Identification problems in graphs

Florent Foucaud (Univ. Blaise Pascal, Clermont-Ferrand, France)
joint works with:
Eleonora Guerrini, Mike Henning, Matjaž Kovše, Christian Löwenstein, George B. Mertzios, Reza Naserasr, Aline Parreau, Thomas Sasse, Petru Valicov

IPM Tehran, May 2015

Identification problems

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}). Find subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.
also knwn as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

$$
\text { example: } C=\{2,3,5\}
$$

Separating systems in hypergraphs

Definition - Separating system (Rényi, 1961)

Hypergraph (X, \mathscr{E}). Find subset $C \subseteq X$ such that each edge $e \in \mathscr{E}$ contains a distinct subset of C.
also knwn as Distinguishing set, Test cover, Distinguishing transversal, Discriminating code...

$$
\text { example: } C=\{2,3,5\}
$$

Remark

Equivalently: for any pair e,f of edges, there is a vertex in C contained in exactly one of e, f

General bounds

Theorem (Folklore)
For set system (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C. Hence $|\mathscr{E}| \leq 2^{|\mathscr{C}|}$.

General bounds

Theorem (Folklore)
For set system (X, \mathscr{E}), a separating system has size at least $\log _{2}(|\mathscr{E}|)$.

Proof: Must assign to each edge, a distinct subset of C. Hence $|\mathscr{E}| \leq 2^{|\mathscr{C}|}$.

Theorem (Bondy's theorem, 1972)
For set system (X, \mathscr{E}), a minimal separating system has size at most $|\mathscr{E}|-1$.

Proof: nice and short graph-theoretic argument.

Identifying codes in graphs

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Identifying codes

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

$I D(G)$: identifying code number of G, minimum size of an identifying code in G

Examples: paths

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Examples: paths

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Identifiable graphs

Remark

Not all graphs have an identifying code!

Closed twins $=$ pair u, v such that $N[u]=N[v]$.

Proposition

A graph is identifiable if and only if it is closed twin-free (i.e. has no twins).

Bounds on $I D(G)$

n : number of vertices
Theorem (Folklore)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)
$$

Bounds on $I D(G)$

n : number of vertices
Theorem (Folklore)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)
$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Bounds on $I D(G)$

n : number of vertices
Theorem (Folklore)
G identifiable graph on n vertices:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G)
$$

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)
G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

$$
I D(G)=n \Leftrightarrow G \text { has no edges }
$$

Further examples

Definition - Identifying code
Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition - Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

Further examples

Definition-Identifying code

Subset C of $V(G)$ such that:

- C is a dominating set: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code: $\forall u \neq v$ of $V(G), N[u] \cap C \neq N[v] \cap C$ Equivalently:

$$
(N[u] \ominus N[v]) \cap C \neq \emptyset \rightarrow \text { hitting symmetric differences }
$$

Theorem

G identifiable, n vertices, some edges: $\left\lceil\log _{2}(n+1)\right\rceil \leq I D(G) \leq n-1$

A question

Theorem (Bertrand, 2005 / Gravier, Moncel, 2007 / Skaggs, 2007)

G identifiable graph on n vertices with at least one edge:

$$
I D(G) \leq n-1
$$

Question

What are the graphs G with n vertices and $I D(G)=n-1$?

Forced vertices

u, v such that $N[v] \ominus N[u]=\{f\}:$
f belongs to any identifying code
$\rightarrow f$ forced by u, v.

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$A_{3}=P_{6}^{2}$

$A_{4}=P_{8}^{3}$

Graphs with many forced vertices

Special path powers: $A_{k}=P_{2 k}^{k-1}$

$A_{2}=P_{4}$

$$
A_{3}=P_{6}^{2}
$$

$A_{4}=P_{8}^{3}$

Proposition

$$
I D\left(A_{k}\right)=n-1
$$

Constructions using joins

Two graphs A_{k} and $A_{k^{\prime}}$

Constructions using joins

Join: add all edges between them

Constructions using joins

Join the new graph to two non-adjacent vertices ($\overline{K_{2}}$)

Constructions using joins

Join the new graph to two non-adjacent vertices, again

Constructions using joins

Finally, add a universal vertex

Constructions using joins

Finally, add a universal vertex

Proposition

At each step, the constructed graph has $I D=n-1$

A characterization

(1) stars
(2) $A_{k}=P_{2 k}^{k-1}$
(3) joins between 0 or more members of (2) and 0 or more copies of $\overline{K_{2}}$
(4) (2) or (3) with a universal vertex

Theorem (F., Guerrini, Kovše, Naserasr, Parreau, Valicov, 2011)
G connected identifiable graph, n vertices:

$$
I D(G)=n-1 \Leftrightarrow G \in(1),(2),(3) \text { or }(4)
$$

Identifying codes in digraphs

Idcodes in digraphs

$N^{-}[u]$: in-neighbourhood of u
Definition - Identifying code of a digraph $D=(V, A)$
subset C of V such that:

- C is a dominating set in D : for all $u \in V, N^{-}[u] \cap C \neq \emptyset$, and
- C is a separating code in D : for all $u \neq v, N^{-}[u] \cap C \neq N^{-}[v] \cap C$

$I D(D)$: minimum size of an identifying code of D

Which graphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

$$
D_{1} \oplus D_{2}
$$

$$
\vec{f}(D)
$$

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\checkmark}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\checkmark}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\checkmark}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\quad(D)$: D joined to K_{1} by incoming arcs only

Definition
Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{\triangleleft}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\quad(D)$: D joined to K_{1} by incoming arcs only

Definition
Let $\left(K_{1}, \oplus, \vec{\triangleleft}\right)$ be the digraphs which can be built from K_{1} by successive applications of \oplus and $\vec{ব}$, starting with K_{1}.

Which digraphs need n vertices?

Two operations

- $D_{1} \oplus D_{2}$: disjoint union of D_{1} and D_{2}
- $\vec{J}(D): D$ joined to K_{1} by incoming arcs only

Definition

Let ($K_{1}, \oplus, \vec{\checkmark}$) be the digraphs which can be built from K_{1} by successive applications of \oplus and \checkmark, starting with K_{1}.

A characterization

Proposition

For each digraph D of order n in $\left(K_{1}, \oplus, \triangleleft\right), I D(D)=n$.

$D_{1} \oplus D_{2}$

$\vec{J}(D)$

A characterization

Theorem (F., Naserasr, Parreau, 2013)

Let D be an identifiable digraph on n vertices. ID $(G)=n$ iff $D \in\left(K_{1}, \oplus, \vec{\triangleleft}\right)$.

$$
D_{1} \oplus D_{2}
$$

$$
\vec{\triangleleft}(D)
$$

Location-domination in graphs

Location-domination

Definition - Locating-dominating set (Slater, 1980's)

subset D of vertices of $G=(V, E)$ which is:

- dominating : $\forall u \in V, N[u] \cap D \neq \emptyset$,
- locating : $\forall u, v \in V \backslash D, N[u] \cap D \neq N[v] \cap D$.
$L D(G)$: location-domination number of G,
minimum size of a locating-dominating set of G.

Examples: paths

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Examples: paths

Identifying code number: $I D\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$

Location-domination number: $L D\left(P_{n}\right)=\left\lceil\frac{2 n}{5}\right\rceil$

Upper bounds

Theorem (Domination bound — Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Upper bounds

Theorem (Domination bound — Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Upper bounds

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Upper bounds

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Upper bounds

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Tight examples:

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Tight examples:

Remark: tight examples contain many twin-vertices!!

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)
G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)
G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 1. domination-extremal graphs

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 2. a similar construction

Upper bound - a conjecture

Theorem (Domination bound - Ore, 1960's)

G graph of order n, no isolated vertices. Then $\operatorname{DOM}(G) \leq \frac{n}{2}$.

Theorem (Location-domination bound - Slater, 1980's)

G graph of order n, no isolated vertices. Then $L D(G) \leq n-1$.

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.
If true, tight: 3. a family with domination number 2

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (Garijo, González \& Márquez, 2014)
Conjecture true if G has no 4-cycles, or if G is bipartite.

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (Garijo, González \& Márquez, 2014)
Conjecture true if G has no 4 -cycles, or if G is bipartite.

Proof ideas:

- no 4-cycles: use a maximum matching
- bipartite: every vertex cover is a locating-dominating set

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

```
Theorem (F., Henning, Löwenstein, Sasse, 2014+)
```

Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)
Conjecture true if G is: • cubic graph

- line graph

Split graph: clique + independent set
Cubic graph: all degrees equal to 3
Line graph: Intersection graph of the edges of a graph

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
Conjecture true if G is split graph or complement of bipartite graph.

Theorem (F., Henning, 2015+)
Conjecture true if G is: • cubic graph

- line graph

Remark: Nontrivial proofs using very different techniques!
\rightarrow Conjecture seems difficult.

Upper bound - a conjecture

Conjecture (Garijo, González \& Márquez, 2014)

G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{n}{2}$.

Theorem (F., Henning, Löwenstein, Sasse, 2014+)
G graph of order n, no isolated vertices, no twins. Then $L D(G) \leq \frac{2}{3} n$.

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Tight example $(k=4)$:

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.
Theorem (Slater, 1980's)
G tree of order $n, L D(G)=k$. Then $n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3}$.
Theorem (Rall \& Slater, 1980's)
G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Lower bounds

Theorem (Slater, 1980's)
G graph of order $n, L D(G)=k$. Then $n \leq 2^{k}+k-1 \rightarrow L D(G)=\Omega(\log n)$.

Theorem (Slater, 1980's)

$$
G \text { tree of order } n, L D(G)=k . \text { Then } n \leq 3 k-1 \rightarrow L D(G) \geq \frac{n+1}{3}
$$

Theorem (Rall \& Slater, 1980's)

G planar graph, order $n, L D(G)=k$. Then $n \leq 7 k-10 \rightarrow L D(G) \geq \frac{n+10}{7}$.

Tight examples:

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G interval graph of order $n, L D(G)=k$.
Then $n \leq \frac{k(k+3)}{2}$, i.e. $L D(G)=\Omega(\sqrt{n})$.

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

- Locating-dominating D of size k.
- Define zones using the right points of intervals in D.
- Each vertex intersects a consecutive set of intervals of D when ordered by left points.

$$
\rightarrow n \leq \sum_{i=1}^{k}(k-i)+k=\frac{k(k+3)}{2} .
$$

Lower bound for interval graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G interval graph of order $n, L D(G)=k$.

$$
\text { Then } n \leq \frac{k(k+3)}{2} \text {, i.e. } L D(G)=\Omega(\sqrt{n}) \text {. }
$$

Tight:

Permutation graphs

Definition - Permutation graph

Given two parallel lines A and B : intersection graph of segments joining A and B.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

- Locating-sominating set D of size k : $k+1$ "top zones" and $k+1$ "bottom zones"
- Only one segment in $V \backslash D$ for one pair of zones

$$
\rightarrow n \leq(k+1)^{2}+k
$$

- Careful counting for the precise bound

Lower bound for permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

G permutation graph of order $n, L D(G)=k$.
Then $n \leq k^{2}+k-2$, i.e. $L D(G)=\Omega(\sqrt{n})$.

Tight:

Bounds for subclasses of interval/permutation

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
Let G be a graph on n vertices, $L D(G)=k$.

- If G is unit interval, then $n \leq 3 k-1$.
- If G is bipartite permutation, then $n \leq 3 k+2$.
- If G is a cograph, then $n \leq 3 k$.

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$

V-C dimension of G : maximum size of a shattered set in G

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$

V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
G graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

Vapnis-Chervonenkis dimension

Set $X \subseteq V(G)$ is shattered: for every subset $S \subseteq X$, there is a vertex v with $N[v] \cap X=S$

V-C dimension of G : maximum size of a shattered set in G

Theorem (Bousquet, Lagoutte, Li, Parreau, Thomassé, 2014+)
G graph of order $n, L D(G)=k, \mathrm{~V}-\mathrm{C}$ dimension $\leq d$. Then $n=O\left(k^{d}\right)$.
\rightarrow interval graphs $(d=2)$, line graphs $(d=4)$, permutation graphs $(d=3)$, unit disk graphs $(d=3)$, planar graphs $(d=4) \ldots$

But better bounds exist:

- planar: $n \leq 7 k-10$ (Slater \& Rall, 1984)
- line: $n \leq \frac{8}{9} k^{2}$ (F., Gravier, Naserasr, Parreau, Valicov, 2013)
- permutation: $n \leq O\left(k^{2}\right)$ (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)

Metric dimension

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Determination of Position in 3D euclidean space

GPS/GLONASS/Galileo/Beidou/IRNSS:
need to know the exact position of 4 satellites + distance to them

Question

Does the "GPS" approach also work in undirected unweighted graphs?

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

Metric dimension

Now, $w \in V(G)$ distinguishes $\{u, v\}$ if $\operatorname{dist}(w, u) \neq \operatorname{dist}(w, v)$

Definition - Resolving set (Slater, 1975 - Harary \& Melter, 1976)
$R \subseteq V(G)$ resolving set of G :
$\forall u \neq v$ in $V(G)$, there exists $w \in R$ that distinguishes $\{u, v\}$.

$M D(G)$: metric dimension of G, minimum size of a resolving set of G.

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Remarks

Remark

- Any locating-dominating set is a resolving set, hence $M D(G) \leq L D(G)$.
- A locating-dominating set can be seen as a "distance-1-resolving set".

Proposition

$$
M D(G)=1 \Leftrightarrow G \text { is a path }
$$

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$.

Bounds with diameter

Example of path: no bound $n \leq f(M D(G))$ possible.
Theorem (Khuller, Raghavachari \& Rosenfeld, 2002)
G of order n, diameter $D, M D(G)=k$. Then $n \leq D^{k}+k$.
(diameter: maximum distance between two vertices)
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2014+)
G permutation graph or interval graph of order $n, M D(G)=k$, diameter D. Then $n=O\left(D k^{2}\right)$ i.e. $k=\Omega\left(\sqrt{\frac{n}{D}}\right)$.
\rightarrow Proofs are similar as for locating-dominating sets.
\rightarrow Bounds are tight (up to constant factors).

Complexity and algorithms

Hardness

LOCATING-DOMINATING SET

INPUT: Graph G, integer k.
QUESTION: Is there a locating-dominating set of G of size k ?

METRIC DIMENSION

INPUT: Graph G, integer k.
QUESTION: Is there a resolving set of G of size k ?

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Complexity - Interval and permutation graphs

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
```

LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from 3-DIMENSIONAL MATCHING:

- INPUT: A, B, C sets and $\mathscr{T} \subset A \times B \times C$ triples
- QUESTION: is there a perfect 3-dimensional matching $M \subset T$, i.e., each element of $A \cup B \cup C$ appears exactly once in M ?

Main idea: an interval can separate pairs of intervals far away from each other (without affecting what lies in between)

Complexity - Interval and permutation graphs

Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
LOCATING-DOMINATING SET is NP-complete for graphs that are both interval and permutation.

Reduction from LOCATING-DOMINATING SET to METRIC DIMENSION:

Corollary (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
METRIC DIMENSION is NP-complete for graphs that are both interval and permutation.

Complexity of LOCATING-DOMINATING SET

Complexity of METRIC DIMENSION

An FPT algorithm for METRIC DIMENSION on interval graphs

Recall: METRIC DIMENSION W[2]-hard even for subcubic bipartite graphs \longrightarrow probably no $f(k) p o l y(n)$-time algorithm

```
Theorem (F., Mertzios, Naserasr, Parreau, Valicov, 2015)
```

METRIC DIMENSION can be solved in time $2 O\left(k^{4}\right) n$ on interval graphs.

Ideas:

- use dynamic programming on a path-decomposition of G^{4}.
- each bag has size $O\left(k^{2}\right)$.
- it suffices to separate vertices at distance 2
- "transmission" lemma for separation constraints

To conclude

- Solve the conjecture: $L D(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and LD
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...
- Solve the conjecture: $L D(G) \leq \frac{n}{2}$ if G twin-free?
- Investigate bounds for other "geometric" graphs, for MD and LD
- Complexity of LOCATING-DOMINATING SET, METRIC DIMENSION on unit interval graphs
- Complexity of METRIC DIMENSION for bounded treewidth
- Parameterized complexity of METRIC DIMENSION: planar graphs, chordal graphs, permutation graphs...

THANKS FOR YOUR ATTENTION

