Complexity of the identifying code problem in restricted graph classes

Florent Foucaud
Universitat Politècnica de Catalunya, Barcelona (Spain)

$$
\text { Rouen, July 11th, } 2013
$$

IWOCA

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)
INPUT: set system (i.e. hypergraph) (X, \mathcal{S})
TASK: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different set of sets in \mathcal{T}.

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

INPUT: set system (i.e. hypergraph) (X, \mathcal{S})
TASK: find the minimum subset $\mathcal{T} \subseteq \mathcal{S}$ such that each element $x \in X$ belongs to a different set of sets in \mathcal{T}.

Remark

Equivalently: for any pair x, y of elements of X, there is a set in \mathcal{T} that contains exactly one of x, y, i.e. the symmetric difference of the sets of tests covering x, y is nonempty.

General bounds

Theorem (Folklore)

Given a set system (X, \mathcal{S}), a solution to TEST COVER has size at least $\log _{2}(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T}. Hence $|X| \leq 2^{|\mathcal{T}|}$.

General bounds

Theorem (Folklore)

Given a set system (X, \mathcal{S}), a solution to TEST COVER has size at least $\log _{2}(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T}. Hence $|X| \leq 2^{|\mathcal{T}|}$.

Theorem (Bondy's theorem, 1972)

Given a set system (X, \mathcal{S}), a minimal solution to TEST COVER has size at most $|X|-1$.

Proof: nice and short graph-theoretic argument.

Complexity results

Theorem (Garey, Johnson, 1979)
TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)
TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Complexity results

Theorem (Garey, Johnson, 1979)
TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)
TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra, Ravi, Stougie, 2003)

MIN TEST COVER is $O(\log (|X|))$-approximable, but NP-hard to approximate within $o(\log (|X|))$.

Proof: Reductions from and to MIN SET COVER.

A special case: identifying the rooms of a building

A special case: identifying the rooms of a building

A special case: identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

A special case: identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

A special case: identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

A special case: identifying the rooms of a building

Graph $G=(V, E) . V$: vertices (rooms), $E \subseteq V \times V$: edges (doors)

Identifying codes, a special case of test covers

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$

Identifying codes, a special case of test covers

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Identifying codes, a special case of test covers

G : undirected graph
$N[u]$: set of vertices v s.t. $d(u, v) \leq 1$
Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)
Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)
$|C|=\log _{2}(n+1)$

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)
$|C|=\log _{2}(n+1)$

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)
$|C|=\log _{2}(n+1)$

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Examples

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of $V(G)$ such that:

- C is a dominating set in $G: \forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in $G: \forall u \neq v$ of $V(G)$, $N[u] \cap C \neq N[v] \cap C$
Equivalently: $(N[u] \Delta N[v]) \cap C \neq \emptyset$
(i.e. covering symmetric differences)

Computational problems

Definition - MIN IDCODE
INPUT: graph G
TASK: find a minimum-size identifying code of G

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)
MIN IDCODE NP-hard (reduction from 3SAT).

NP-completeness also holds for planar subcubic graphs, planar bipartite unit disk graphs, line graphs, etc.

Computational problems

Definition - MIN IDCODE

INPUT: graph G
TASK: find a minimum-size identifying code of G

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)
MIN IDCODE NP-hard (reduction from 3SAT).

NP-completeness also holds for planar subcubic graphs, planar bipartite unit disk graphs, line graphs, etc.

Theorem (Berger-Wolf, Laifenfeld, Trachtenberg, 2006)

MIN IDCODE is approximable within $O(\log (n))$, but NP-hard to approximate within $o(\log (n))$ (reduction from MIN SET COVER).

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge $x y$ of G once, add pendant vertex.

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge $x y$ of G once, add pendant vertex.

Proposition

If G has min. degree $2, G$ has a vertex cover of size k iff $f(G)$ has an id. code of size $k+|E(G)|$.

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge $x y$ of G once, add pendant vertex.

Proposition

If G has min. degree $2, G$ has a vertex cover of size k iff $f(G)$ has an id. code of size $k+|E(G)|$.

MIN VERTEX COVER hard for planar cubic graphs.

Theorem (F.)
MIN IDCODE is NP-hard for subcubic bipartite planar graphs.

New non-approximability reductions

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

New non-approximability reductions

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, \mathcal{S}) has a test cover of size k if and only if $G(X, \mathcal{S})$ has an identifying code of size $k+3\left\lceil\log _{2}(|\mathcal{S}|+1)\right\rceil+2$. Constructive.
- If MIN IDCODE has an α-approximation algorithm, then MIN TEST COVER has a 4α-approximation algorithm.

New non-approximability reductions

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, \mathcal{S}) has a test cover of size k if and only if $G(X, \mathcal{S})$ has an identifying code of size $k+3\left\lceil\log _{2}(|\mathcal{S}|+1)\right\rceil+2$. Constructive.
- If MIN IDCODE has an α-approximation algorithm, then MIN TEST COVER has a 4α-approximation algorithm.

Proof: Build approximate id. code C with $|C| \leq \alpha O P T_{I D}$
Build test cover $T:|T| \leq \alpha O P T_{I D}-3 \log _{2}(|\mathcal{S}|)-2$

$$
\begin{aligned}
& \leq \alpha\left(O P T_{T C}+3 \log _{2}(|\mathcal{S}|)+2\right)-3 \log _{2}(|\mathcal{S}|)-2 \\
& \leq \alpha O P T_{T C}+(\alpha-1) 3 \log _{2}(|\mathcal{S}|) \\
& \leq 4 \alpha O P T_{T C}
\end{aligned}
$$

New non-approximability reductions

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Theorem (F.)

- (X, \mathcal{S}) has a test cover of size k if and only if $G(X, \mathcal{S})$ has an identifying code of size $k+3\left\lceil\log _{2}(|\mathcal{S}|+1)\right\rceil+2$. Constructive.
- If MIN IDCODE has an α-approximation algorithm, then MIN TEST COVER has a 4α-approximation algorithm.

Corollary

It is NP-hard to approximate MIN IDCODE within $o(\log (n))$, even for bipartite graphs.

New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

split graphs

co-bipartite graphs

Theorem (F.)

It is NP-hard to approximate MIN IDCODE within $o(\log (n))$, even for split graphs and even for co-bipartite graphs.

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Valicov)
MIN IDCODE is NP-hard for interval graphs. Reduction from 3DIMENSIONAL MATCHING.

Interval graphs

Definition - Interval graph

Intersection graph of intervals of the real line.

Theorem (F., Mertzios, Valicov)

MIN IDCODE is NP-hard for interval graphs. Reduction from 3DIMENSIONAL MATCHING.

Main idea: an interval can separate pairs of intervals lying far away from each other (without affecting what lies in between).

MIN IDCODE for unit interval graphs

Definition - Unit interval graph
Intersection graph of intervals of the real line all having unit length. Equivalent to proper interval graphs (no interval contains another).

MIN IDCODE for unit interval graphs

Definition - Unit interval graph
Intersection graph of intervals of the real line all having unit length. Equivalent to proper interval graphs (no interval contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

MIN IDCODE for unit interval graphs

Definition - Unit interval graph
Intersection graph of intervals of the real line all having unit length. Equivalent to proper interval graphs (no interval contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

Question

What is the complexity of MIN IDCODE for unit interval graphs?

MIN IDCODE for unit interval graphs

Definition - Ladder graph L_{m}

L_{m} is the grid graph $P_{2} \square P_{m}$.

Definition - Cycle cover

Set \mathcal{S} of cycles of graph G s.t. $\bigcup_{S \in \mathcal{S}} E(S)=E(G)$.

MIN IDCODE for unit interval graphs

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set \mathcal{S} of cycles of L_{m}. TASK: Find a minimum-size cycle cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of L_{m}.

MIN IDCODE for unit interval graphs

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set \mathcal{S} of cycles of L_{m}. TASK: Find a minimum-size cycle cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of L_{m}.

Theorem (F., Naserasr, Parreau, Valicov)

MIN IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

MIN IDCODE for unit interval graphs

Definition - LADDER CYCLE COVER

INPUT: An integer m and an integer k, and a set \mathcal{S} of cycles of L_{m}. TASK: Find a minimum-size cycle cover $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ of L_{m}.

Theorem (F., Naserasr, Parreau, Valicov)

MIN IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

Question

What is the complexity of LADDER CYCLE COVER?

Complexity of MIN IDCODE for various graph classes

Complexity of MIN IDCODE for various graph classes

Complexity of MIN IDCODE for various graph classes

Complexity of MIN IDCODE for various graph classes

