Complexity of the identifying code problem in restricted graph classes

Florent Foucaud

Universitat Politècnica de Catalunya, Barcelona (Spain)

Rouen, July 11th, 2013

IWOCA

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

INPUT: set system (i.e. hypergraph) (X, S)**TASK:** find the minimum subset $T \subseteq S$ such that each element $x \in X$ belongs to a different set of sets in T.

The test cover problem

Definition - TEST COVER (mentioned in Garey, Johnson, 1979)

INPUT: set system (i.e. hypergraph) (X, S)**TASK:** find the minimum subset $T \subseteq S$ such that each element $x \in X$ belongs to a different set of sets in T.

Equivalently: for any pair x, y of elements of X, there is a set in \mathcal{T} that contains **exactly** one of x, y, i.e. the symmetric difference of the sets of tests covering x, y is **nonempty**.

Theorem (Folklore)

Given a set system (X, S), a solution to TEST COVER has size at least $\log_2(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T} . Hence $|X| \leq 2^{|\mathcal{T}|}$. **Theorem** (Folklore)

Given a set system (X, S), a solution to TEST COVER has size at least $\log_2(|X|)$.

Proof: Must assign to each element of X, a distinct subset of \mathcal{T} . Hence $|X| \leq 2^{|\mathcal{T}|}$.

Theorem (Bondy's theorem, 1972)

Given a set system (X, S), a minimal solution to TEST COVER has size at most |X| - 1.

Proof: nice and short graph-theoretic argument.

Florent Foucaud

Complexity results

Theorem (Garey, Johnson, 1979)

TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Complexity results

Theorem (Garey, Johnson, 1979)

TEST COVER is NP-complete.

Theorem (Charon, Cohen, Hudry, Lobstein, 2008)

TEST COVER is NP-complete, even for set systems with a planar incidence graph.

Theorem (De Bontridder, Haldorsson, Haldorsson, Hurkens, Lenstra, Ravi, Stougie, 2003)

MIN TEST COVER is $O(\log(|X|))$ -approximable, but NP-hard to approximate within $o(\log(|X|))$.

Proof: Reductions from and to MIN SET COVER.

Florent Foucaud

Complexity of the identifying code problem in restricted graph classes

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

Definition - Identifying code (Karpovsky, Chakrabarty, Levitin, 1998)

Subset C of V(G) such that:

- C is a dominating set in G: $\forall u \in V(G), N[u] \cap C \neq \emptyset$, and
- C is a separating code in G: $\forall u \neq v$ of V(G), N[u] $\cap C \neq N[v] \cap C$

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

G: undirected graph N[u]: set of vertices v s.t. $d(u, v) \leq 1$

$$|C| = \log_2(n+1)$$

Florent Foucaud

 $|C| = \log_2(n+1)$

Computational problems

Definition - MIN IDCODE

INPUT: graph G**TASK:** find a minimum-size identifying code of G

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)

MIN IDCODE NP-hard (reduction from 3SAT).

NP-completeness also holds for planar subcubic graphs, planar bipartite unit disk graphs, line graphs, etc.

Computational problems

Definition - MIN IDCODE

INPUT: graph G**TASK:** find a minimum-size identifying code of G

Theorem (Cohen, Honkala, Lobstein, Zémor, 1999)

MIN IDCODE NP-hard (reduction from 3SAT).

NP-completeness also holds for planar subcubic graphs, planar bipartite unit disk graphs, line graphs, etc.

Theorem (Berger-Wolf, Laifenfeld, Trachtenberg, 2006)

MIN IDCODE is approximable within $O(\log(n))$, but NP-hard to approximate within $o(\log(n))$ (reduction from MIN SET COVER).

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge *xy* of *G* once, add pendant vertex.

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge *xy* of *G* once, add pendant vertex.

Proposition

If G has min. degree 2, G has a vertex cover of size k iff f(G) has an id. code of size k + |E(G)|.

A simple reduction from MIN VERTEX COVER

Reduction: subdivide each edge *xy* of *G* once, add pendant vertex.

Proposition

If G has min. degree 2, G has a vertex cover of size k iff f(G) has an id. code of size k + |E(G)|.

MIN VERTEX COVER hard for planar cubic graphs.

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

- (X,S) has a test cover of size k if and only if G(X,S) has an identifying code of size k + 3⌈log₂(|S|+1)⌉ + 2. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

- (X,S) has a test cover of size k if and only if G(X,S) has an identifying code of size k + 3⌈log₂(|S| + 1)⌉ + 2. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Proof: Build approximate id. code *C* with $|C| \leq \alpha OPT_{ID}$ Build test cover *T*: $|T| \leq \alpha OPT_{ID} - 3\log_2(|S|) - 2$ $\leq \alpha (OPT_{TC} + 3\log_2(|S|) + 2) - 3\log_2(|S|) - 2$ $\leq \alpha OPT_{TC} + (\alpha - 1)3\log_2(|S|)$ $< 4\alpha OPT_{TC}$

Reduction: MIN TEST COVER to MIN IDCODE for bipartite graphs.

- (X,S) has a test cover of size k if and only if G(X,S) has an identifying code of size k + 3[log₂(|S|+1)] + 2. Constructive.
- If MIN IDCODE has an α -approximation algorithm, then MIN TEST COVER has a 4α -approximation algorithm.

Corollary

It is NP-hard to approximate MIN IDCODE within $o(\log(n))$, even for bipartite graphs.

New non-approximability reductions

Similar reductions for split graphs and co-bipartite graphs.

Definition - Interval graph

Intersection graph of intervals of the real line.

Main idea: an interval can separate pairs of intervals lying far away from each other (without affecting what lies in between).

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval contains another).

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

Definition - Unit interval graph

Intersection graph of intervals of the real line all having unit length. Equivalent to *proper* interval graphs (no interval contains another).

Observation

Our reduction creates interval graphs that are far from proper/unit.

Question

What is the complexity of MIN IDCODE for unit interval graphs?

Definition - Ladder graph *L_m*

 L_m is the grid graph $P_2 \Box P_m$.

Definition - Cycle cover

Set S of cycles of graph G s.t. $\bigcup_{S \in S} E(S) = E(G)$.

Definition - LADDER CYCLE COVER

INPUT: An integer *m* and an integer *k*, and a set S of cycles of L_m . **TASK:** Find a minimum-size cycle cover $S' \subseteq S$ of L_m .

Definition - LADDER CYCLE COVER

INPUT: An integer *m* and an integer *k*, and a set S of cycles of L_m . **TASK:** Find a minimum-size cycle cover $S' \subseteq S$ of L_m .

Theorem (F., Naserasr, Parreau, Valicov)

MIN IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

Definition - LADDER CYCLE COVER

INPUT: An integer *m* and an integer *k*, and a set S of cycles of L_m . **TASK:** Find a minimum-size cycle cover $S' \subseteq S$ of L_m .

Theorem (F., Naserasr, Parreau, Valicov)

MIN IDCODE for unit interval graphs of order n can be reduced to LADDER CYCLE COVER for L_{n+1} and an input of n cycles.

Question

What is the complexity of LADDER CYCLE COVER?

