent Foucaud Identi�cation problems in graphs 34 / 47



Vapnis-Chervonenkis dimension

Set X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

→ interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

planar: n ≤ 7k−10 (Slater & Rall, 1984)

line: n ≤ 8

9
k2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)

permutation: n ≤O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Florent Foucaud Identi�cation problems in graphs 34 / 47



Vapnis-Chervonenkis dimension

Set X ⊆ V (G) is shattered:
for every subset S ⊆ X , there is a vertex v with N[v ]∩X = S

V-C dimension of G : maximum size of a shattered set in G

G graph of order n, LD(G) = k, V-C dimension ≤ d . Then n = O(kd ).

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

→ interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

planar: n ≤ 7k−10 (Slater & Rall, 1984)

line: n ≤ 8

9
k2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)

permutation: n ≤O(k2) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Florent Foucaud Identi�cation problems in graphs 34 / 47



Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Does the �GPS� approach also work in undirected unweighted graphs?

Question
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)
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Metric dimension

Now, w ∈ V (G) distinguishes {u,v} if dist(w ,u) 6= dist(w ,v)

R ⊆ V (G) resolving set of G :

∀u 6= v in V (G), there exists w ∈ R that distinguishes {u,v}.

De�nition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

w

MD(G): metric dimension of G , minimum size of a resolving set of G .
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Remarks

• Any locating-dominating set is a resolving set, hence MD(G)≤ LD(G).

• A locating-dominating set can be seen as a �distance-1-resolving set�.

Remark

MD(G) = 1 ⇔ G is a path

Proposition
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Bounds with diameter

Example of path: no bound n ≤ f (MD(G)) possible.

G of order n, diameter D, MD(G) = k. Then n ≤Dk +k.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

(diameter: maximum distance between two vertices)

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n = O(Dk2) i.e. k = Ω

(√
n

D

)
.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

→ Proofs are similar as for locating-dominating sets.

→ Bounds are tight (up to constant factors).
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Complexity and algorithms
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Hardness

INPUT: Graph G , integer k.
QUESTION: Is there a locating-dominating set of G of size k?

LOCATING-DOMINATING SET

INPUT: Graph G , integer k.
QUESTION: Is there a resolving set of G of size k?

METRIC DIMENSION
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

Reduction from 3-DIMENSIONAL MATCHING:

INPUT: A, B, C sets and T ⊂ A×B×C triples

QUESTION: is there a perfect 3-dimensional matching M ⊂T , i.e., each element
of A∪B ∪C appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without a�ecting what lies in between)
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Complexity - Interval and permutation graphs

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G ′) = LD(G )+2

G

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation.

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
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Complexity of LOCATING-DOMINATING SET

trees cographs

bounded cliquewidth

bounded treewidth

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite

planar bipartite

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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Complexity of METRIC DIMENSION

trees

outerplanar

cographs chain

bounded cliquewidth

bounded treewidth

bounded
pathwidth

series-parallel

bounded distance
to forest (FVS)

bounded cyclomatic number

bounded distance
to linear forest

bounded vertex cover

unit interval

permutation

bipartite permutation

interval
co-bipartite

line of bipartite

bipartite
planar

split

co-comparability

quasi-line

line

comparability chordal

claw-freeperfect

polynomial

NP-complete

OPEN
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An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs
−→ probably no f (k)poly(n)-time algorithm

METRIC DIMENSION can be solved in time 2O(k4)n on interval graphs.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

Ideas:
• use dynamic programming on a path-decomposition of G4.

• each bag has size O(k2).

• it su�ces to separate vertices at distance 2

• �transmission� lemma for separation constraints
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To conclude
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Open problems

Solve the conjecture: LD(G)≤ n

2
if G twin-free?

Investigate bounds for other �geometric� graphs, for MD and LD

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION
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