Identifying vertices of a graph using paths

Florent Foucaud (PhD student at LaBRI, Bordeaux, France)
and
Matjaž Kovše (Postdoc at Universität Leipzig, Germany)

Kalasalingam University
Tamil Nadu, India
19-21 July 2012
IWOCA 2012

The test cover problem (TCP)

Definition - Test cover problem (mentioned in Garey, Johnson, 1979)
INPUT: a set system (or hypergraph) (X, \mathcal{S})
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different set of sets in \mathcal{T}.

The test cover problem (TCP)

Definition - Test cover problem (mentioned in Garey, Johnson, 1979)
INPUT: a set system (or hypergraph) (X, \mathcal{S})
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different set of sets in \mathcal{T}.

Remark

Equivalently: for any pair x, y of elements of X, there is a set in \mathcal{T} that contains exactly one of x, y.

The test cover problem (TCP)

Definition - Test cover problem (mentioned in Garey, Johnson, 1979)
INPUT: a set system (or hypergraph) (X, \mathcal{S})
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different set of sets in \mathcal{T}.

Remark

Equivalently: for any pair x, y of elements of X, there is a set in \mathcal{T} that contains exactly one of x, y.

The identification problem (IDP)

Definition - Identification problem
INPUT: a set system (or hypergraph) (X, \mathcal{S})
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different nonempty set of sets in \mathcal{T}.

The identification problem (IDP)

Definition - Identification problem

INPUT: a set system (or hypergraph) (X, \mathcal{S})
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different nonempty set of sets in \mathcal{T}.

Motivation

- Fault analysis: tests are fault-detectors
- medical diagnostics: tests are tests for diseases
- biological identification: tests are attributes

General bounds

Theorem (Folklore)

Given a set system (X, \mathcal{S}), a solution to the TCP has size at least $\log _{2}(|X|)$. A solution to the IDP has size at least $\log _{2}(|X|+1)$. These bounds are tight.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T}. Hence $|X| \leq 2^{|\mathcal{T}|}$ (TCP) and $|X| \leq 2^{|\mathcal{T}|}-1$ (IDP).

General bounds

Theorem (Folklore)

Given a set system (X, \mathcal{S}), a solution to the TCP has size at least $\log _{2}(|X|)$. A solution to the IDP has size at least $\log _{2}(|X|+1)$. These bounds are tight.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T}. Hence $|X| \leq 2^{|\mathcal{T}|}$ (TCP) and $|X| \leq 2^{|\mathcal{T}|}-1$ (IDP).

Theorem (Bondy's theorem, 1972)
Given a set system (X, \mathcal{S}), a minimal solution to the TCP has size at most $|X|-1$. A minimal solution to the IDP has size at most $|X|$. These bounds are tight.

Proof: TCP: nice graph-theoretic argument. IDP: sizes of solutions to TCP and IDP differ by at most 1!

TCP-k and IDP-k

Definition - k-bounded Test Cover Problem and Identification Problem
INPUT: a set system (X, \mathcal{S}) such that
each test has size at most k
PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element
$x \in X$ belongs to a different (nonempty) set of sets in \mathcal{T}.

TCP-k and IDP-k

Definition - k-bounded Test Cover Problem and Identification Problem

INPUT: a set system (X, \mathcal{S}) such that each test has size at most k PROBLEM: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different (nonempty) set of sets in \mathcal{T}.

Theorem (Moret and Shapiro, 1985)

Given a k-bounded set system (X, \mathcal{S}), a solution to the TCP or IDP has size at least $\frac{2|X|}{k+1}$. This bound is tight.

Proof: i_{1} : elements belonging to 1 test of \mathcal{T}; i_{2} : elements in at least 2 tests
$i_{1} \leq|\mathcal{T}|, i_{2} \leq \frac{|\mathcal{T}| k-i_{1}}{2}$
$|X|=i_{1}+i_{2} \leq|\mathcal{T}|+\frac{|\mathcal{T}| k-i_{1}}{2}=\frac{|\mathcal{T}|(k+1)}{2}$

Complexity results

Theorem (Garey, Johnson, 1979)
TCP is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)
IDP is NP-complete (even in "planar" set systems).

Complexity results

Theorem (Garey, Johnson, 1979)
TCP is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)
IDP is NP-complete (even in "planar" set systems).

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra, Ravi, Stougie, 2003)

TCP is $O(\log (|X|))$-approximable, but NP-hard to approximate within $o(\log (|X|))$. TCP- k is $O(\log (k))$-approximable.

Proof: Reductions from and to SET-COVER and k-BOUNDED SET COVER.

Complexity results

Theorem (Garey, Johnson, 1979)
TCP is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)
IDP is NP-complete (even in "planar" set systems).

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra, Ravi, Stougie, 2003)

TCP is $O(\log (|X|))$-approximable, but NP-hard to approximate within $o(\log (|X|))$. TCP- k is $O(\log (k))$-approximable.

Proof: Reductions from and to SET-COVER and k-BOUNDED SET cover.

Remark: The same holds for IDP and IDP-k.

Special cases of IDP

Rich literature ($250+$ publications) on variants arising from graph theory:

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of closed neighbourhoods in G (a vertex identifies its neighbours and itself).

Special cases of IDP

Rich literature (250+ publications) on variants arising from graph theory:

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of closed neighbourhoods in G (a vertex identifies its neighbours and itself).

Definition - Watching systems (Auger, Charon, Hudry, Lobstein, 2010+)
Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of stars in G (a vertex identifies a part of its neighbourhood).

Special cases of IDP

Rich literature (250+ publications) on variants arising from graph theory:

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of closed neighbourhoods in G (a vertex identifies its neighbours and itself).

Definition - Watching systems (Auger, Charon, Hudry, Lobstein, 2010+)
Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of stars in G (a vertex identifies a part of its neighbourhood).

Motivation: fault-detection in computer networks or location of threats in facilities

The path identifying cover problem

Definition - Identifying path cover (F., Kovše)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of paths in G : we look for a set \mathcal{P} of paths such that:

- each vertex belongs to some path in \mathcal{P}, and
- for each pair x, y of vertices, we have some path $P_{x, y}$ in \mathcal{P} that includes exactly one of x, y.

The path identifying cover problem

Definition - Identifying path cover (F., Kovše)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of paths in G : we look for a set \mathcal{P} of paths such that:

- each vertex belongs to some path in \mathcal{P}, and
- for each pair x, y of vertices, we have some path $P_{x, y}$ in \mathcal{P} that includes exactly one of x, y.

Possible motivations: laser-like sensor systems or patrolling robots in facilities/networks

The path identifying cover problem

Definition - Identifying path cover (F., Kovše)

Given a graph G, it is the IDP problem where $X=V(G)$ and \mathcal{S} is the set of paths in G : we look for a set \mathcal{P} of paths such that:

- each vertex belongs to some path in \mathcal{P}, and
- for each pair x, y of vertices, we have some path $P_{x, y}$ in \mathcal{P} that includes exactly one of x, y.

Possible motivations: laser-like sensor systems or patrolling robots in facilities/networks

Notation - $p^{\text {ID }}(G)$

minimum number of paths needed in an identifying path cover.

Example: paths and cycles

To distinguish two adjacent vertices: need a path stopping at one of them.
P_{n}, C_{n} : the path and cycle on n vertices.

Theorem (F., Kovše)

We have:

- $p^{\text {ID }}\left(P_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$
- $p^{\mathrm{ID}}\left(C_{3}\right)=2, p^{\mathrm{ID}}\left(C_{4}\right)=3$
- for $n \geq 5, p^{\text {ID }}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$

Example: stars

The optimum is roughly to cover three leaves using two paths.
$K_{1, n-1}$: star on n vertices.

Theorem (F., Kovše)
We have $p^{\text {ID }}\left(K_{1, n-1}\right)=\left\lceil\frac{2(n-1)}{3}\right\rceil$.

Trees

Same idea can be used for trees.
T : tree with ℓ leaves, t degree 2 vertices.
Identify all vertices that are not of degree 2 using $\left\lceil\frac{2(\ell-1)}{3}\right\rceil$ paths. Intuition: first contract the tree to a star, then de-contract it level by level; at each step, re-route paths accordingly.
Degree 2 vertices can be identified using at most $\left\lceil\frac{t}{2}\right\rceil$ additional paths.
Theorem (F., Kovše)

$$
p^{10}(T) \leq\left\lceil\frac{2 \ell}{3}\right\rceil+\left\lceil\frac{t}{2}\right\rceil
$$

Trees

Same idea can be used for trees.
T : tree with ℓ leaves, t degree 2 vertices.
Identify all vertices that are not of degree 2 using $\left\lceil\frac{2(\ell-1)}{3}\right\rceil$ paths. Intuition: first contract the tree to a star, then de-contract it level by level; at each step, re-route paths accordingly.
Degree 2 vertices can be identified using at most $\left\lceil\frac{t}{2}\right\rceil$ additional paths.
Theorem (F., Kovše)

$$
p^{10}(T) \leq\left\lceil\frac{2 \ell}{3}\right\rceil+\left\lceil\frac{t}{2}\right\rceil
$$

Corollary

Let G be a connected graph. Then $p^{1 D}(G) \leq\left\lceil\frac{2 n}{3}\right\rceil$.

Proof: Take spanning tree T of G. An identifying path cover of T is also one for $G!$ In the worst case, T has many leaves (up to $n-1$).

In general

In general, for connected graphs G, we have the tight bounds:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq p^{1 \mathrm{D}}(G) \leq\left\lceil\frac{2 n}{3}\right\rceil
$$

In general

In general, for connected graphs G, we have the tight bounds:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq p^{\text {ID }}(G) \leq\left\lceil\frac{2 n}{3}\right\rceil
$$

This an improvement over IDP, where for a connected instance:

$$
\left\lceil\log _{2}(n+1)\right\rceil \leq p^{10}(G) \leq n
$$

(see e.g. Foucaud, Naserasr, Parreau 2012 for the special case of identifying codes in digraphs).

Computational complexity

Definition - ID. PATH COVER
INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.

Computational complexity

Definition - ID. PATH COVER
INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.

Definition - ID. PATH COVER-k
INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G such that each path has at most k vertices.

Computational complexity

Definition - ID. PATH COVER

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.

Definition - ID. PATH COVER- k

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G such that each path has at most k vertices.

We know that ID. PATH COVER is $O(\log (n))$-approximable and that ID. PATH COVER- k is $O(\log (k))$-approximable.

Computational complexity

Definition - ID. PATH COVER

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.

Definition - ID. PATH COVER-k

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G such that each path has at most k vertices.

We know that ID. PATH COVER is $O(\log (n))$-approximable and that ID. PATH COVER- k is $O(\log (k))$-approximable.

Theorem (F., Kovše)
ID. PATH COVER- k is APX-hard, i.e., there exists some constant $c>$ 1 such that it is NP-hard to approximate ID. PATH COVER- k within ratio c.

Computational complexity

Theorem (F., Kovše)

ID. PATH COVER- k is APX-hard, i.e., there exists some constant $c>$ 1 such that it is NP-hard to approximate ID. PATH COVER-k within ratio c.

Proof: L-reduction from VERTEX COVER in cubic graphs. A and B are local sub-gadgets.

Open problems

- Give good upper bounds for TCP- k, IDP- k, ID. PATH COVER- k (this already seems to be a difficult question for identifying codes).
- Is there a polynomial-time algorithm for ID. PATH COVER in trees?
- What is the complexity of the general ID. PATH COVER problem?
- What are the graphs that admit a k-path identifying cover (i.e. all paths have exactly k vertices)?

Open problems

- Give good upper bounds for TCP- k, IDP- k, ID. PATH COVER- k (this already seems to be a difficult question for identifying codes).
- Is there a polynomial-time algorithm for ID. PATH COVER in trees?
- What is the complexity of the general ID. PATH COVER problem?
- What are the graphs that admit a k-path identifying cover (i.e. all paths have exactly k vertices)?

Thank you / Nandri / Shukriya / Merci!

