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Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)]

Hypergraph (X,&). Find subset C C X such that each edge e € & contains
a distinct subset of C.

also knwn as Distinguishing set, Test cover, Distinguishing transversal,
Discriminating code...

& (edges) X (vertices)
(0) a 1
({2.3h) b 2 example: C ={2,3,5}
({3h) ¢ 3
({3.51) d 4
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Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)]

Hypergraph (X,&). Find subset C C X such that each edge e € & contains
a distinct subset of C.

also knwn as Distinguishing set, Test cover, Distinguishing transversal,
Discriminating code...

& (edges) X (vertices)
(0) a 1
({2.3h) b 2 example: C ={2,3,5}
({3h) ¢ 3
({3.51) d 4

Remark

Equivalently: for any pair e,f of edges, there is a vertex in C contained in
exactly one of e, f
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General bounds

Theorem (FoIhore)]

For set system (X, &), a separating system has size at least log,(]&|).

Proof: Must assign to each edge, a distinct subset of C.
Hence |&| < 2171 O

Florent Foucaud Identification problems in graphs 4 /a7



General bounds

Theorem (FoIhore)]

For set system (X, &), a separating system has size at least log,(]&|).

Proof: Must assign to each edge, a distinct subset of C.
Hence |&| < 2171 O

Theorem (Bondy’s theorem, 1972)]

For set system (X, &), a minimal separating system has size at most |£|—1.

Proof: nice and short graph-theoretic argument. O
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Identifying codes in graphs
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[u]nC #0, and

e C is a separating code: Yu # v of V(G), N[ulnC # N[v]nC
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Identifying codes

G: undirected graph
N[u]: set of vertices v s.t. d(u,v) <1

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)]

Subset C of V(G) such that:
o C is a dominating set: Yu e V(G), N[u]nC #0, and
e C is a separating code: Yu # v of V(G), N[ulnC # N[v]nC
Equivalently:
(N[u]e N[v])N C # 0 — hitting symmetric differences

ID(G): identifying code number of G,
minimum size of an identifying code in G
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Examples: paths

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V/(G), N[u]nC #0, and

o C is a separating code: Yu # v of V(G), N[u]nC # N[v]nC
Equivalently:
(N[u]& N[v])N C # 0 — hitting symmetric differences

Domination number: DOM(P,) = [ 4]

o0—ee—OC—41"C—e O0—4"C—e 0O0—0C—e—0—0O—8oO0
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Examples: paths

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V/(G), N[u]nC #0, and

o C is a separating code: Yu # v of V(G), N[u]nC # N[v]nC
Equivalently:
(N[u]& N[v])N C # 0 — hitting symmetric differences

Domination number: DOM(P,) = [ 4]

o0—ee—OC—41"C—e O0—4"C—e 0O0—0C—e—0—0O—8oO0

Identifying code number: ID(P,) = [252]
o—OC—"0—O0—0—0O0—0—0—8—O0—0—0O0—0—0O—0
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].
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Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins = pair u, v such that N[u] = N[v].

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).
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Bounds on ID(G)

n: number of vertices

Theorem (Folklore)]

G identifiable graph on n vertices:

[logy(n+1)] < ID(G)
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Bounds on ID(G)

n: number of vertices

Theorem (FoIhore)]

G identifiable graph on n vertices:
[loga(n+1)] < ID(G)

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1
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Bounds on ID(G)

n: number of vertices

Theorem (FoIhore)]

G identifiable graph on n vertices:
[loga(n+1)] < ID(G)

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G)< n—1

ID(G) =n< G has no edges ° °
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u]nC # 0, and

o C is a separating code: Yu # v of V(G), N[u]nC # N[v]nC
Equivalently:
(N[u]& N[v])N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [logs(n+1)] <ID(G)<n-—1
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o Cis a dominating set: Vu € V(G), N[u]nC # 0, and

o C is a separating code: Yu # v of V(G), N[u]nC # N[v]nC
Equivalently:
(N[u]& N[v])N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [log,(n+1)] <ID(G)<n-—1

ID(G) = logy(n+1)
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Further examples

Definition - Identifying code]

Subset C of V(G) such that:
o C is a dominating set: Yu € V(G), N[u]nC #0, and
o C is a separating code: Yu # v of V(G), N[u]nC # N[v]nC
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(N[u]© N[v])N C # 0 — hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: [logy(n+1)] < ID(G)<n-—1

ID(G) =logy(n+1)

forced vertex
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Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)]

G identifiable graph on n vertices with at least one edge:

ID(G) < n—1

Question

What are the graphs G with n vertices and ID(G)=n—17
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Forced vertices

u,v such that N[v]e N[u] = {f}. 4 u
f belongs to any identifying code

— f forced by u,v.
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Graphs with many forced vertices

Special path powers: A, = Pé‘k’l

AN

Ar =Py

A3 = P2 Ay =P}
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Graphs with many forced vertices

Special path powers: A, = Pé‘k’l

AN

Ay =P,
S A3 = P2 As=P}

Proposition

ID(A)=n—1
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Constructions using joins

Two graphs Ax and Ay
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Constructions using joins

i

W

Join: add all edges between them

14 / 47
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Constructions using joins

Join the new graph to two non-adjacent vertices (K>)
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Constructions using joins

Join the new graph to two non-adjacent vertices, again
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Constructions using joins




Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has ID=n-1




A characterization

(1) s
(2) Ax= Pyt

(3) joins between 0 or more members of (2) and 0 or more copies of Ky
(4)

4

stars

(2) or (3) with a universal vertex

_[Theorem (F., Guerrini, Kovse, Naserasr, Parreau, Valicov, 2011)]

G connected identifiable graph, n vertices:

ID(G)=n—-1« G e (1), (2), (3) or (4)
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Identifying codes in digraphs
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Idcodes in digraphs

N~ [u]: in-neighbourhood of u

Definition - Identifying code of a digraph D = (V,A)]

subset C of V such that:
o C is a dominating set in D: forall ue V, N [u]nC #0, and

o C is a separating code in D: for all u#v, N"[unC#N"[v]nC

c,f
{b} e {c}

,c,e} @
./'

{e} {b,c,f}

ID(D): minimum size of an identifying code of D
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Which graphs need n vertices?

Two operations
@ D; @ D,: disjoint union of Dy and D,
° ?(D): D joined to K by incoming arcs only

Dy @ Ds 3 (D)
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Which digraphs need n vertices?

Two operations
e D; @ D,: disjoint union of D1 and Dj
e I(D): D joined to Ky by incoming arcs only

Definition

Let (Kl,@,?) be the digraphs which can be built from Kj by successive
applications of & and g, starting with Kj.
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Definition
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A characterization

Proposition

For each digraph D of order n in (Kl,ea,?), ID(D) = n.

Dy & D, (D)
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A characterization

Theorem (F., Naserasr, Parreau, 2013)]

Let D be an identifiable digraph on n vertices. ID(G) = niff D € (Ky,®, ).

D& D, < (D)
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Location-domination in graphs
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Location-domination

Definition - Locating-dominating set (Slater, 1980’5)]

subset D of vertices of G = (V/, E) which is:

o dominating : Yu e V N[u]nD #0,
o locating : Yu,v € V\D,N[u]nD # N[v]nD.

LD(G): location-domination number of G,
minimum size of a locating-dominating set of G.
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Examples: paths

Domination number: DOM(P,) = {%]

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0

Identifying code number: ID(P,) = ["TH1

e—O0O—168—OC—"8 O0C—0O0O—0—O0O—0—0O—0—0O—0
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Examples: paths

Domination number: DOM(P,) = {%]

O—8—OC—"T70C—"8O0C—0C—"08—O0C—"0C—"8—O0—0C—=8——0

Identifying code number: ID(P,) = ["TH1

e—O0O—168—OC—"8 O0C—0O0O—0—O0O—0—0O—0—0O—0

Location-domination number: LD(P,) = [32]

O—8—1OC—"08O0—"C—08O0—"8—O0—"0C—"08—0O0—"8——0
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Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.
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Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Tight examples: I J) o J) i
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Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 2

7.
Tight examples: I i

Theorem (Location-domination bound — Slater, 1980’ s)

G graph of order n, no isolated vertices. Then LD(G) < n—1.
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Theorem (Domination bound — Ore, 1960'5)]

G graph of order n, no isolated vertices. Then DOM(G) < 2

7.
Tight examples: I i

Theorem (Location-domination bound — Slater, 1980’ s)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Florent Foucaud
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Theorem (Domination bound — Ore, 1960'5)]

G graph of order n, no isolated vertices. Then DOM(G) < 2

7.
Tight examples: I i

Theorem (Location-domination bound — Slater, 1980’ s)

G graph of order n, no isolated vertices. Then LD(G) < n—1.

Tight examples: E %

Remark: tight examples contain many twin-vertices!!
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then LD(G) <n—1.
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then LD(G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 1.
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then LD(G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 1.

If true, tight: 1. domination-extremal graphs

!
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then LD(G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 1.

If true, tight: 2. a similar construction

}
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Upper bound - a conjecture

Theorem (Domination bound — Ore, 1960’5)]

G graph of order n, no isolated vertices. Then DOM(G) < 3.

Theorem (Location-domination bound — Slater, 1980’5)]

G graph of order n, no isolated vertices. Then LD(G) <n—1.

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 1.

If true, tight: 3. a family with domination number 2

Clique on {xp 1. Xk}

Clique on {xq,..,x¢}
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (Garijo, Gonzalez & Marquez, 2014)]

Conjecture true if G has no 4-cycles, or if G is bipartite.
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (Garijo, Gonzalez & Marquez, 2014)]

Conjecture true if G has no 4-cycles, or if G is bipartite.

Proof ideas:
® no 4-cycles: use a maximum matching

e bipartite: every vertex cover is a locating-dominating set
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, Léwenstein, Sasse, 2014+)]

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)]

Conjecture true if G is: e cubic graph
e line graph

Split graph: clique + independent set
Cubic graph: all degrees equal to 3
Line graph: Intersection graph of the edges of a graph
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.

Theorem (F., Henning, Léwenstein, Sasse, 2014+)]

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)]

Conjecture true if G is: e cubic graph
e line graph

Remark: Nontrivial proofs using very different techniques!
— Conjecture seems difficult.
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Upper bound - a conjecture

Conjecture (Garijo, Gonzalez & Marquez, 2014)]

n

G graph of order n, no isolated vertices, no twins. Then LD(G) < 7.
Theorem (F., Henning, Léwenstein, Sasse, 2014+)]
G graph of order n, no isolated vertices, no twins. Then LD(G) < % .

Florent Foucaud
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Lower bounds
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Theorem (Slater, 1980'5)]

G graph of order n, LD(G) = k. Then n< 2%+ k—1 — LD(G) = Q(logn).
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Theorem (Slater, 1980'5)]

G graph of order n, LD(G) = k. Then n< 2%+ k—1 — LD(G) = Q(logn).

Tight example (k = 4):
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Theorem (Slater, 1980'5)]

G graph of order n, LD(G) = k. Then n< 2%+ k—1 — LD(G) = Q(logn).

Theorem (Slater, 1980'5)]

G tree of order n, LD(G) =k. Then n<3k—1 — LD(G) > L.

Theorem (Rall & Slater, 1980'5)]

10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 212,
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Lower bounds

Theorem (Slater, 1980'5)]

G graph of order n, LD(G) = k. Then n< 2%+ k—1 — LD(G) = Q(logn).

Theorem (Slater, 1980'5)]

G tree of order n, LD(G) =k. Then n<3k—1 — LD(G) > L.

Theorem (Rall & Slater, 1980'5)]

10
G planar graph, order n, LD(G) = k. Then n < 7k—10 — LD(G) > 212,

Tight examples: FIG2. Tree T2 Figore 3.
Florent Foucaud
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Interval graphs

Definition - Interval graph]

Intersection graph of intervals of the real line.

I3
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, LD(G) = k.

Then n < X532 e 1D(G) = Q(v/n).
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, LD(G) = k.

Then n < X532 e 1D(G) = Q(v/n).

1 2
— —
3
—
4
—

@ Locating-dominating D of size k.

o Define zones using the right points of intervals in D.
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, LD(G) = k.

Then n < X532 e 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

@ Locating-dominating D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

Florent Foucaud Identification problems in graphs 30 / 47



Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, LD(G) = k.

Then n < X532 e 1D(G) = Q(v/n).

1 2
— —
1-1 2-3
3
—
1-2 2-4
1-4 4
—
1-3 3-4

@ Locating-dominating D of size k.
o Define zones using the right points of intervals in D.

@ Each vertex intersects a consecutive set of intervals of D when ordered by
left points.

— n <Yk (k—i)+k=KKEF3),
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Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G interval graph of order n, LD(G) = k.
Then n < X532 e 1D(G) = Q(v/n).

Tight:
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Permutation graphs

Definition - Permutation graph]

Given two parallel lines A and B:
intersection graph of segments joining A and B.

3 5

Florent Foucaud Identification problems in graphs 31 / a7



Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, LD(G) = k.
Then n < k? + k-2, i.e. LD(G)=Q(\/n).
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, LD(G) = k.
Then n < k? + k-2, i.e. LD(G)=Q(\/n).

/—~ same neighborhood in D
SINL L
4 '

(>
A

< "%’
> 4' D
1!4»1‘\\

o Locating-sominating set D of size k: k+1 “top zones” and k+1 “bottom
zones”

@ Only one segment in V'\ D for one pair of zones
= n<(k+1)2+k
o Careful counting for the precise bound
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Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph of order n, LD(G) = k.
Then n < k? + k-2, i.e. LD(G)=Q(\/n).

Tight:




Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

Let G be a graph on n vertices, LD(G) = k.

o If G is unit interval, then n <3k —1.
o If G is bipartite permutation, then n <3k +2.

o If G is a cograph, then n < 3k.

Florent Foucaud Identification problems in graphs 33 / a7



Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]NnX =S

V-C dimension of G: maximum size of a shattered set in G
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]NnX =S

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)]

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k?).

— interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...
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Vapnis-Chervonenkis dimension

Set X C V(G) is shattered:
for every subset S C X, there is a vertex v with N[v]NnX =S

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)]

G graph of order n, LD(G) = k, V-C dimension < d. Then n= O(k?).

— interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3),
unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

@ planar: n <7k —10 (Slater & Rall, 1984)
o line: n< gk2 (F., Gravier, Naserasr, Parreau, Valicov, 2013)
e permutation: n < O(k?) (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
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Metric dimension
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them
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Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the “GPS" approach also work in undirected unweighted graphs?
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that distinguishes {u,v}.
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
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Metric dimension

Now, w € V(G) distinguishes {u, v} if dist(w,u) # dist(w,v)

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)]

R C V(G) resolving set of G:
Vu # v in V(G), there exists w € R that distinguishes {u,v}.

MD(G): metric dimension of G, minimum size of a resolving set of G.
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Remark

e Any locating-dominating set is a resolving set, hence MD(G) < LD(G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.
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Remark

e Any locating-dominating set is a resolving set, hence MD(G) < LD(G).

e A locating-dominating set can be seen as a “distance-1-resolving set”.

Proposition

MD(G)=1 & G is a path

¢—C0—"TO—"C—"0O—C0O—CO—-0
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Florent Foucaud Identification problems in graphs 39 / 47



Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n= O(Dk?) i.e. k=Q(\/5)-
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Bounds with diameter

Example of path: no bound n < f(MD(G)) possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)]

G of order n, diameter D, MD(G) = k. Then n < DK 4 k.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)]

G permutation graph or interval graph of order n, MD(G) = k,
diameter D. Then n= O(Dk?) i.e. k=Q(\/5)-

— Proofs are similar as for locating-dominating sets.

— Bounds are tight (up to constant factors).
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Complexity and algorithms
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Hardness

LOCATING-DOMINATING SET)

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k7

METRIC DIMENSION)

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k7
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:
@ INPUT: A, B, C sets and . C Ax B x C triples

@ QUESTION: is there a perfect 3-dimensional matching M C T, i.e., each element
of AUBUC appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other
(without affecting what lies in between)
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Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)]

LOCATING-DOMINATING SET is NP-complete for graphs that are both
interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G') = LD(G) +2

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2015)]

METRIC DIMENSION is NP-complete for graphs that are both interval and
permutation.
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Complexity of LOCATING-DOMINATING SET

/7‘rfect claw-free
INP—compIeteI comparability  chordal quasi-line

co-comparability

bipartite split line

planar bipartite permutation co-bipartite

'\ interval
\

bounded cliquewidth /
/' unit interval
| ial bipartite permutation
@@ bolyd treewidth\ OPEN

trees cographs

line of bipartite
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Complexity of METRIC DIMENSION

perfect claw-free

l NP-complete l comparablllty chordal

pllt

quasi-line
co-comparability
line

bipartite N .
planar ermutatlon co-bipartite

|ntervg|\

line of bipartite

bounded cllquewldth unit interval

bounded treewidth
bipartite permutation

bounded bounded distance
pathwidth to forest (FVS)

series-parallel
bounded dlstance
to linear forest

bounded vertex cover cographs chain

outerplana\ }cj cyclomatic number lp0|yn0mia

trees
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An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W/2]-hard even for subcubic bipartite graphs
— probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)]

METRIC DIMENSION can be solved in time 20(k*)  on interval graphs.

Ideas:
e use dynamic programming on a path-decomposition of G*.

e each bag has size O(k?).
e it suffices to separate vertices at distance 2

e “transmission” lemma for separation constraints
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To conclude
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Open problems

@ Solve the conjecture: LD(G) < 4 if G twin-free?

Investigate bounds for other “geometric” graphs, for MD and LD

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...
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Open problems

@ Solve the conjecture: LD(G) < 4 if G twin-free?

Investigate bounds for other “geometric” graphs, for MD and LD

Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on
unit interval graphs

Complexity of METRIC DIMENSION for bounded treewidth

Parameterized complexity of METRIC DIMENSION: planar graphs,
chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION
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