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The test cover problem

INPUT: set system (i.e. hypergraph) (X ,S)
TASK: find the minimum subset T ⊆ S such that each element x ∈ X
belongs to a different set of sets in T .

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

X (elements)

example: T = {2, 3, 5}

(∅) a

({2, 3}) b

({3}) c

({3, 5}) d

S (tests)

1 = {a, b}

2 = {b}

3 = {b, c , d}

4 = {c , d}

5 = {d}

Equivalently: for any pair x , y of elements of X , there is a set in T
that contains exactly one of x , y , i.e. the symmetric difference of the
sets of tests covering x , y is nonempty.

Remark

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 2 / 16



The test cover problem

INPUT: set system (i.e. hypergraph) (X ,S)
TASK: find the minimum subset T ⊆ S such that each element x ∈ X
belongs to a different set of sets in T .

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

X (elements)

example: T = {2, 3, 5}

(∅) a

({2, 3}) b

({3}) c

({3, 5}) d

S (tests)

1 = {a, b}

2 = {b}

3 = {b, c , d}

4 = {c , d}

5 = {d}

Equivalently: for any pair x , y of elements of X , there is a set in T
that contains exactly one of x , y , i.e. the symmetric difference of the
sets of tests covering x , y is nonempty.

Remark

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 2 / 16



General bounds

Given a set system (X ,S), a solution to TEST COVER has size at
least log2(|X |).

Theorem (Folklore)

Proof: Must assign to each element of X , a distinct subset of T .
Hence |X | ≤ 2|T |.

Given a set system (X ,S), a minimal solution to TEST COVER has
size at most |X | − 1.

Theorem (Bondy’s theorem, 1972)

Proof: nice and short graph-theoretic argument.
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Complexity results

TEST COVER is NP-complete.

Theorem (Garey, Johnson, 1979)

TEST COVER is NP-complete, even for set systems with a planar
incidence graph.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

MIN TEST COVER is O(log(|X |))-approximable, but NP-hard to ap-
proximate within o(log(|X |)).

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra,
Ravi, Stougie, 2003)

Proof: Reductions from and to MIN SET COVER.
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A special case: identifying the rooms of a building

Graph G = (V ,E ). V : vertices (rooms), E ⊆ V × V : edges (doors)
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Identifying codes, a special case of test covers

G : undirected graph
N[u]: set of vertices v s.t. d(u, v) ≤ 1

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C

Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
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Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Examples

Subset C of V (G ) such that:
C is a dominating set in G : ∀u ∈ V (G ), N[u] ∩ C 6= ∅, and

C is a separating code in G : ∀u 6= v of V (G ),
N[u] ∩ C 6= N[v ] ∩ C
Equivalently: (N[u]∆N[v ]) ∩ C 6= ∅
(i.e. covering symmetric differences)

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

|C | = log2(n + 1)

Florent Foucaud Complexity of the identifying code problem in restricted graph classes 7 / 16



Computational problems

INPUT: graph G
TASK: find a minimum-size identifying code of G

Definition - MIN IDCODE

MIN IDCODE NP-hard (reduction from 3SAT).

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)

NP-completeness also holds for planar subcubic graphs, planar bipartite
unit disk graphs, line graphs, etc.

MIN IDCODE is approximable within O(log(n)), but NP-hard to ap-
proximate within o(log(n)) (reduction from MIN SET COVER).

Theorem (Berger-Wolf, Laifenfeld, Trachtenberg, 2006)
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A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge xy of G once, add pendant vertex.

x y

If G has min. degree 2, G has a vertex cover of size k iff f (G ) has an
id. code of size k + |E (G )|.

Proposition

MIN VERTEX COVER hard for planar cubic graphs.

MIN IDCODE is NP-hard for subcubic bipartite planar graphs.

Theorem (F.)
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New non-approximability reductions

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

X S

..
.

x y z
LOG. ID.

log2(|S|) vertices

X S

(X ,S) has a test cover of size k if and only if G (X ,S) has an
identifying code of size k + 3dlog2(|S|+ 1)e+ 2. Constructive.

If MIN IDCODE has an α-approximation algorithm, then MIN
TEST COVER has a 4α-approximation algorithm.

Theorem (F.)

Proof: Build approximate id. code C with |C | ≤ αOPTID

Build test cover T : |T | ≤ αOPTID − 3 log2(|S|)− 2
≤ α(OPTTC + 3 log2(|S|) + 2)− 3 log2(|S|)− 2
≤ αOPTTC + (α− 1)3 log2(|S|)
≤ 4αOPTTC 2

It is NP-hard to approximate MIN IDCODE within o(log(n)), even for
bipartite graphs.

Corollary
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New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

..
.

..
.

clique ind. set

X S

split graphs

..
.

..
.

clique clique

X S

co-bipartite graphs

It is NP-hard to approximate MIN IDCODE within o(log(n)), even for
split graphs and even for co-bipartite graphs.

Theorem (F.)
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Interval graphs

Intersection graph of intervals of the real line.

Definition - Interval graph

MIN IDCODE is NP-hard for interval graphs. Reduction from 3-
DIMENSIONAL MATCHING.

Theorem (F., Mertzios, Valicov)

Main idea: an interval can separate pairs of intervals lying far away
from each other (without affecting what lies in between).
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MIN IDCODE for unit interval graphs

Intersection graph of intervals of the real line all having unit length.
Equivalent to proper interval graphs (no interval contains another).

Definition - Unit interval graph

Our reduction creates interval graphs that are far from proper/unit.

Observation

What is the complexity of MIN IDCODE for unit interval graphs?

Question
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MIN IDCODE for unit interval graphs

Lm is the grid graph P22Pm.

Definition - Ladder graph Lm

Set S of cycles of graph G s.t.
⋃

S∈S E (S) = E (G ).

Definition - Cycle cover
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MIN IDCODE for unit interval graphs

INPUT: An integer m and an integer k , and a set S of cycles of Lm.
TASK: Find a minimum-size cycle cover S ′ ⊆ S of Lm.

Definition - LADDER CYCLE COVER

MIN IDCODE for unit interval graphs of order n can be reduced to
LADDER CYCLE COVER for Ln+1 and an input of n cycles.

Theorem (F., Naserasr, Parreau, Valicov)

What is the complexity of LADDER CYCLE COVER?

Question
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Complexity of MIN IDCODE for various graph classes

trees

bounded TW

outerplanar

series-parallel

cographs

bounded CW

unit interval

line of trees

line of bounded TW

permutation

interval

trapezoid

directed path

strongly chordal

undirected path co-bipartite line of bipartite

bipartite

triangle-free

chordal bipartite

split co-comparability

quasi-line

line

unit 2-interval subcubic

2-interval planar

3-interval

comparability chordal AT-free

claw-free

K1,6-free

unit diskperfect DSP

separation for DOMINATING SET

NP-hard ↑

in P ↓

MIN IDCODE
NP-hard

MIN IDCODE
in P

complexity of
MIN IDCODE

unknown

What is the decision complexity
of MIN IDCODE here?

What is the approximation complexity
of MIN IDCODE here?
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