
Identifying vertices of a graph using paths

Florent Foucaud (PhD student at LaBRI, Bordeaux, France)
and
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The test cover problem (TCP)

INPUT: a set system (or hypergraph) (X ,S)
PROBLEM: find the minimum subset T ⊆ S such that each element
x ∈ X belongs to a different set of sets in T .

Definition - Test cover problem (mentioned in Garey, Johnson, 1979)

Equivalently: for any pair x , y of elements of X , there is a set in T
that contains exactly one of x , y .

Remark

X (elements)

example: T = {2, 3, 5}

(∅) a

({2, 3}) b

({3}) c

({2, 3, 5}) d

S (tests)

1 = {a, b}

2 = {b}

3 = {b, c , d}

4 = {c, d}

5 = {d}
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The identification problem (IDP)

INPUT: a set system (or hypergraph) (X ,S)
PROBLEM: find the minimum subset T ⊆ S such that each element
x ∈ X belongs to a different nonempty set of sets in T .

Definition - Identification problem

X (elements)

example: T = {1, 2, 3, 5}

({1}) a

({1, 2, 3}) b

({3}) c

({2, 3, 5}) d
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4 = {c , d}

5 = {d}

Florent Foucaud Identifying vertices of a graph using paths 3 / 16



The identification problem (IDP)

INPUT: a set system (or hypergraph) (X ,S)
PROBLEM: find the minimum subset T ⊆ S such that each element
x ∈ X belongs to a different nonempty set of sets in T .

Definition - Identification problem

X (elements)

example: T = {1, 2, 3, 5}

({1}) a

({1, 2, 3}) b

({3}) c

({2, 3, 5}) d

S (tests)

1 = {a, b}

2 = {b}

3 = {b, c , d}

4 = {c , d}

5 = {d}

Florent Foucaud Identifying vertices of a graph using paths 3 / 16



Motivation

Fault analysis: tests are fault-detectors

medical diagnostics: tests are tests for diseases

biological identification: tests are attributes
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General bounds

Given a set system (X ,S), a solution to the TCP has size at least
log2(|X |). A solution to the IDP has size at least log2(|X |+ 1). These
bounds are tight.

Theorem (Folklore)

Proof: Must assign to each element of X , a distinct subset of T .
Hence |X | ≤ 2|T | (TCP) and |X | ≤ 2|T | − 1 (IDP).

Given a set system (X ,S), a minimal solution to the TCP has size at
most |X | − 1. A minimal solution to the IDP has size at most |X |.
These bounds are tight.

Theorem (Bondy’s theorem, 1972)

Proof: TCP: nice graph-theoretic argument.
IDP: sizes of solutions to TCP and IDP differ by at most 1!
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TCP-k and IDP-k

INPUT: a set system (X ,S) such that
each test has size at most k
PROBLEM: find the minimum subset T ⊆ S such that each element
x ∈ X belongs to a different (nonempty) set of sets in T .

Definition - k-bounded Test Cover Problem and Identification Problem

Given a k-bounded set system (X ,S), a solution to the TCP or IDP

has size at least 2|X |
k+1 . This bound is tight.

Theorem (Moret and Shapiro, 1985)

Proof: i1: elements belonging to 1 test of T ; i2: elements in at least 2
tests
i1 ≤ |T |, i2 ≤ |T |k−i12

|X | = i1 + i2 ≤ |T |+ |T |k−i1
2 = |T |(k+1)

2
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Complexity results

TCP is NP-complete.

Theorem (Garey, Johnson, 1979)

IDP is NP-complete (even in “planar” set systems).

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

TCP is O(log(|X |))-approximable, but NP-hard to approximate within
o(log(|X |)). TCP-k is O(log(k))-approximable.

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra,
Ravi, Stougie, 2003)

Proof: Reductions from and to SET-COVER and k-BOUNDED SET
COVER.

Remark: The same holds for IDP and IDP-k.
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Special cases of IDP

Rich literature (250+ publications) on variants arising from graph
theory:

Given a graph G , it is the IDP problem where X = V (G ) and S is the
set of closed neighbourhoods in G (a vertex identifies its neighbours
and itself).

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G , it is the IDP problem where X = V (G ) and S is the
set of stars in G (a vertex identifies a part of its neighbourhood).

Definition - Watching systems (Auger, Charon, Hudry, Lobstein, 2010+)

Motivation: fault-detection in computer networks or location of threats in
facilities
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The path identifying cover problem

Given a graph G , it is the IDP problem where X = V (G ) and S is the
set of paths in G : we look for a set P of paths such that:

each vertex belongs to some path in P, and

for each pair x , y of vertices, we have some path Px,y in P that
includes exactly one of x , y .

Definition - Identifying path cover (F., Kovše)

Possible motivations: laser-like sensor systems or patrolling robots in
facilities/networks

minimum number of paths needed in an identifying path cover.

Notation - pID(G )
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Possible motivations: laser-like sensor systems or patrolling robots in
facilities/networks

minimum number of paths needed in an identifying path cover.

Notation - pID(G )

Florent Foucaud Identifying vertices of a graph using paths 9 / 16



Example: paths and cycles

To distinguish two adjacent vertices: need a path stopping at one of
them.

Pn,Cn: the path and cycle on n vertices.

We have:
pID(Pn) = d n+1

2 e
pID(C3) = 2, pID(C4) = 3

for n ≥ 5, pID(Cn) = d n2e

Theorem (F., Kovše)
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Example: stars

The optimum is roughly to cover three leaves using two paths.

K1,n−1: star on n vertices.

We have pID(K1,n−1) = d 2(n−1)3 e.

Theorem (F., Kovše)
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Trees

Same idea can be used for trees.
T : tree with ` leaves, t degree 2 vertices.

Identify all vertices that are not of degree 2 using d 2(`−1)3 e paths.
Intuition: first contract the tree to a star, then de-contract it level by
level; at each step, re-route paths accordingly.

Degree 2 vertices can be identified using at most d t2e additional paths.

pID(T ) ≤ d 2`3 e+ d t2e

Theorem (F., Kovše)

Let G be a connected graph. Then pID(G ) ≤ d 2n3 e.

Corollary

Proof: Take spanning tree T of G . An identifying path cover of T is
also one for G ! In the worst case, T has many leaves (up to n − 1).
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In general

In general, for connected graphs G , we have the tight bounds:

dlog2(n + 1)e ≤ pID(G ) ≤ d2n

3
e

This an improvement over IDP, where for a connected instance:

dlog2(n + 1)e ≤ pID(G ) ≤ n

(see e.g. Foucaud, Naserasr, Parreau 2012 for the special case of
identifying codes in digraphs).
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Computational complexity

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G .

Definition - ID. PATH COVER

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G such
that each path has at most k vertices.

Definition - ID. PATH COVER-k

We know that ID. PATH COVER is O(log(n))-approximable and that ID.
PATH COVER-k is O(log(k))-approximable.

ID. PATH COVER-k is APX-hard, i.e., there exists some constant c >
1 such that it is NP-hard to approximate ID. PATH COVER-k within
ratio c .

Theorem (F., Kovše)
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Computational complexity

ID. PATH COVER-k is APX-hard, i.e., there exists some constant c >
1 such that it is NP-hard to approximate ID. PATH COVER-k within
ratio c .

Theorem (F., Kovše)

Proof: L-reduction from VERTEX COVER in cubic graphs. A and B are
local sub-gadgets.

a1

A

A

bc

A

A

a2

k
−

2
ti

m
es

k
−

2
ti

m
es

··
·

··
·

B

y1

A A

B

y2

A A

B

y3

A

A

x1z1

A

A

x2z2

A

A

x3z3

··
·

··
·

··
·

· · · · · ·

k
−

2
ti

m
es

k
−

2
ti

m
es

k
−

2
ti

m
es

⌈
k−3
2

⌉
times

⌊
k−3
2

⌋
times

Florent Foucaud Identifying vertices of a graph using paths 15 / 16



Open problems

Give good upper bounds for TCP-k , IDP-k , ID. PATH COVER-k
(this already seems to be a difficult question for identifying codes).

Is there a polynomial-time algorithm for ID. PATH COVER in trees?

What is the complexity of the general ID. PATH COVER problem?

What are the graphs that admit a k-path identifying cover (i.e. all
paths have exactly k vertices)?

Thank you / Nandri / Shukriya / Merci!
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