## The complexity of homomorphisms of signed graphs and signed constraint satisfaction

Florent Foucaud

U. of Johannesburg + U. Paris-Dauphine

joint work with: Reza Naserasr, U. Paris-Sud

LATIN 2014

**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .





**Mapping** from V(G) to V(H) which **preserves adjacency**. If it exists, we note  $G \rightarrow H$ .



Target graph:  $H = C_5$ 



Remark: Homomorphisms generalize proper vertex-colourings

$$G \to K_k \iff G$$
 is *k*-colourable

#### **Definition** - *H*-COLOURING

INSTANCE: A graph G. QUESTION: does  $G \rightarrow H$ ?

#### **Definition** - *H*-COLOURING

INSTANCE: A graph G. QUESTION: does  $G \rightarrow H$ ?

Theorem (Karp, 1972)

*K*<sub>3</sub>-COLOURING is NP-complete.

#### **Definition** - *H*-Colouring

INSTANCE: A graph G. QUESTION: does  $G \rightarrow H$ ?

Theorem (Hell, Nešetřil, 1990)

H-COLOURING is NP-complete for every non-bipartite graph H. Polynomial (trivial) if H is bipartite or has a loop.

#### **Definition** - *H*-Colouring

INSTANCE: A graph G. QUESTION: does  $G \rightarrow H$ ?

Theorem (Hell, Nešetřil, 1990)

H-COLOURING is NP-complete for every non-bipartite graph H. Polynomial (trivial) if H is bipartite or has a loop.

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture)

For every **digraph** *D*, *D*-COLOURING is either NP-complete or polynomialtime solvable.

(Equivalent to dichotomy for CSP and MMSNP — tough conjecture!)

**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v



**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v



**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.



Re-signing operation at v: switch sign of each edge incident to v





**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v







**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v







**Signature**  $\Sigma$  of graph *G*: assignment of + or - sign to each edge of *G*.  $\rightarrow \Sigma$ : set of - edges.

$$\Sigma = \{12, 34\}$$

Re-signing operation at v: switch sign of each edge incident to v





**Signed graph:** Graph G with an equivalence class C of signatures.

Notation:  $(G, \Sigma)$  with any  $\Sigma \in C$ .

**Signed graph:** Graph G with an equivalence class C of signatures. *Notation:*  $(G, \Sigma)$  with any  $\Sigma \in C$ .

Unbalanced cycle: cycle with an odd number of negative edges





unbalanced C<sub>4</sub>: UC<sub>4</sub>

**Signed graph:** Graph G with an equivalence class C of signatures.

Notation:  $(G, \Sigma)$  with any  $\Sigma \in C$ .

Unbalanced cycle: cycle with an odd number of negative edges



**Signed graph:** Graph G with an equivalence class C of signatures.

Notation:  $(G, \Sigma)$  with any  $\Sigma \in C$ .

Unbalanced cycle: cycle with an odd number of negative edges



Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

 $\rightarrow$  **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956) Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

 $\rightarrow$  **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

 $\rightarrow$  Graph theory

**Conjecture** (Hadwiger, 1943)

If G has no  $K_k$  as a minor,  $\chi(G) \leq k - 1$ .

Very difficult; proved up to k = 6.

Introduced by Harary (1953): notion of **balanced** signed graphs (each cycle is balanced)

 $\rightarrow$  **Social psychology:** "like" and "dislike" relations in a social network. Balanced networks are socially stable. (Cartwright and Harary, 1956)

 $\rightarrow$  Graph theory

**Conjecture** (Hadwiger, 1943)

If G has no  $K_k$  as a minor,  $\chi(G) \leq k - 1$ .

Very difficult; proved up to k = 6.

**Conjecture** ("Odd Hadwiger" - Seymour; Gerards, 1993)

If (G, E(G)) has no  $(K_k, E(K_k))$  as a minor,  $\chi(G) \leq k - 1$ .

Extends the previous one; proved up to k = 5.

Florent Foucaud

Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .

Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .





Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .





Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .





Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



Homomorphism  $f : G \to H$  such that there exists  $\Sigma'_G \equiv \Sigma_G$  for which signs are preserved with respect to  $\Sigma'_G, \Sigma_H$ .



**Definition** -  $(H, \Sigma_H)$ -COLOURING

INSTANCE: A signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow (H, \Sigma_H)$ ?

**Definition** -  $(H, \Sigma_H)$ -COLOURING

INSTANCE: A signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow (H, \Sigma_H)$ ?

#### Remarks:

• checking if  $\Sigma\equiv\Sigma':$  polynomial

**Definition** -  $(H, \Sigma_H)$ -Colouring

INSTANCE: A signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow (H, \Sigma_H)$ ?

#### **Remarks:**

- checking if  $\Sigma\equiv\Sigma':$  polynomial
- $(G, \Sigma) \rightarrow (H, \emptyset)$  IFF  $G \rightarrow H$  and  $\Sigma \equiv \emptyset$ .

 $(G, \Sigma) \rightarrow (H, E(H))$  IFF  $G \rightarrow H$  and  $\Sigma \equiv E(G)$ .

**Definition** -  $(H, \Sigma_H)$ -Colouring

INSTANCE: A signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow (H, \Sigma_H)$ ?

#### **Remarks:**

- checking if  $\Sigma \equiv \Sigma'$ : polynomial
- $(G, \Sigma) \rightarrow (H, \emptyset)$  IFF  $G \rightarrow H$  and  $\Sigma \equiv \emptyset$ .

 $(G,\Sigma) \rightarrow (H,E(H))$  IFF  $G \rightarrow H$  and  $\Sigma \equiv E(G)$ .

 $\rightarrow$  If  $\Sigma_H \equiv \emptyset$  or  $\Sigma_H \equiv E(H)$ ,  $(H, \Sigma_H)$ -COLOURING has same complexity as *H*-COLOURING.

**Definition** -  $(H, \Sigma_H)$ -COLOURING

INSTANCE: A signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow (H, \Sigma_H)$ ?

#### **Remarks:**

- checking if  $\Sigma \equiv \Sigma'$ : polynomial
- $(G, \Sigma) \rightarrow (H, \emptyset)$  IFF  $G \rightarrow H$  and  $\Sigma \equiv \emptyset$ .

$$(G,\Sigma) 
ightarrow (H,E(H))$$
 IFF  $G 
ightarrow H$  and  $\Sigma \equiv E(G)$ .

 $\rightarrow$  If  $\Sigma_H \equiv \emptyset$  or  $\Sigma_H \equiv E(H)$ ,  $(H, \Sigma_H)$ -COLOURING has same complexity as *H*-COLOURING.

#### **Polynomial cases:**

- *H* bipartite,  $\Sigma_H \equiv \emptyset \equiv E(H)$  (ex: trees)
- H has one vertex with both + loop and loop
- *H* has a loop and  $\Sigma_H \equiv \emptyset$  or  $\Sigma_H \equiv E(H)$
- *H* is bipartite and contains a multi-edge (+ and -)

#### Non-bipartite signed graphs: reduction from classical H-Colouring

**Theorem** (Brewster, F., Hell, 2014+)

$$G \to H^* \iff (G, E(G)) \to (H, \Sigma)$$



#### Non-bipartite signed graphs: reduction from classical H-Colouring

Theorem (Brewster, F., Hell, 2014+)

$$G \to H^* \Longleftrightarrow (G, E(G)) \to (H, \Sigma)$$



#### Corollary

If  $(H, \Sigma)$  has an **unbalanced odd** cycle, then  $(H, \Sigma)$ -COLOURING is NP-complete.

(symmetric result holds when  $(H, \Sigma)$  has balanced odd cycle)

Florent Foucaud

**Definition** -  $UC_{2k}$ -Colouring

INSTANCE: A (bipartite) signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow UC_{2k}$ ? **Definition** -  $UC_{2k}$ -COLOURING

INSTANCE: A (bipartite) signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow UC_{2k}$ ?

Theorem (F., Naserasr)

 $UC_{2k}$ -COLOURING is NP-complete for every  $k \geq 2$ .

**Definition** -  $UC_{2k}$ -Colouring

INSTANCE: A (bipartite) signed graph  $(G, \Sigma)$ . QUESTION: does  $(G, \Sigma) \rightarrow UC_{2k}$ ?

**Theorem** (F., Naserasr)

 $UC_{2k}$ -COLOURING is NP-complete for every  $k \geq 2$ .

**Definition** - MONOTONE NOT-ALL-EQUAL-3SAT

INSTANCE: A set of clauses of 3 Boolean variables from set X. QUESTION: Is there a truth assignment  $X \rightarrow \{0,1\}$  s.t. each clause has variables with different values?

#### **NAE-3SAT** $\leq_R$ *UC*<sub>4</sub>-Colouring: clause gadget



**Construction of** G(F): one clause gadget per clause of F. All vertices with same labels (c or  $x_i$ ) identified with each other.

**Main idea:** In a mapping, re-signing at  $x_i \iff x_i = \mathsf{TRUE}$ 

**NAE-3SAT**  $\leq_R UC_{2k}$ -Colouring: clause gadget



(where  $P_k$  has length k-1)

Corollary

Let  $(H, \Sigma)$  be a signed bipartite graph with girth 2k and an unbalanced 2k-cycle. If all cycles in H are at distance  $\geq 2k$  from each other, then  $(H, \Sigma)$ -COLOURING is NP-complete.

**Idea:** use reduction for  $UC_{2k}$ -COLOURING — the instance is forced to use only one cycle as a target.

# **Constraint Satisfaction Problem (CSP)** for relational structure $T = (X_T, V_T)$ : domain $X_T$ + relations $R_1, \ldots, R_k$ of arity $a_1, \ldots, a_k$ with $R_i \subset X^{a_i}$ .

Definition - T-CSP

INSTANCE: relational structure S. QUESTION: does  $S \rightarrow T$ ?



### **Constraint Satisfaction Problem (CSP)** for relational structure $T = (X_T, V_T)$ : domain $X_T$ + relations $R_1, \ldots, R_k$ of arity $a_1, \ldots, a_k$ with

 $I = (X_T, V_T)$ : domain  $X_T$  + relations  $R_1, \ldots, R_k$  of arity  $a_1, \ldots, a_k$  with  $R_i \subseteq X^{a_i}$ .

**Definition** - *T*-CSP

INSTANCE: relational structure S. QUESTION: does  $S \rightarrow T$ ?

#### Examples:

- (Di)graph homomorphism to D:  $X_T = V(D)$ ,  $V_T$  is one binary (non-)symmetric relation.
- 3SAT:  $X_T = \{0, 1\}$ ,  $V_T$ : one ternary relation with all triples except 000.

### **Constraint Satisfaction Problem (CSP)** for relational structure $T_{\rm rel}(X_{\rm rel})$ is demain $X_{\rm relations} = R_{\rm relations}$ of arity $r_{\rm relations}$

 $T = (X_T, V_T)$ : domain  $X_T$  + relations  $R_1, \ldots, R_k$  of arity  $a_1, \ldots, a_k$  with  $R_i \subseteq X^{a_i}$ .

**Definition** - *T*-CSP

INSTANCE: relational structure S. QUESTION: does  $S \rightarrow T$ ?

**Conjecture** (Feder-Vardi, 1998: Dichotomy conjecture)

For every T, T-CSP is either NP-complete or polynomial-time.

## **Constraint Satisfaction Problem (CSP)** for relational structure $T = (X_T, V_T)$ : domain $X_T$ + relations $R_1, \ldots, R_k$ of arity $a_1, \ldots, a_k$ with

 $R_i \subseteq X^{a_i}$ .

**Definition** - *T*-CSP

INSTANCE: relational structure S. QUESTION: does  $S \rightarrow T$ ?

Conjecture (Feder-Vardi, 1998: Dichotomy conjecture)

For every T, T-CSP is either NP-complete or polynomial-time.

Signed CSP: + and - tuples, re-signing allowed.

Theorem (F., Naserasr)

Dichotomy for CSP  $\iff$  Dichotomy for signed CSP

Idea: construct equivalent non-signed target that simulates re-signing