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Definition - Test cover problem (mentioned in Garey, Johnson, 1979)

INPUT: a set system (or hypergraph) (X,S)
PROBLEM: find the minimum subset 7 C S such that each element
x € X belongs to a different set of sets in 7.
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Remark

Equivalently: for any pair x,y of elements of X, there is a set in T
that contains exactly one of x, y.
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Definition - Test cover problem (mentioned in Garey, Johnson, 1979)

INPUT: a set system (or hypergraph) (X,S)
PROBLEM: find the minimum subset 7 C S such that each element
x € X belongs to a different set of sets in 7.

Remark

Equivalently: for any pair x,y of elements of X, there is a set in T
that contains exactly one of x, y.

X (elements) S (tests)
0) a 1={a,b}
({2,3}) b 2= {b} example: 7 = {2,3,5}
({3h) e 3={b,c,d}
({2.3,5)) d 4={c,d}
5={d}
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Definition - Identification problem]

INPUT: a set system (or hypergraph) (X,S)
PROBLEM: find the minimum subset 7 C S such that each element
x € X belongs to a different nonempty set of sets in 7.
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Definition - Identification problem]

INPUT: a set system (or hypergraph) (X,S)
PROBLEM: find the minimum subset 7 C S such that each element
x € X belongs to a different nonempty set of sets in 7.

X (elements) S (tests)
({1 a 1={a b}
({1,2,3}) b 2={b} example: 7 = {1,2,3,5}
({3 ¢ 3={bc,d}
({2,3,5)) d 4={c,d}
5={d}
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o Fault analysis: tests are fault-detectors
@ medical diagnostics: tests are tests for diseases

@ biological identification: tests are attributes
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Theorem (Folklore) ]

Given a set system (X,S), a solution to the TCP has size at least
log,(|X|). A solution to the IDP has size at least log,(|X|+1). These
bounds are tight.

Proof: Must assign to each element of X, a distinct subset of 7.
Hence |X| < 2!71 (TCP) and |X| < 2/71 —1 (IDP). O
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Given a set system (X,S), a solution to the TCP has size at least
log,(|X|). A solution to the IDP has size at least log,(|X|+1). These
bounds are tight.

Proof: Must assign to each element of X, a distinct subset of 7.
Hence |X| < 2!71 (TCP) and |X| < 2/71 —1 (IDP). O

Theorem (Bondy's theorem, 1972)]

Given a set system (X,S), a minimal solution to the TCP has size at
most |X| — 1. A minimal solution to the IDP has size at most |X].
These bounds are tight.

Proof: TCP: nice graph-theoretic argument.
IDP: sizes of solutions to TCP and IDP differ by at most 1! O
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Definition - k-bounded Test Cover Problem and Identification Problem)

INPUT: a set system (X,S) such that

each test has size at most k
PROBLEM: find the minimum subset 7 C S such that each element

x € X belongs to a different (nonempty) set of sets in 7.
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Definition - k-bounded Test Cover Problem and Identification Problem)

INPUT: a set system (X,S) such that
each test has size at most k
PROBLEM: find the minimum subset 7 C S such that each element

x € X belongs to a different (nonempty) set of sets in 7.

Theorem (Moret and Shapiro, 1985)]

Given a k-bounded set system (X,S), a solution to the TCP or IDP

. 2/X| . ..
has size at least 7. This bound is tight.

Proof: i;: elements belonging to 1 test of T; ip: elements in at least 2
tests ‘

. . | Tlk—i

h < |T|, < —5— )

e .
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Theorem (Garey, Johnson, 1979)]

TCP is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)]

IDP is NP-complete (even in “planar” set systems).
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IDP is NP-complete (even in “planar” set systems).

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra,
Ravi, Stougie, 2003)

TCP is O(log(|X]))-approximable, but NP-hard to approximate within
o(log(]X1)). TCP-k is O(log(k))-approximable.

Proof: Reductions from and to SET-COVER and k<-BOUNDED SET
COVER. 0
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Theorem (Garey, Johnson, 1979)]

TCP is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)]

IDP is NP-complete (even in “planar” set systems).

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra,
Ravi, Stougie, 2003)

TCP is O(log(|X]))-approximable, but NP-hard to approximate within
o(log(]X1)). TCP-k is O(log(k))-approximable.

Proof: Reductions from and to SET-COVER and k<-BOUNDED SET
COVER. 0

Remark: The same holds for IDP and IDP-k.
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Rich literature (250+ publications) on variants arising from graph
theory:

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G, it is the IDP problem where X = V/(G) and § is the
set of closed neighbourhoods in G (a vertex identifies its neighbours
and itself).
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Rich literature (250+ publications) on variants arising from graph
theory:

Definition - Identifying codes (Karpovsky, Chakrabarty, Levitin, 1998)

Given a graph G, it is the IDP problem where X = V/(G) and § is the
set of closed neighbourhoods in G (a vertex identifies its neighbours
and itself).

Definition - Watching systems (Auger, Charon, Hudry, Lobstein, 2010+)]

Given a graph G, it is the IDP problem where X = V/(G) and § is the
set of stars in G (a vertex identifies a part of its neighbourhood).

Motivation: fault-detection in computer networks or location of threats in
facilities
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Definition - |dentifying path cover (F., Kovée)]

Given a graph G, it is the IDP problem where X = V/(G) and S is the
set of paths in G: we look for a set P of paths such that:
@ each vertex belongs to some path in P, and
o for each pair x, y of vertices, we have some path P, , in P that
includes exactly one of x, y.
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Definition - |dentifying path cover (F., Kovée)]

Given a graph G, it is the IDP problem where X = V/(G) and S is the
set of paths in G: we look for a set P of paths such that:
@ each vertex belongs to some path in P, and
o for each pair x, y of vertices, we have some path P, , in P that
includes exactly one of x, y.

Possible motivations: laser-like sensor systems or patrolling robots in
facilities/networks

Notation - p"°( G)]

minimum number of paths needed in an identifying path cover.

Florent Foucaud 9/16



To distinguish two adjacent vertices: need a path stopping at one of
them.

P,, C,: the path and cycle on n vertices.

Theorem (F., Kovée)]

We have:
o p°(Pr) = [
° p°(G) =2, p°(G)=3
e for n>5, p®(C,) = [7]
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The optimum is roughly to cover three leaves using two paths.

Ki,n—1: star on n vertices.

Theorem (F., Kovée)]

|—2(n71)-| )

3

We have p°(Ki,n—1)
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Same idea can be used for trees.
T: tree with £ leaves, t degree 2 vertices.

Identify all vertices that are not of degree 2 using [@] paths.

Intuition: first contract the tree to a star, then de-contract it level by
level; at each step, re-route paths accordingly.

Degree 2 vertices can be identified using at most [5] additional paths.

Theorem (F., Kov§e)]

PO(T) < [51+ T3]
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Same idea can be used for trees.
T: tree with £ leaves, t degree 2 vertices.

Identify all vertices that are not of degree 2 using [@] paths.

Intuition: first contract the tree to a star, then de-contract it level by
level; at each step, re-route paths accordingly.

Degree 2 vertices can be identified using at most [5] additional paths.

Theorem (F., Kov§e)]

pO(T) < [51+T4]

Corollary

Let G be a connected graph. Then p°(G) < [2].

Proof: Take spanning tree T of G. An identifying path cover of T is
also one for G! In the worst case, T has many leaves (up to n — 1).
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In general, for connected graphs G, we have the tight bounds:

2n

floga(n + 1)] < p°(6) < [5']
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In general, for connected graphs G, we have the tight bounds:

llog(n +1)] < p°(G) < [ 2]

3
This an improvement over IDP, where for a connected instance:

[logo(n +1)] < p°(G) < n

(see e.g. Foucaud, Naserasr, Parreau 2012 for the special case of
identifying codes in digraphs).
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Definition - ID. PATH COVER)

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.
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INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G.

Definition - ID. PATH COVER-k)

INPUT: a graph G
PROBLEM: find the minimum-size identifying path cover of G such
that each path has at most k vertices.

We know that ID. PATH COVER is O(log(n))-approximable and that ID.
PATH COVER-k is O(log(k))-approximable.

_[Theorem (F., Kovée)]

ID. PATH COVER-k is APX-hard, i.e., there exists some constant ¢ >
1 such that it is NP-hard to approximate ID. PATH COVER-k within

ratio c.
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Theorem (F., Kov§e)]

ID. PATH COVER-k is APX-hard, i.e., there exists some constant ¢ >
1 such that it is NP-hard to approximate ID. PATH COVER-k within

ratio c.

Proof: L-reduction from VERTEX COVER in cubic graphs. A and B are

local sub-gadgets.
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@ Give good upper bounds for TCP-k, IDP-k, ID. PATH COVER-k
(this already seems to be a difficult question for identifying codes).

@ Is there a polynomial-time algorithm for ID. PATH COVER in trees?
@ What is the complexity of the general ID. PATH COVER problem?

@ What are the graphs that admit a k-path identifying cover (i.e. all
paths have exactly k vertices)?
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Thank you / Nandri / Shukriya / Merci!
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