Identification problems in graphs

Florent Foucaud (Univ. Blaise Pascal, Clermont-Ferrand, France)

joint works with:

Eleonora Guerrini, Mike Henning, Matjaž Kovše, Christian Löwenstein, George B. Mertzios, Reza Naserasr, Aline Parreau, Thomas Sasse, Petru Valicov

IPM Tehran, May 2015

Identification problems

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}) . Find subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

also knwn as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

example: $C = \{2, 3, 5\}$

Hypergraph (X, \mathscr{E}) . Find subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.

also knwn as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

Theorem (Folklore)

For set system (X, \mathscr{E}) , a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C. Hence $|\mathscr{E}| \leq 2^{|\mathscr{C}|}$.

Theorem (Folklore)

For set system (X, \mathscr{E}), a separating system has size at least $\log_2(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of *C*. Hence $|\mathscr{E}| \leq 2^{|\mathscr{C}|}$.

Theorem (Bondy's theorem, 1972)

For set system (X, \mathscr{E}) , a minimal separating system has size at most $|\mathscr{E}| - 1$.

Proof: nice and short graph-theoretic argument.

Identifying codes in graphs

```
G: undirected graph N[u]: set of vertices v s.t. d(u, v) \leq 1
```

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$

```
G: undirected graph N[u]: set of vertices v s.t. d(u, v) \leq 1
```

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

```
G: undirected graph N[u]: set of vertices v s.t. d(u, v) \leq 1
```

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

ID(G): identifying code number of G, minimum size of an identifying code in G

Domination number: $DOM(P_n) = \left\lceil \frac{n}{3} \right\rceil$

Closed twins = pair u, v such that N[u] = N[v].

n: number of vertices

Theorem (Folklore)

G identifiable graph on *n* vertices:

 $\lceil \log_2(n+1) \rceil \leq ID(G)$

n: number of vertices

Theorem (Folklore)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1) \rceil \leq ID(G)$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

n: number of vertices

Theorem (Folklore)

G identifiable graph on n vertices:

$$\lceil \log_2(n+1) \rceil \leq ID(G)$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$ID(G) \leq n-1$$

 $ID(G) = n \Leftrightarrow G$ has no edges

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq |D(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow$ hitting symmetric differences

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow hitting symmetric differences$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq |D(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq ID(G) \leq n-1$

Definition - Identifying code

Subset C of V(G) such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of V(G), $N[u] \cap C \neq N[v] \cap C$ Equivalently:

 $(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text{hitting symmetric differences}$

Theorem

G identifiable, n vertices, some edges: $\lceil \log_2(n+1) \rceil \leq |D(G) \leq n-1$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

 $ID(G) \leq n-1$

Question

What are the graphs G with n vertices and ID(G) = n-1?

u, v such that $N[v] \ominus N[u] = \{f\}$:

f belongs to any identifying code

```
\rightarrow f forced by u, v.
```


 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

 $A_2 = P_4$

 $A_3 = P_6^2$

 $A_4 = P_8^3$

Graphs with many forced vertices

Special path powers: $A_k = P_{2k}^{k-1}$

Two graphs A_k and $A_{k'}$

Join: add all edges between them

Join the new graph to two non-adjacent vertices $(\overline{K_2})$

Join the new graph to two non-adjacent vertices, again

Finally, add a universal vertex

At each step, the constructed graph has ID = n-1

(1) stars

(2)
$$A_k = P_{2k}^{k-1}$$

- (3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_2}$
- (4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)

G connected identifiable graph, n vertices:

$$ID(G) = n-1 \Leftrightarrow G \in (1), (2), (3) \text{ or } (4)$$

Identifying codes in digraphs

 $N^{-}[u]$: in-neighbourhood of u

Definition - Identifying code of a digraph D = (V, A)

subset C of V such that:

- C is a **dominating set** in D: for all $u \in V$, $N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D: for all $u \neq v$, $N^{-}[u] \cap C \neq N^{-}[v] \cap C$

ID(D): minimum size of an identifying code of D

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

- $D_1 \oplus D_2$: disjoint union of D_1 and D_2
- $\overrightarrow{\triangleleft}(D)$: *D* joined to K_1 by incoming arcs only

Definition

Location-domination in graphs

Definition - Locating-dominating set (Slater, 1980's)

subset D of vertices of G = (V, E) which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \setminus D, N[u] \cap D \neq N[v] \cap D.$

LD(G): location-domination number of G, minimum size of a locating-dominating set of G.

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Theorem (Domination bound — Ore, 1960's)

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 1. domination-extremal graphs

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \leq n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 2. a similar construction

G graph of order n, no isolated vertices. Then $DOM(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound — Slater, 1980's)

G graph of order n, no isolated vertices. Then $LD(G) \le n-1$.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

If true, tight: 3. a family with domination number 2

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (Garijo, González & Márquez, 2014)

Conjecture true if G has no 4-cycles, or if G is bipartite.

Proof ideas:

- no 4-cycles: use a maximum matching
- bipartite: every vertex cover is a locating-dominating set

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)

Conjecture true if G is: • cubic graph • line graph

Split graph: clique + independent set

```
Cubic graph: all degrees equal to 3
```

Line graph: Intersection graph of the edges of a graph
Upper bound - a conjecture

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)

Conjecture true if G is: • cubic graph • line graph

Remark: Nontrivial proofs using very different techniques! → Conjecture seems difficult.

Upper bound - a conjecture

Conjecture (Garijo, González & Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)

G graph of order n, no isolated vertices, no twins. Then $LD(G) \leq \frac{2}{3}n$.

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \leq 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G graph of order n, LD(G) = k. Then $n \leq 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Tight example (k = 4):

G graph of order n, LD(G) = k. Then $n \leq 2^k + k - 1 \rightarrow LD(G) = \Omega(\log n)$.

Theorem (Slater, 1980's)

G tree of order n, LD(G) = k. Then $n \leq 3k - 1 \rightarrow LD(G) \geq \frac{n+1}{3}$.

Theorem (Rall & Slater, 1980's)

G planar graph, order n, LD(G) = k. Then $n \leq 7k - 10 \rightarrow LD(G) \geq \frac{n+10}{7}$.

FIG. 2. Tree T2

Florent Foucaud

Figure 3.

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

1	2	_
1 – 1	2 – 3	3
1 – 2		2 – 4
	1 – 4	4
	1 – 3	3-4

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

1	2	_
1 – 1	2 – 3	3
1 – 2		2 – 4
	1 – 4	4
	1 – 3	3-4

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of *D* when ordered by left points.

$$\rightarrow n \leq \sum_{i=1}^{k} (k-i) + k = \frac{k(k+3)}{2}$$

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order n,
$$LD(G) = k$$
.

Then
$$n \leq rac{k(k+3)}{2}$$
, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

_	_	_	_
—			

Definition - Permutation graph

Given two parallel lines A and B: intersection graph of segments joining A and B.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n, LD(G) = k. Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n,
$$LD(G) = k$$
.
Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

- Locating-sominating set D of size k: k+1 "top zones" and k+1 "bottom zones"
- Only one segment in $V \setminus D$ for one pair of zones

$$\rightarrow n \leq (k+1)^2 + k$$

• Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order n, LD(G) = k. Then $n \le k^2 + k - 2$, i.e. $LD(G) = \Omega(\sqrt{n})$.

Tight:

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Let G be a graph on n vertices, LD(G) = k.

- If G is unit interval, then $n \leq 3k 1$.
- If G is bipartite permutation, then $n \leq 3k + 2$.
- If G is a cograph, then $n \leq 3k$.

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

Set $X \subseteq V(G)$ is shattered:

for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X = S$

V-C dimension of G: maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)

G graph of order n, LD(G) = k, V-C dimension $\leq d$. Then $n = O(k^d)$.

 \rightarrow interval graphs (d = 2), line graphs (d = 4), permutation graphs (d = 3), unit disk graphs (d = 3), planar graphs (d = 4)...

But better bounds exist:

- planar: $n \le 7k 10$ (Slater & Rall, 1984)
- line: $n \leq \frac{8}{9}k^2$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n \le O(k^2)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS: need to know the exact position of 4 satellites + distance to them

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $dist(w, u) \neq dist(w, v)$

Definition - Resolving set (Slater, 1975 - Harary & Melter, 1976)

 $R \subseteq V(G)$ resolving set of G:

 $\forall u \neq v \text{ in } V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

MD(G): metric dimension of G, minimum size of a resolving set of G.

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remark

- Any locating-dominating set is a resolving set, hence $MD(G) \leq LD(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Example of path: no bound $n \leq f(MD(G))$ possible.

Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)
Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph of order n, MD(G) = k, diameter D. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$. Example of path: no bound $n \leq f(MD(G))$ possible.

Theorem (Khuller, Raghavachari & Rosenfeld, 2002)

G of order n, diameter D, MD(G) = k. Then $n \le D^k + k$.

(diameter: maximum distance between two vertices)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph or interval graph of order *n*, MD(G) = k, diameter *D*. Then $n = O(Dk^2)$ i.e. $k = \Omega(\sqrt{\frac{n}{D}})$.

 \rightarrow Proofs are similar as for locating-dominating sets.

 \rightarrow Bounds are tight (up to constant factors).

Complexity and algorithms

LOCATING-DOMINATING SET

INPUT: Graph *G*, integer *k*.

QUESTION: Is there a locating-dominating set of G of size k?

METRIC DIMENSION

INPUT: Graph G, integer k. **QUESTION**: Is there a resolving set of G of size k? Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

MD(G') = LD(G) + 2

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

METRIC DIMENSION is NP-complete for graphs that are both interval and permutation.

Complexity of LOCATING-DOMINATING SET

Complexity of METRIC DIMENSION

Florent Foucaud

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \rightarrow probably no f(k)poly(n)-time algorithm

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)

METRIC DIMENSION can be solved in time $2^{O(k^4)}n$ on interval graphs.

ldeas:

- use dynamic programming on a path-decomposition of G^4 .
- each bag has size $O(k^2)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints

To conclude

- Solve the conjecture: $LD(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and LD
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

- Solve the conjecture: $LD(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and LD
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION